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ABSTRACT

Phase-contrast CT (PCCT) is an emerging tool that has found numerous applications, including applications
to preclinical imaging. There remains a need for reducing the imaging time in current PCCT. One approach
to reducing imaging time is to reduce the scanning angular range in PCCT. However, accurate image recon-
struction from data collected over a limited angular range (LAR) is challenging because it poses a problem of
accurate inversion of the PCCT imaging model that can be highly ill-conditioned in LAR scans. In this work, we
conduct an investigation of accurate image reconstruction through inverting the imaging model for LAR scan-
ning configurations in propagation-based (PB) PCCT. We have developed a directional-total-variation (DTV)
algorithm for image reconstruction from knowledge of the discrete X-ray transform (DXT) over a LAR for CT
imaging. Observing the mathematical similarity between the DXT in CT and the imaging model in PB-PCCT,
we develop and tailor the DTV algorithm for image reconstruction from LAR data in PB-PCCT. Results of
our study show that the tailored DTV algorithm can yield image reconstruction with reduced LAR artifacts
that can be observed otherwise in images reconstructed by use of the existing algorithm in PB-PCCT imaging.
For a given LAR, it can be divided into sub arcs of LARs. We also investigate a scanning configuration with
two orthogonal arcs of LARs separated by 90◦, and observe that the two-orthogonal-arc scanning configuration
may allow image reconstruction more accurately than does a single-arc scanning configuration even though the
total angular ranges in both scanning configurations are identical. While boundary images can be reconstructed
from data, we develop the DTV algorithm for reconstruction of the image, i.e., the refractive index distribution,
instead of its boundary image from data in PB-PCCT. Once the image is obtained, the Laplacian operator can
be applied to it for yielding its boundary image.

Keywords: limited-angular range (LAR), directional total variation, primal-dual algorithm, phase contrast CT
(PCCT)

1. INTRODUCTION

Physical quantities such as the refractive index within an object scanned can be estimated in phase-contrast
CT (PCCT) for yielding unique contrast mechanisms differing from that in conventional CT. It is believed that
PCCT may hold potential value for certain preclinical and clinical applications. However, a number of issues need
to be addressed adequately before its wide adoption in preclinical and clinical applications. One of the practical
constraints that PCCT faces is its considerably long imaging time. There exist studies on the minimization of the
total imaging time by reducing the number of scanning views while maintaining the imaging time unchanged at
each view in PCCT.1–3 In this study, we investigate a different approach to reducing the imaging time in PCCT
by lowering its scanning angular range to a limited angular range (LAR) that is less than the full angular range
of π. A PCCT scan over a LAR can readily be implemented in PCCT without invoking any hardware changes
simply by stopping X-ray illumination and data collection beyond the LAR prescribed. However, accurate image
reconstruction from such LAR data is challenging because it poses a problem of accurate inversion of the PCCT
imaging model that can be highly ill-conditioned under LAR conditions.

In this work, we conduct an investigation of accurate image reconstruction from LAR data by inverting
the imaging model in propagation-based (PB) PCCT. We have developed a directional-total-variation (DTV)
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algorithm4 for image reconstruction from knowledge of the discrete X-ray transform (DXT) over a LAR for CT
imaging. Observing the mathematical similarity between the DXT in CT and the imaging model in PB-PCCT,
we develop and tailor the DTV algorithm for image reconstruction from LAR data in PB-PCCT. For a given
LAR, it can be divided into sub arcs of LARs. We thus also investigate a scanning configuration with two
orthogonal arcs of LARs,5–7 which are of equal angular ranges but their centers are separated by 90◦. For
simplicity, we refer to a configuration with two orthogonal arcs of LARs as the two-orthogonal-arc configuration,
whereas the configuration with a single arc of LAR as a single-arc configuration.

In many of the existing works in PB-PCCT, algorithms have been developed only for reconstruction of the
image boundaries, as shown in Fig. 1b, instead of the image itself in Fig. 1a. Unlike these existing algorithms,
the DTV algorithm developed in this work reconstructs the image, i.e., the refractive index distribution, from
LAR data in PB-PCCT. From the reconstructed image, one can then readily obtain the boundary image.

2. MATERIALS AND METHODS

2.1 Imaging model in PB-PCCT

In PB-PCCT, assuming the object’s attenuation of X-ray is weak, the 2D imaging model can be expressed as1,8

g = H∆f , (1)

where vector g of size M denotes model data in PB-PCCT; vector f of size N denotes a 2D discrete image of the

refractive index within the imaged object; ∆ = ∂2

∂x2 + ∂2

∂y2 is the discrete Laplacian operator on the image space;
and system matrix H of size M ×N represents a discrete Radon transform from image space to data space. In
this work, element hij of H denotes the intersection between ray j and pixel i. For given H corresponding to a
LAR scanning configuration discussed below, we use Eq. (1) to generate model data g from numerical, realistic
plant-seed phantom f on a grid of 190× 200 square pixels of size 0.12 mm in Fig. 1a.9

2.2 Scan configuration

We consider a single-arc and a two-orthogonal-arc scanning configurations,7 as shown in Figs. 1c and 1d, with a
parallel-beam projection geometry, and the discrete Radon transform is used as the imaging model in PB-PCCT.
We also assume that the former covers LAR of ατ and that the latter includes two sub-arcs of LARs of α1 and
α2, symmetric relative, respectively, to the y- and x-axis. In the work, without loss of generality, we consider
the case with ατ = α1 +α2 and α1 = α2. Furthermore, the detector array consists of 512 bins of size 0.046 mm.
We generate noiseless data from the plant-seed phantom (i) with the single-arc configurations of ατ = 60◦, 90◦,
120◦, and 150◦, with an angular interval of 0.5◦ per view, and (ii) with the two-orthogonal-arc configurations
of 2α1 = 2α2 = 60◦, 90◦, 120◦, and 150◦. Based upon the noiseless data, we also generate noisy data which is
equivalent to adding Gaussian noise to the intensity data,8 and the Gaussian noise has zero mean and standard
deviation of 1.5% of the intensity for each detector bin.

2.3 Directional-TV reconstruction algorithm

Image reconstruction in PB-PCCT is equivalent to inverting the imaging model in Eq. (1). It is well-known
that, while existing analytic algorithms can accurately reconstruct boundary images from data collected over
FAR of 180◦, they cannot yield accurate boundary images nor images from data collected over LARs that are
considerably lower than 180◦. Instead, we formulate the reconstruction problem from LAR data in PB-PCCT
as an optimization problem and tailor the DTV algorithm to obtain images through solving the optimization
problem.

We consider a convex optimization program containing a data-`2-norm fidelity and DTV constraints along
the x- and y-directions, which is given by4

f? = argmin
f

Φ(H∆f − g[M]) s.t. Ψ(f) (2)

where vector g[M] of size M denotes discrete measured data; Φ(H∆f−g[M]) denotes the `2-norm of the difference
between H∆f and measured data g[M]; Ψ(f) is the constraint term in the optimization program which includes
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Figure 1. (a) A numerical, realistic plant-seed phantom, i.e., truth image f [truth], from which PB-PCCT data are generated.
Display window: [0.0, 5×10−7] arbitrary units (AU); (b) a boundary image generated by applying the discrete Laplacian
operator to the plant-seed phantom in panel (a). Display window: [-5×10−8, 5×10−8] AU; (c) single-arc configuration
with LAR of ατ , and (d) two-orthogonal-arc configuration in which the two sub-arcs of LARs are symmetric, respectively,
relative to the y- and x-axis, covering equal angular ranges α1 and α2, where ατ = α1 + α2.

three components: image DTV constraint along x-axis, image DTV constraint along y-axis, and image non-
negativity constraint; the DTV constraint applies an upper bound on an image DTV, which is defined as
`1-norm of a vector obtained by calculating two-point differences of f along either x- or y-axis; and the image
non-negativity constraint is to enforce non-negative values for each pixel in the image. In many of existing
works,1,10,11 algorithms were developed largely for inverting H in the imaging model, thus yielding the boundary
image ∆f , instead of image f itself. In this work, we develop and tailor the DTV algorithm to solve Eq. (2) directly
for obtaining image f . Once image f is obtained, one can readily apply the Laplacian to it to obtain a boundary
image, as shown in Fig. 1b. For references, we also reconstruct images by using the filtered-backprojection
(FBP) algorithm.8,12

For evaluating image reconstructed, we first perform visual inspection of the images reconstructed. Addi-
tionally, we also perform a quantitative evaluation of image reconstructed from data over LAR by using the
normalized root-mean-square-error (nRMSE) metric

nRMSE(f [recon]) = ||f [recon] − f [truth]||2/||f [truth]||2, (3)

where f [recon] and f [truth] denote the reconstructed and truth images. Metric nRMSE provides measures of
quantitative accuracy between the reconstructed and truth images. We note that nRMSE(f [recon]) approaches 0
as f [recon] approaches f [truth].

3. RESULTS

3.1 Reconstruction from noiseless data

We first conducted image reconstruction, as shown in Fig. 2, by using the DTV and FBP algorithms from
noiseless data with the two-orthogonal-arc and single-arc configurations over total angular ranges ατ = 60◦, 90◦,

Proc. of SPIE Vol. 12304  123042A-3



Figure 2. Images reconstructed by use of the FBP (rows 1&3) and DTV (rows 2&4) algorithm from noiseless data for
single-arc configurations (rows 1&2) of ατ = 150◦ (column 1), 120◦ (column 2), 90◦ (column 3), and 60◦ (column 4),
respectively, and for two-orthogonal-arc configurations (rows 3&4) of α1 = α2 = 75◦ (column 1), 60◦ (column 2), 45◦

(column 3), and 30◦ (column 4), respectively. Display window: [0.0, 5×10−7] AU.

Table 1. nRMSEs of images reconstructed from noiseless data generated with single-arc and two-orthogonal-arc configu-
rations of different ατ .

Configuration

LAR
150◦ 120◦ 90◦ 60◦

Single-arc 2.56× 10−5 3.85× 10−4 1.27× 10−2 2.71× 10−2

Two-orthogonal-arc 8.40× 10−7 1.63× 10−5 1.44× 10−4 2.21× 10−3
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Figure 3. Images reconstructed by use of the FBP (rows 1&3) and DTV (rows 2&4) algorithm from noisy data for single-
arc configurations (rows 1&2) of ατ = 150◦ (column 1), 120◦ (column 2), 90◦ (column 3), and 60◦ (column 4), respectively,
and for two-orthogonal-arc configurations (rows 3&4) of α1 = α2 = 75◦ (column 1), 60◦ (column 2), 45◦ (column 3), and
30◦ (column 4), respectively. Display window: [0.05, 0.9].

120◦, and 150◦. In this case, measured data and model data are identical, i.e., g[M] = g = H∆f . We first observe
that FBP reconstructions from all LAR data contain significant artifacts such as leakage and distortion. It can
also be observed that all DTV reconstructions of the two-orthogonal-arc configurations visually resemble the
truth plant-seed phantom. However, DTV reconstructions of the single-arc configurations show visible artifacts
for ατ ≤ 90◦. We also calculated nRMSEs of the DTV reconstructions and list the corresponding values in Table
1. It can be observed that the nRMSE increases as total-angular range ατ decreases. In addition, the nRMSEs
of DTV reconstructions for two-orthogonal-arc configurations are generally smaller than those of the single-arc
configurations for a given ατ .

3.2 Reconstruction from noisy data

We then conducted image reconstruction with the DTV and FBP algorithms from noisy data g[M], as described
in Sec. 2.2, by using the two-orthogonal-arc and the single-arc configurations covering total angular ranges
ατ = 60◦, 90◦, 120◦, and 150◦, and show results in Fig. 3. Similarly to the noiseless-data study, there exist
significant LAR artifacts in all FBP reconstructions. For the DTV reconstructions, in general, as the total angular
coverage ατ decreases, LAR artifacts increase in image reconstructions. We observe that DTV reconstructions
with the two-orthogonal-arc configuration outperform those with the single-arc configuration in terms of artifacts
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Table 2. nRMSEs of the DTV reconstructions from noisy data generated with single-arc and two-orthogonal-arc configu-
rations of different ατ .

Configuration

LAR
150◦ 120◦ 90◦ 60◦

Single-arc 0.134 0.187 0.269 0.392
Two-orthogonal-arc 0.118 0.167 0.220 0.283

reduction. This is understandable because the data model is less ill-conditioned for the former than for the latter,
and thus the reconstruction of the former is less sensitive to data inconsistency, i.e., data noise, than that of the
latter. In particular, DTV reconstructions with single-arc configurations considerably deteriorate for ατ ≤ 90◦,
and some detailed structures cannot be identified. DTV reconstructions with two-orthogonal-arc configurations,
however, can still reveal most of the structures for ατ = 60◦. We also conduct a quantitative analysis of the
DTV reconstructions by computing their nRMSEs relative to the truth phantom, and show results in Table 2.
We notice that, for DTV reconstructions from LAR data containing noise, the nRMSEs of reconstructions with
the two-orthogonal-arc configuration are smaller than those of reconstructions with the single-arc configuration.
Additionally, the nRMSE increases as the total angular range decreases.

4. DISCUSSION

In the work, we have investigated image reconstruction from LAR data in PB-PCCT by developing and tailoring
the DTV algorithm that was developed previously for image reconstruction from LAR data in CT. We note
that the DTV algorithm developed reconstructs the image, i.e., the refractive index distribution, and that the
application of the Laplacian operator to the image subsequently yields its boundary image. We have studied
and compared images reconstruction for single-arc and two-orthogonal-arc configurations of different LARs.
Results of our study show that the DTV algorithm developed can reconstruct images, instead of their boundary
images, directly from data in PB-PCCT, and that the DTV images from LAR data are with reduced LAR
artifacts observed otherwise in images reconstructed with other algorithms. Furthermore, observations can also
be made that the two-orthogonal-arc configurations can further improve reconstruction accuracy of the single-
arc configurations with ατ = α1 + α2, especially as ατ is reduced. This work may provide insights into the
design of LAR scanning configurations for potentially reducing imaging time in PCCT. In the future, it is of
interest to investigate image reconstructions from LAR data with additional noise and also for two-orthogonal-
arc configurations with α1 6= α2. Moreover, the DTV algorithm can also be applied to other PCCT imaging
techniques to enabling LAR imaging, such as analyzer-crystal-based PCCT and grating-based PCCT.
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