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ABSTRACT

Recent studies have proposed to optimize deep learning-based CT reconstruction methods for signal detectability
performance. However, obtaining objective measures of signal detectability performance of the trained recon-
struction networks is challenging due to the non-linear nature of the reconstruction. We propose a simple evalu-
ation metric based on the model observer framework. The metric is based on the performance of a specific linear
observer on signal-known-exactly/background-known-exactly task. The linear observer uses the signal Laplacian
as a template, which we hypothesize is a better proxy for a human model observer than the ideal/Hotelling ob-
server. We illustrate that the proposed metric can be used to select training hyper-parameters for a CNN-model
used to reconstruct synthetic sparse-view breast CT data.
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1. INTRODUCTION

There has been a surge of interest in training convolutional neural networks (CNNs) to reconstruct low-dose/sparse-
view CT data. Most current approaches train the CNN by minimizing a pixel-wise mean-squared error (MSE)
or similar loss function over a training set of images. However, these losses are insensitive to small and/or
low-contrast features that are critical for screening and diagnosis (e.g., tumor spiculations or microcalcifications
in breast imaging), and these subtle features can be significantly degraded in the reconstructions.

To address this issue, recent work has proposed modified CNN training procedures inspired by the model
observer framework to enhance the detectability of weak signals in the reconstructions.1–3 The model observer
framework, based on signal detection theory, offers an objective means to evaluate how well a reconstruction
method preserves fine details in the reconstructions at a statistical level.

A major challenge with these approaches – and most other non-linear CT reconstruction techniques – is how to
select various tuning parameters. For example, the approach of Ongie et al.3 relies on a regularization parameter
that trades-off between mean-squared error of the reconstructions and signal detectability performance.

One potential solution is to measure signal detectability performance of the reconstructions in terms of the
ideal observer, or a close proxy, such as the (channelized) Hotelling observer, on a signal-known-exactly/background-
known-exactly (SKE/BKE) task.3 However, there are several issues with this methodology. First, finding the
ideal observer for a non-linear reconstruction method is challenging. Second, ideal observer performance is known
to correlate poorly with human observer performance. Indeed, if the goal is to maximize performance according
to the ideal observer, the optimal strategy is to not process the data at all.

Instead, in this study, we propose evaluating the signal detectability performance using a different type of
model observer. The proposed observer model uses a linear test statistic using the discrete Laplacian of the signal
as the template. We hypothesize that this observer model is a better proxy for human observer performance.

We illustrate the proposed observer model on simulated data in two settings: a simple denoising setting,
and reconstruction of sparse-view breast CT data. In both cases, we demonstrate empirically that there is an
identifiable peak in detectability performance of the signal-Laplacian observer when varying tuning parameters,
unlike the ideal observer. We find this peak correlates well with our own subjective assessment of preservation
of fine details in the reconstructions.
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2. METHODS

The focus of this work is evaluation of learning-based reconstruction models for sparse-view CT reconstruction.
First, we briefly describe the CNN training approach proposed in Ongie et al.3 that is also used in this study.
Then we describe the proposed evaluation metric based on an observer model.

2.1 CNN Training with Observer Regularization

Let fθ : Rd → Rd denote a CNN depending on parameters θ ∈ Rp mapping noisy sparse-view FBP images y ∈ Rd

to reconstructed images x ∈ Rd, which we call the reconstruction network. Let {(xi,yi)}Ni=1 be a collection of
training pairs, where each yi is a noisy, sparse-view FBP image and xi is the corresponding ground truth image,
and let D denote the corresponding empirical distribution of these training pairs. We train the parameters θ of
the reconstruction network fθ by attempting to minimize the loss given by

min
θ

E(x,y)∼D
[
∥fθ(y)− x∥2

]
+ λ ·ObsReg(θ) (1)

The “observer regularizer” ObsReg(θ) term is defined with respect to a user-specified distribution of random
signals to be planted within the training images. In particular, we assume that pairs (s, ŝ) can be randomly
generated, where s is the signal in input space (e.g., its sparse-view FBP) and ŝ is the same signal represented
in output space (e.g., its gridded reconstruction). Then we define ObsReg(θ) as

ObsReg(θ) = −E[(fθ(y + s)− fθ(y))
⊤ŝ ] (2)

where the expectation above is taken with respect to both the noisy sparse-view FBP training images y and
the random signal pairs (s, ŝ). The observer regularizer measures the correlation between the difference of the
reconstructions with signal present/signal absent and the true signal. Minimizing this quantity maximizes their
positive correlation. Intuitively, this should enhance signal detectability in the reconstructed images.

2.2 Evaluation of CNN Reconstruction Methods Using Observer Models

A challenge in deploying the above CNN-based reconstruction scheme is choosing the “best” regularization
parameter λ in equation (1). This parameter trades-off between denoising capabilities of the reconstruction
network and signal detectability: large values of λ enhance signal detectibilty performance at the expense of
more noise in the reconstructions.

One approach, adopted in Ongie et al.,3 is to measure the ability of the reconstruction network to preserve
small signals on a SKE/BKE task. In this previous study, a channelized Hotelling observer (CHO) is used as a
proxy for the ideal observer. For a range of regularization parameter settings, the CHO is estimated and its AUC
is estimated empirically. However, it was shown that the AUC as determined by the CHO increased monotonically
with regularization parameter λ, plateauing for sufficient large λ where the CNN output reconstructions nearly
identical to the input noisy FBP image. Therefore, according to this metric, the “optimal” reconstruction is
the noisy FBP image. While this may be optimal from an information-theoretic point of view, we conjecture
this is not optimal for human observers. The main contribution of this abstract is to investigate an alternative
evaluation metric that we conjecture correlates better with human model observer performance.

2.3 Proposed Observer Model

To measure performance on the SKE/BKE task we propose using a linear observer, i.e., a linear test statistic
of the form t(y) = ⟨w,y⟩, where w is a fixed template image. We propose to use the discrete Laplacian of the
signal as the template: w = ∆s. where s is the signal as used in the SKE/BKE task, and ∆ is the discrete
Laplacian computed using centered finite differences.

3. RESULTS

In order to motivate the use of the signal-Laplacian as a template for the human model observer in a SKE/BKE
detection task, we consider a simple imaging system of a signal in white noise. We then apply this observer
model to parameter tuning for the CNN-based image reconstruction algorithm.

Proc. of SPIE Vol. 12304  123040U-2



Smoothing of image containing a signal in a white noise background We consider a 256×256 pixel
noisy image where the noise follows an uncorrelated Gaussian distribution with uniform pixel standard deviation
of 2.0. Furthermore, a detection task is considered with a smoothed-disk signal centered in the middle of the image
of radius 5.725 pixels and amplitude 1.0 and the image background is zero. The detection task is tantamount
to classifying a shown image into either signal-present or signal-absent image hypotheses, and the confounding
factor is the image noise. The observer also has the ability to apply Gaussian smoothing to the image with a
full-width half-max (FWHM) parameter w as measured in units of the signal FWHM, 11.45 pixels.

Figure 1: Blow-up of candidate templates for human model observer signal detection on a 20×20 pixel grid: (Left)
the signal itself and (Right) the signal-Laplacian. The considered imaging system is a signal in white noise on a
256×256 pixel array, and the detection task is SKE/BKE.
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Figure 2: SNR for SKE/BKE signal detection as a function of smoothing strength for the signal in white noise
imaging system. The SNRs are computed with two possible human model observer templates shown in Fig. 1. For
no smoothing w = 0, the signal template is the ideal observer template, and accordingly the corresponding SNR of
4.213 is the maximum possible SNR. The solid circles indicate values that correspond to the images in Fig. 3.

The ideal observer for this simple imaging system uses a test statistic that involves the dot product between
the image and a template that is the signal itself, because the noise distribution is uncorrelated and uniform.
Furthermore, the ideal observer would not perform smoothing at all as its SNR for detection is maximal already
with w = 0. It is, however, not clear that this signal template is the one that would model a human observer.
We hypothesize that a template that focuses on the edges of the signal may be more representative of a human’s
strategy and we formulate this edge-focused model as the dot product of the image with the signal-Laplacian. To
illustrate these two strategies, images of the signal and signal-Laplacian templates are shown in Fig. 1. We note
that the signal-Laplacian has a “center-surround” structure that has been associated with human observer 2D
templates for detection,4 where a middle region of positive weights is surrounded by a ring of negative weights.

In Figure 2, the SNR is computed for both signal and signal-Laplacian templates and different levels of
Gaussian smoothing. The two curves have quite different behavior, with signal and signal-Laplacian SNRs
peaking at w = 0 and w = 1.23 signal-widths, respectively. In order to establish correspondence of these results
with visualization, noisy image realizations for both signal-present and signal-absent hypotheses are shown in Fig.
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Figure 3: Noisy signal-absent (top row) and signal-present (bottom row) images for the signal in white noise imaging
system. The noiseless signal image is shown in the bottom row of the first column. The subsequent columns show
noisy images for different levels of Gaussian smoothing, w = 0, 0.62, 1.23, and 2.06 signal-widths going from top
to bottom. For the noisy background the same noise realization is used for all eight panels so that it is easy to
observe the difference between the signal-present and signal-absent images. The gray scale for every noisy image is
determined by the minimum and maximum pixel values in the corresponding signal-present image.

3 for different levels of smoothing. As this figure is only illustrative, it shows a relatively large signal that is easy
to detect and the same noise realization is used on all of the noisy images; it is not intended to be representative
of a true two-alternative forced-choice experiment. Starting at the top with w = 0, it is difficult to distinguish
between the signal-present and signal-absent images because the noise amplitude is large compared with the
signal. As w increases the noise amplitude is decreased relative to the signal because it is wider than the speckle
structure due to the noise, and it becomes easier to see the signal. In the bottom row of the figure, for w = 2.06
signal-widths, the smoothing significantly degrades the signal amplitude and the signal once again becomes
lost in the noise. Thus, the visual trend of Figure 3 supports the SNR trend of the signal-Laplacian template
from Figure 2. We note that human-observer experiments would be needed to establish this correspondence
quantitatively. For this work, we go ahead and apply the observer model, specified by the dot product with the
signal-Laplacian template, to determine parameter settings for the CNN-based image reconstruction algorithm.

3.1 Evaluation of CNN’s for Sparse-View CT Reconstruction

We focus on a sparse-view setting using synthetic breast CT phantoms. For training data, we generate random
phantom images using a structured fibro-glandular tissue model. An initial image is generated on a 2048× 2048
pixel grid, from which we numerically simulate noisy 128-view sinogram data under a 2D circular, fan-beam
scanning geometry, which is representative of the mid-plane slice of a 3D circular cone-beam scan. Noise-free
ground truth images are formed by downsampling the initial image to a 512× 512 pixel grid. We also compute
an initial FBP reconstruction from the simulated sparse-view sinogram data, which is passed as input to the
CNN. We generate 1000 FBP and ground truth image pairs in this way to use for training. We use a U-net
architecture5 for the reconstruction network in all our experiments. We modify the standard U-net slightly by
adding a residual “skip” connection with trainable weights.

We set up a SKE/BKE task to measure signal detectability performance on a hold-out test set of images.
The test set consists of 1000 signal present realizations and 1000 signal absent realizations, all sharing the same
fixed background image. To facilitate computation of the signal detectability metrics, we fix the location of the
test signal to the center of the image. The signal strength is set so that the data domain AUC is 0.86.

In addition to the signal observer and the proposed signal-Laplacian observer, we also compare against a
channelized Hotelling observer that uses a hybrid of pixel and Laguerre-Gauss channels (hybrid-CHO), which have
been found effective in estimating signal detectability performance of other nonlinear reconstruction methods.6

As our figure-of-merit, we compute the area under the ROC curve (AUC) of each observer. This is estimated
empirically using the two-alternative forced choice (2-AFC) calculation over the reconstructed test images.
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Figure 4 shows the AUCs obtained by the model observers. We observe that AUCs of the signal observer
and the hybrid-CHO observer roughly monotonically increase with increasing λ, plateauing at an AUC close to
0.80. The proposed signal-Laplacian observer, though giving much lower AUCs overall, reaches a peak AUC for
a small value of the regularization parameter, similar to the denoising experiment above.

In Figure 5 we illustrate the correspondence between visual image quality and signal detectability metrics by
reconstructing a test image containing an additional contrast-detail (CD) insert. The CD insert consists of an
8× 8 grid of point-like signals of varying widths and contrasts. Visually comparing the reconstructions obtained
from different networks trained with different λ, the signal-Laplacian AUC maximizer (λ = 0.005) gives a more
faithful reconstruction of the CD insert than lower values of λ, while still suppressing noise.
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Figure 4: AUC of observer models vs. observer regularization parameter λ used in training a CNN reconstruction
network. Observe that the AUC of proposed signal-Laplacian observer reaches a maximum at λ ≈ 0.005, while the
AUC for the Hybrid-CHO and signal observer increases roughly monotonically with λ increasing.
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Figure 5: CNN reconstructions of noisy 128-view breast CT phantom with contrast detail insert. A family of CNNs
is trained over a range regularization parameters λ in (1). Highlighted in red is the output from the CNN trained
with the choice of λ that maximizes the AUC of the signal-Laplacian observer.
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4. CONCLUSION

We propose a model observer approach to assess signal detectability performance of non-linear CT reconstruction
using CNNs. The proposed model observer is based on the signal-Laplacian, which we hypothesize is a reasonable
proxy for a human model observer. We demonstrate its potential to aid in selecting hyper-parameters when
training a CNN to reconstruct synthetic sparse-view breast CT data.
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