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ABSTRACT 

We have developed VSHARP®, a suite of scatter correction solutions that have been incorporated into the 

commercially available cone-beam software development toolkit, CST (Varex Imaging, Salt Lake City, UT) enabling 

scatter correction to be applied as part of an entire CBCT reconstruction pipeline. The suite includes 2D VSHARP®, a 

deconvolution correction using asymmetric Gaussian kernels, 2D VSHARP-ML, a U-NET machine-learning 

correction, and 3D VSHARP®, a correction using a rapid finite-element Linear Boltzmann Transport Equation 

(LBTE) solver to estimate scatter in a manner similar to traditional stochastic Monte Carlo (MC) simulations. Of the 

three corrections, 3D VSHARP is the most accurate and flexible since it can be readily applied to arbitrary scanner 

geometries, protocols, and scan parts while the 2D VSHARP models may need to be regenerated for each 

configuration. On the other hand, 3D VSHARP is inherently slower since a minimum of two reconstruction passes are 

needed and the LBTE solver, while much faster than traditional MC, is still computationally intensive. The goal of this 

work was to minimize LBTE run times for (typically large) industrial datasets by optimizing parameter settings, 

particularly the choice of the sampling grid dimensions. This was achieved by applying a multi-objective genetic 

algorithm to find the Pareto front characterizing the tradeoff between speed and accuracy and identifying key operating 

points on the curve. Testing with 720 frames of 3720x3720 projection data to make a reconstruction volume of size 

500x500x600, we found that excellent image quality can be obtained by using a coarse scatter grid size of 27x27x32 

volume and 44x44 detector and a primary grid size of 246x246 x295 volume and 295x295 detector, both over 42 

frames for a grand total of 21 seconds LBTE computation time. We show the Pareto characterization, as well as 

demonstrations of 3D VSHARP image quality with significantly reduced scatter-induced artifacts such as streaking 

and shading. 
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Optimization 
 

1.INTRODUCTION  

Recent algorithmic and computational advances have made MC-like scatter correction approaches much more 

practical. The Acuros platform1,2 rapidly solves the linear Boltzmann Transport Equation (LBTE) using finite element 

methods to determine the scatter distribution directly rather than stochastically as in conventional MC. Recently, we 

unveiled 3D VSHARP3,4 that uses Acuros to achieve accuracies comparable to MC methods in a tiny fraction of the 

time. Acuros’ accuracy and run-time are both highly dependent on the choice of sampling grid used for the finite 

element solution. If the grid is too coarse then results are inaccurate, and if the grid is too fine then time is wasted. 

Wang et al2 have addressed this issue for medical use by optimizing the Pareto front over the set of sampling 

parameters. In this work we perform a similar Pareto optimization for an industrial case of an aluminum motorcycle 

cylinder head. 
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2.METHODS 

2.1 CST Framework 

The correction utilizes CST, Varex’s CT reconstruction SDK, which allows for flexible connection of modular plugins 

to perform a reconstruction. CST includes over 30 bundled plugins, including those necessary to implement 2D 

VSHARP5, 2D VSHARP-ML6, and 3D VSHARP. CST also includes a Physics Library that contains user-selectable 

cross-sections as well as x-ray spectra and detector response files required by 3D VSHARP.  

2.2 Pipeline with 3D VSHARP and 2-pass FDK reconstruction 

An example pipeline with 3D VSHARP is shown in Figure 1. 

 

Figure 1. Two-pass pipeline for FDK reconstruction with 3D VSHARP. The data flow green lines indicate projection data and 

purple lines indicate volume data. 

Processing for 3D VSHARP is in 6 basic stages: 

1. Acquisition and Pre-processing: Read data from disk or from the detector, and perform pre-processing 

operations such as offset correction, bad-pixel correction, or lag correction. 

2. 2D VSHARP: Perform 2D (kernel-based) scatter corrections for scatter from the detector housing and from the 

scanned object. 

3. FDK1: Complete a first pass reconstruction using the 2D VSHARP scatter-corrected projection data.  

4. 3D VSHARP contains six main components: 

a. Segmentation and Material Estimation: The FDK1 volume is segmented into different regions corresponding to 

different materials, and a density is assigned to each material-voxel. 

b. Volume Downsampling: To reduce BTP computation time and GPU memory requirements, the volume is 

downsampled to make a lower resolution volume sampling grid. 

c. The Boltzmann Transport Projector (BTP) runs the LBTE solver for a subset of projection angles. In addition to 

using a lower resolution volume sampling grid, the BTP detector matrix size is typically smaller than the original 

detector matrix size. 
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d. Scatter Rescaling: The simulated scatter output from BTP is rescaled to be at a comparable signal level to the 

measured data. To help determine the scaling factor, the simulated primary output signal is used as a reference since 

the measured data should be proportional to the sum of the primary and scatter. 

e. Scatter Upsampling: The scatter signal is upsampled in 3 dimensions (detector matrix U,V and projection angle) 

so that sampling matches the measured data. 

f. Scatter Subtraction: The subtraction also includes a scatter-fraction smoothing and clipping step to ameliorate 

noise amplification from the subtraction. 

5. FDK2: Perform a second pass reconstruction. Apply post-processing operations such as ring correction. 

 

2.3 Data acquisition and reconstruction 

A motorcycle cylinder head was scanned and reconstructed with the parameters shown in Table 1. 

Table 1. Acquisition and reconstruction parameters. 

Acquisition Parameters 

Number of Detector Pixels (Dexels) 3072 x 3072 

Projection Detector Pixel (Dexel) 

Size 
139 m x 139 m 

Detector Size 427 mm x 427 mm 

Number of Projection Frames 720 

Source-Axis Distance 1084 mm 

Source-Imager Distance 1302 mm 

Tube Spectrum 450 kV + 2 mmCu 

Detector Model 4343HE with DRZ Plus 

Reconstruction Parameters 

Number of Voxels 500 (x) x 500 (y) x 600 (z) 

Voxel Size 0.5 mm x 0.5mm x 0.5 mm 

Reconstruction was performed on a PC with 2 Intel Xeon ES-2637v4 chips each containing 8 cores at 3.5 GHz, and an 

NVIDIA Titan RTX GPU with 4608 cores at 1.35 GHz. 

2.4 Pareto optimization 

To characterize the processing time-vs-error tradeoff, we used the NSGA2 algorithm7, a genetic algorithm (GA) for 

discovering Pareto fronts in multi-objective problems. The two objectives were time and error. To measure error, a 

"golden" reconstruction was performed with all parameters set for maximum accuracy, then for each operating point 

the root mean square (RMS) error versus the golden reconstruction was measured. 

The total search space included: 1. Primary Volume Matrix Size, 2 Scatter Volume Matrix Size, 3. Primary Detector 

Matrix Size, 4. Scatter Detector Matrix Size, 5. Number of Primary Projections, 6. Number of Scatter Projections.  

The constraints on the search were: 

1. All voxels were isotropic and completely filled the prescribed reconstruction field-of-view (FOV) in the x-, y- 

and z-directions. As the z-axis FOV was somewhat larger than the transaxial FOV—because the first pass 

reconstruction was extrapolated to better capture second-order scattering events in the top and bottom portions of the 

object—the GA algorithm chose values for the number of voxels in the x-y direction, denoted as Primary 

NumVoxelslXY and Scatter NumVoxelsXY. and then automatically compute the corresponding number of primary or 

scatter voxels that spanned the entire z-axis FOV. 

2. All detector pixels (dexels) were isotropic and completely filled the (square) detector extent in the U and V 

directions. The number of scatter dexels, Scatter NumDexelsUV, was chosen by the GA but the number of primary 
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dexels depended on the number of primary voxels (Primary NumVoxelsXY) so that the Primary Dexel Size (mm) was 

the Magnification*PrimaryVoxelSize = SID/SAD*PrimaryVoxelSize = 1.2*PrimaryVoxelSize. 

3. The primary and scatter projection angles were equally spaced. The relevant native search parameter was 

termed the Downsampling Factor from which an AngularIncrement value, quantized to multiples of 0.5°, was 

computed. The number of frames then was then equal to Floor (720/AngularIncrement). The Scatter FrameRate 

Downampling factor was an integer multiple of the Primary FrameRate Downsampling. 

Table 2 shows the native search space used by the GA. 

Table 2. Native search space used by the GA. 

Search Parameter Search Range (Integers Only) 

Scatter NumVoxelsXY 25 to 90 

Primary NumVoxelsXY 25 to 500 

Scatter NumDexelsUV 10 to 42 

Primary FrameRate 
Dowsampling 

6 to 60 
Scatter FrameRate 
Downsampling 

Primary FrameRate Downsampling  
(1,2,3) 

We ran 25 generations of NSGA2 with a population of 50, then another 25 generations with a population of 75. 

3.RESULTS  

3.1 Motorcycle cylinder head reconstructions 

Figure 2 shows example reconstructions of a sagittal slice including A) an “Uncorrected” reconstruction, B) the first pass 

reconstruction (from the unoptimized 2D VSHARP), and two 3D VSHARP reconstructions: C) the “Golden” reconstruction 

performed at maximum LBTE resolution for a run time of about 6 hours, and D) the “Operating Point F” reconstruction using a 

coarser LBTE grid, requiring only 21 seconds of BTP time. Significant improvements in crispness and homogeneity are seen in the 

3D VSHARP images with Operating Point F retaining similar image quality to the Golden image. 

 

Figure 2. Central sagittal slice. The window for each is chosen so that the 10% and 90% gray values within the window 

correspond to the 5th and 95th percentiles of the voxel values. The red outline shows the zoomed-in region in Figure 4. 

3.2 Pareto results 

Figure 3 shows results from all generations of the NSGA2 run. Each operating point is shown as a blue dot, the Pareto front is 

shown as a red line, the convex hull of all the operating points is shown in green, and the set of points that were further studied is 

indicated by labeled circles. 
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Figure 3. Log-Log plot of Pareto Optimization Results. 

Table 2 shows search parameter and objective results for several operating points (A,D,F,I). As expected, RMS error 

decreases as 3D VSHARP runtime increases as do the sampling grid dimensions in general. Of note, is the exception 

that Scatter NVoxelsXY is relatively constant. This may partially reflect that its lower bound was 25. Also of note, 

Scatter NDexelsUV is more than 1.5x larger than Scatter NVoxelsXY which is greater than the 1.2x magnification one 

might have assumed. This may reflect the relatively high fidelity and angular resolution of each voxel’s computed 

scatter distribution which is enabled by the use of Legendre polynomials to describe the profile and propagate scatter 

across the grid1 which, in turn, might allow for coarser volume resolution than detector resolution. Finally of note is 

that FrameRateDownsampling for each operating point was the same for the primary and scatter computations even 

though higher voxel and dexel resolution was required for the primary estimate. 

Table 3a. Results for selected operating points matching Figure 3. 

Objectives Operating Points 

A D F I 

RMS Error .038 .015 .010 .005 

3DVSHARP time (s) 3.9 12.9 21.1 168 

Table 3b. Results for selected operating points matching Figure 3. 

Sampling Grid Search 
Parameter 

GA results for selected Operating 
Points A D F I 

Scatter NVoxelsXY 27 27 27 25 

Primary NVoxelsXY 85 119 246 449 

Scatter NDexelsUV 13 44 44 57 

Number Primary Projections 14 37 42 120 

Number Scatter Projections 14 37 42 120 

3.3 Example images along the Pareto front 

Figure 3 shows zoomed-in images, corresponding to the red outlined region in Figure 2c, for the Operating Points in 

Table 3. The red arrows point to inhomogeneities in the form of streaks or shading. The top image (Operating Point A) 

takes the least amount of BTP time, 3.9 seconds, but does show artifacts. Moving down the figure, artifacts decrease as 

execution time increases. While homogeneity steadily improves with increased BTP time, we note that for many 

applications, images D or F may be perfectly acceptable, requiring 13 and 21 seconds BTP time respectively. 

3.4 Contrast analysis 

The histograms of different reconstructed volumes are shown in Figure 4. In the Uncorrected Image, the air and 

aluminum peaks are poorly separated, with slightly better separation occurring in the 2D VSHARP image and good 

separation in 3D VSHARP images. 
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To quantify the separation of air and aluminum, the contrast-to-noise ratio in each histogram was computed by 

segmenting the images into “Air” or “Object” voxels and using the equation CNR =  where μair and μobj are 

the respective typical linear attenuations of the Air and Object voxels and σair and σobj are the respective standard 

deviations. We used the histogram peaks for , and their midpoints as the segmentation thresholds, shown by o and x 

in Figure 4. 

 

Figure 3a. Zoom-in on the central sagittal slice from various reconstructions. The window for each reconstruction is [μObj-

3σObj, μObj+2σObj]. The window for each difference image is [-0.02 mm-1, +0.02 mm-1]. 

 

Figure 4. Histograms of reconstructed volumes. 

The resulting CNRs for operating Points A, D, F, I and “Golden” were 8.1, 8.9, 9.0, 9.0, 9.0 respectively. The 

Uncorrected CNR of 4.7 was the lowest while the 2D VSHARP CNR was slightly improved at 5.3. Points F and I 

have CNRs comparable to the golden image, which again suggests that there is no significant benefit to spending more 

than 10-20 seconds on the LBTE solution. 

 

4.DISCUSSION 

MC or pseudo-MC scatter correction methods such as 3D VSHARP can produce highly accurate scatter estimates and, 

in fact, are used as a gold standard for training ML-scatter correction methods. A main advantage of MC methods is 

that they are versatile since all that is needed at runtime is the geometric specification of the CBCT system and a 

physics library which characterizes it. However, MC or even pseudo-MC methods are generally not as fast as Machine 

Learning or Kernel methods since a first pass reconstruction is required and the scatter transport calculation is 

computationally intensive.  
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For this data set, it was found that 10 to 20 second LTBE run times are sufficient if using an optimized sampling grid. 

We expect this result to be somewhat problem dependent, and may change with object size, complexity, or material, as 

well as with scanner geometry. However, it is interesting to note that our optimal time is roughly in line with the 

results of2. 

Of note is that the 2D VSHARP calibration was not optimized for this setup. Although proper tuning may improve 2D 

VSHARP image quality, we chose to leave it unoptimized to show that the segmentation algorithm is fairly forgiving. 

For future work, there are still many interesting parameters left to optimize including looking into non-uniform angular 

sampling2, optimizing interpolation and segmentation methods, and optimizing intrinsic LBTE parameters such as 

energy grouping. 

 

5.CONCLUSION 

3D VSHARP was shown to significantly reduce scatter artifacts and produce excellent results with 10-20 seconds of 

computation time. Although a first-pass reconstruction is still needed, for the second pass reconstruction the results 

show that the additional time added by 3D VSHARP is minimal especially given that CST permits the LBTE 

computation to be performed in parallel with other FDK operations such as filtering and backprojection.  
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