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ABSTRACT  
 
In this keynote address, we introduce three-dimensional (3D) passive sensing using photon counting integral imaging. 
We investigate both linear and nonlinear matched filtering for automatic target recognition (ATR). Significant benefits 
of the nonlinear matched filtering with 3D integral imaging are found for ATR with a low number of photons. The 
discrimination capability of our system is quantified in terms of discrimination ratio (DR), Fisher ratio (FR), and receiver 
operating characteristic (ROC) curves. Experimental and simulation results are presented. 
 
Keywords: Three-dimensional image processing; Photon counting; Integral imaging; Passive sensing; Automatic target 

recognition; Nonlinear matched filtering. 
 

1. INTRODUCTION 
 
The aim of automatic target recognition (ATR) is to detect and identify unknown objects in a scene and categorize them 
into a class [1-10]. The discrimination capability to identify targets is often challenged by uncooperative objects and 
noisy environments. Numerous techniques using two-dimensional (2D) image processing have been developed while 
there has been growing interest in three-dimensional (3D) imaging and processing [6-8]. One can find that additional 
benefits of 3D imaging include the ability to segment the object of interest from the background and to change the point 
of view of the observer with respect to the image. Many 3D imaging techniques involve some form of active 
illumination; the waveform that is transmitted is used to derive the range dimension of the image. However, for imaging 
applications in which cost and covertness are important, the use of an illumination source may not be feasible.  
Photon counting is passive sensing which has been applied in many fields such as night vision, laser radar imaging, 
radiological imaging, and stellar imaging [11-19]. The photon counting can be binary at low light level. The advantage 
of the photon counting detector may be enhanced by the processing of binary photon numbers since it can be simpler and 
faster [12]. Photon counting techniques for 2D image recognition have been researched [12,13]. Photon counting 
techniques have been applied to infrared imaging and thermal imaging [14,15]. Photon counting detectors have been 
considered for 3D active sensing by LADAR [16-19].  
Integral imaging is a 3D sensing and reconstruction (display) technique [20-23]. For recording, a micro-lenslets array 
generates a set of 2D elemental images on an image sensor. Each elemental image has a different perspective of the 3D 
scene according to the corresponding lenslet. Therefore, the image sensor records a set of projections of the 3D object 
from different perspectives. For reconstruction, the recorded 2D elemental images are projected through a similar micro-
lens array to produce the original 3D scene. Integral imaging is passive sensing unlike holography or LADAR, which 
require active illumination of the scene. The application of integral imaging has been extended to object recognition and 
longitudinal distance estimation [24-27]. Recently, nonlinear matched filtering using photon counting integral imaging is 
proposed for ATR [28]. 
In this keynote address, we review the passive sensing and recognition of 3D objects by means of photon counting 
integral imaging [28]. Nonlinear matched filtering is developed for the recognition of 3D objects. The nonlinear matched 
filtering is performed between a reference (irradiance image) and unknown inputs (photon-limited images). We analyze 
the statistical properties of the nonlinear correlation normalized according to the power law of the sum of photon 
numbers assuming the low level of photons. Significant potentials have been found in our approach to the application of 
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ATR with a low level of photon numbers. The discrimination capability is demonstrated in terms of discrimination ratio 
(DR), Fisher ratio (FR), and receiver operating characteristic (ROC) curve.  
In Section 2, we provide a short review of integral imaging with advantages for object recognition. In Section 3, the 
photon counting model is presented for the simulation of photon-limited images. Linear and nonlinear matched filtering 
is illustrated with performance evaluation metrics in Section 4. In Section 5, simulated photon-limited images are 
generated from experimentally-sensed irradiance of elemental images. These simulated images are used to verify the 
results presented in Section 4. Conclusions follow in Section 6.  
 

2. INTEGRAL IMAGING 
 
Techniques based on integral imaging have been considered for 3D sensing and display. During recording, we use a 
micro-lenslet array to sense irradiance and directional information of rays from 3D objects as shown in Fig. 1(a). 
Reconstruction is the reverse of the recording process. We can perform optical and numerical reconstruction from 
elemental images. In display, the 3D scene of the pseudoscopic real image is formed by propagating the intensity of 
elemental images through the lenslet array which is placed in front of the display device. The pseudoscopic real image is 
displayed by the rays from opposite directions but having the same irradiances as in the sensing process. The 3D display 
of integral imaging provides autostereoscopic images with full parallax and continuously varying viewpoints [22,23]. In 
the computational method, the reconstruction is processed numerically on a computer. Computational reconstruction has 
been researched with various techniques [26,29-31]. 
One advantage of integral imaging for object recognition is its capability of multiple-perspective imaging by a single 
shot. The depth and perspective information in the multiple perspective imaging can be utilized to build a compact 3D 
recognition system. In this keynote address, we assume that each lenslet in the lenslet array generates a photon-limited 
elemental image on a photon counting detector array as illustrated in Fig. 1(a). Multiple perspectives of photon-limited 
scenes are recorded according to the corresponding lenslet.  
 

3. PHOTON COUNTING DETECTION MODEL 
 
Assuming the irradiance at the detector is perfectly uniform in time and space, the probability of counting k photons in a 
time interval τ can be shown to be Poisson distributed [32]. Although, in the case that the irradiance is not uniform, the 
statistics of the irradiance fluctuations must be considered, it can be shown [32] for many cases of interest (i.e. 
blackbody radiation in the visible, including blackbody radiation from sources as hot as the sun) that the fluctuations in 
irradiance are small compared to the fluctuations produced by the quantized nature of the radiation. Therefore, the 
probability distribution can be modeled as Poisson distribution: 
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where k is the number of counts produced by a detector centered on a position vector x during a time interval τ; and a(x) 
is a rate parameter. The rate parameter can be given by: 
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where η is the quantum efficiency of the detection process, Po is the optical power incident on the detector, h is Plank’s 
constant, and ν  is the mean frequency of the quasi-monochromatic light source. It is noted that the mean of photo-
counts np(x) can be given by: 
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where ⋅  stands for the expectation operator. 
It can be shown [32] that the probability of detecting a photo-event at the ith pixel is given by the normalized irradiance 
image. Since the event location for each count is an independent random variable, the mean of photo-counts at the ith 
pixel is given by: 
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where NP is a predetermined mean number of photo-counts in the entire scene; xi is the location vector of pixel i; S(xi) is 
the irradiance at pixel i; and NT is the total number of pixels.  
To simulate photon-limited images from an irradiance image, we assume the probability of detecting more than one 
photon in a pixel is zero. While this assumption does place restrictions on the allowed irradiance distribution in the 
image, we make it in anticipation that the image will contain very few photons, i.e. 1)( <<xn p . If the image contains 
pixels whose irradiance is much larger than the mean image irradiance, then the above assumption may not be valid. In 
this case, np(x) can be large enough so that the assumption 1)( <<xn p  is not valid even at the anticipated low-level of 
photons in the scene. In this case, our hypothesis could be revised to allow multiple photon detection per pixel. However 
for low numbers of detected photons and for scenes in which the total irradiance is distributed more evenly over the 
image, the binary assumption of the photon counts is valid, allowing us to use the benefits of binary imaging. 
From Eq. (1), we can obtain the probability that no photon arrives at pixel i:  

.);0( )( ip xn
i exP −=       (5) 

According to the binary assumption above, the probability that only one photon is detected: 
.1);0(1);1( )( ip xn

ii exPxP −−=−=      (6) 
To simulate an image consisting of individual photo-counts, we generate a random number which is uniformly 
distributed between 0 and 1 at each pixel. If the random number is less than the probability that no photon arrives [Eq. 
(5)], we assume that no photon is detected, otherwise, one photon is assumed to be detected: 
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where )(ˆ
ixS  is the number of the photon detected at pixel I, and rand(xi) stands for the random number generated for 

pixel i.  
 

4. AUTOMATIC TARGET RECOGNITION USING A NONLINEAR MATCHED FILTER 
 
We assume the photon counting is a binary image as shown in Eq. (7): 

 ii bxS =)(ˆ ,   i = 1,…,NT,                                         (8) 
where bi is a random number which follows Bernoulli distribution. Equivalently, one realization of a photon-limited 
image can be described as: 
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where N is the total number of photon detection events occurred in the scene, δ  is a kronecker delta function, and xk 
represents the position of the pixel k where a photon detection event occurs. It is noted that N and xk are random 
numbers. Matched filtering of photon-limited images estimates the correlation between the intensity images of a 
reference and an unknown input image obtained during the photon counting event. We define our matched filtering as 
the nonlinear correlation normalized with the power v of the photon-limited image as shown below: 
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unknown input object from which the photon-limited image Ŝ  is generated. Without loss of generality, we may assume 
that R(xi) and S(xi) are normalized: 
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It is noted that Crs(xj;v) has the maximum value at xj = 0 in our experiments:  
).,(max);0( vxCvC jrsxrs
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One advantage of photon counting detection is that the computational time of the matched filtering is much faster than 
conventional image correlation. As shown in the second term in Eq. (10) the correlation becomes merely the sum of the 
reference radiance at particular pixels (photon arrivals) [12]. 
The following first and second order statistical properties of Crs(0;0) have been proven in [12,13,28]: 
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where “var” denotes the variance operator.  
The following statistical properties of nonlinear correlation peak Crs(0;1) have been proven in [28]:  
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The nonlinear matched filtering shows different behaviors according to v. When v = 0, both the mean [Eq. (13)] and 
variance [Eq. (14)] of the correlation peak Crs(0;0) are approximately proportional to NP since the second term including 
NP in Eq. (14) affects very minimally. However, the mean of Crs(0;1) [Eq. (15)] does not depend on the number of 
photons, i.e., we can theoretically achieve the same correlation value with any small number of photons. Although the 
variance of Crs(0;1) [Eq. (16)] increases when using lower number of photons, this property of photon-limited images 
might be beneficial for pattern recognition applications. We would like to point out that a number of filtering algorithms 
may be used for ATR of photon-limited images including a variety of nonlinear filters [1-6,33]. 
We define discrimination ratio (DR) and Fisher ratio (FR) as our performance metrics [34]: 
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where rsm  and rsσ  are the sample mean and the sample standard deviation of Crs(0;v), respectively, which are 
suitable estimates for the mean and the variance. Receiver operating characteristic (ROC) curves are also illustrated in 
the experimental results to investigate the discrimination capability of the proposed system.  
 

5. EXPERIMENTAL AND SIMULATION RESULTS 
 
5.1 3D sensing with integral imaging and photon counting simulation 
We use a micro-lenslet array and a pick-up camera for the recording of elemental images. The pitch of each micro-lenslet 
is about 1.09 mm and the focal length of each micro-lenslet is about 3 mm. The focal length and the f-number of the 
mount lens in the pick-up camera are 50 mm and 2.5, respectively. Three types of toy cars are used in the experiments as 
shown in Fig. 1(b). Each car is about 4.5 cm × 2.5 cm × 2.5 cm. The distance between the pick-up camera lens and the 
micro-lenslet array is 11.5 cm, and the distance between the micro-lenslet array and the objects is 7.5 cm. 
A set of 20×24 elemental images is captured at one exposure. One set of elemental images for one object is composed of 
1334×1600 pixels and the size of one elemental image is approximately 67×67 pixels. Three sets of elemental images are 
shown in Fig 2. The irradiance image of the reference (r) or the unlabeled input (s) corresponds to one set of elemental 
images captured during the pick-up process. We simulate photon-limited images using the irradiance of the elemental 
images as shown in Eq. (4). Equations (5) and (7) are then used to generate the photon-limited images. Several values of 
NP, mean number of photo-counts in the entire image, are used to test the object recognition.  
 
5.2 Image recognition results 
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We generate photon-limited images, each with a random number of photons. To compute the statistical means and 
variances we generate 1000 images for each car. We also vary the mean value photon numbers from 10 to 1,000. The 
irradiance image of car 1 [Fig. 2(a)] is used as our reference image. Figure 3(a) shows the experimental results (sample 
mean) of correlation coefficients and their fluctuations (error bars) when v = 0 with theoretical prediction in Eq. (13). 
Error bars stand for rsrs σm ± . The red solid line graph represents the sample mean of autocorrelation between the 
intensity image and photon-limited images of car 1, and the blue dotted line graph is the sample mean of cross-
correlation between the intensity image of car 1 and photon-limited images of car 2, and the black dashed line graph is 
the sample mean of cross-correlation between the intensity image of car 1 and photon-limited images of car 3. Figure 
3(b) shows the sample variance of Crs(0;0) with theoretical prediction in Eq. (14). Figures 4(a) and (b) show, 
respectively, the sample mean and the sample variance of Crs(0;1) with the theoretical values in Eqs. (15) and (16). As 
shown in Fig. 3 and Fig. 4(a), theoretical values are presented to be very close to the experimental results. Figure 4(b) 
shows the approximated theoretical value of the variance. The deviation from the theoretical prediction becomes larger 
as the number of photons decreases as shown in Fig. 4(b). 
Table 1 shows the discrimination ratios defined in Eq. (17) for Crs (0;0) and Crs(0;1). There appears to be only small 
variation of the discrimination ratio with varying number of photo-counts. Table 2 shows the Fisher ratio defined in Eq. 
(18) for Crs(0;0) and Crs(0;1). Fisher ratio decreases when using a lower number of photo-counts, but for photo-counts 
greater than one hundred, the Fisher ratios show good separability [14,15] between the reference and false objects when 
v = 1. Fisher ratios are larger when v = 1 than other values since the approximated theoretical value of the variance is 
proportional to 1/NP. Figures 5 and 6 show ROC curves corresponding to cars (r=1, s=2) and cars (r=1, s=3) for Crs (0;0) 
and Crs (0;1), respectively. The number of photons varies from 100 to 10. 
 

Table 1. Discrimination ratios. 
 
 
 
 
 
 
 
 
 

Table 2. Fisher ratios. 
NP 1000 500 100 50 10 

FR(1,2) 77.41 38.63 7.53 3.59 0.76 
v = 0 

FR(1,3) 131.04 66.05 12.98 6.46 1.33 

FR(1,2) 204.14 105.54 19.90 9.5 1.77 
v = 1 

FR(1,3) 377.83 191.69 37.72 18.16 3.5 
 

6. CONCLUSIONS 
 
In this keynote address, we address 3D passive sensing and object recognition using photon counting integral imaging. 
Micro-lenslet array generates photon-limited elemental images with multiple perspective views. Photon events are 
modeled with Poisson distribution. The nonlinear correlation of photon-limited images can improve the system 
performance to discriminate unknown 3D objects. The first and second order statistical properties of the nonlinear 
matched filtering output are determined. We have observed in the experiments that the output of the nonlinear 
correlation provides better performance than the linear matched filter in terms of discrimination ratio, Fisher ratio, and 
ROC curves. The presented photon counting passive 3D sensing with integral imaging seems to be robust for pattern 
recognition since unknown objects captured by integral imaging may be recognized with a small number of photons.  
 
 
 

NP 1000 500 100 50 10 

DR(1,2) 1.7001 1.7031 1.6945 1.6678 1.6872 
v = 0 

DR(1,3) 2.0247 2.0290 2.0028 2.0097 2.0238 

DR(1,2) 1.6987 1.6997 1.7073 1.6744 1.6867 
v = 1 

DR(1,3) 2.0272 2.0262 2.0174 2.0195 2.0224 
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Fig. 1. (a) schematic diagram of photon counting integral imaging system, (b) three toy cars used in the experiments; car 1, 2 and 3 are 
shown from right to left. 
 

   
(a)    (b)      (c) 

Fig. 2. Three sets of elemental images for irradiance information, (a) car 1, (b) car 2, (c) car 3. 
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(a)      (b) 

Fig. 3. Mean and variance of Crs(0;0); (a) sample mean and theoretical prediction, (b) sample variance and theoretical prediction. 
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(a)      (b) 

Fig. 4. Mean and variance of Crs (0;1); (a) sample mean and theoretical prediction, (b) sample variance and theoretical prediction. 
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(a)      (b) 

Fig. 5. ROC curve of Crs (0;0); (a) reference is car 1 and false object is car 2, (b) reference is car 1 and false object is car 3. 
 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

P
D

ROC curve (reference: car 1, false object: car 2)

photon number:100
photon number:50
photon number:40
photon number:30
photon number:20
photon number:10

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

P
D

ROC curve (reference: car 1, false object: car 3)

photon number:100
photon number:50
photon number:40
photon number:30
photon number:20
photon number:10

 
(a)      (b) 

Fig. 6. ROC curve of Crs (0;1); (a) reference is car 1 and false object is car 2, (b) reference is car 1 and false object is car 3. 
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