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ABSTRACT 

Three dimensional imaging is a powerful tool for object detection, identification, and classification. 3D imaging allows 
removal of partial obscurations in front of the imaged object. Traditional 3D image sensing has been Laser Radar 
(LADAR) based. Active imaging has benefits; however, its disadvantages are costs, detector array complexity, power, 
weight, and size. In this keynote address paper, we present an overview of 3D sensing approaches based on passive 
sensing using commercially available detector technology. 3D passive sensing will provide many benefits, including 
advantages at shorter ranges. For small, inexpensive UAVs, it is likely that 3D passive imaging will be preferable to 
active 3D imaging. 
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1 INTRODUCTION 
Performance based sensing involves setting knowledge based objectives to determine what sensors, processors, and 
personnel are required to obtain desired data sets.  In the domains of automated and aided target recognition, of utmost 
concern is how to capture, classify, and recognize real-world objects.  For years, target recognition systems have been 
based around 2D intensity imaging that determine classification by 2D object intensity (e.g. shape and size, texture), 
polarization signature or features in the frequency domain [1-8].  While 2D imaging recognition systems offer fast 
processing speed, they are limited in recognition capabilities by the limitations of 2D imaging [9, 10].  Movement of the 
object resulting in differing image magnification, changes in ambient lighting conditions, or the introduction of new 
occluding objects into the imaging path impede on the abilities of a 2D recognition system to accurately sense and 
classify an object.  To overcome these difficulties, advanced techniques are used that add to system complexity and 
introduces new forms of error to the deterministic recognition algorithms. Three-dimensional (3D) recognition systems 
offer a number of advantages over 2D image recognition systems [7,8,11-20].  Because object shape and location are 
known in three dimensions, 3D systems can deal much better with moving objects that disrupt 2D systems. An 
additional advantage of 3D systems is the ability to segment the object of interest from the background, obscurants, and 
clutter [21-30].  For 2D imaging, segmentation is much more difficult to perform, is not as accurate, and in certain 
situations is impossible. Another benefit is the increased performance of target recognition algorithms.  Not only can the 
algorithms operate with images that have less background and clutter, but the additional dimension provides a geometric 
increase in pixel count producing significantly better performance (generating sharper correlation peaks for example).  

Traditionally, 3D shape data has been acquired using an active 3D sensing technology called laser radar in which range 
is estimated by measuring the time between when a laser pulse is launched and when a receiver detects the optical 
energy scattered by an object. Angle / angle or cross-range characteristics of the object can be measured either by 
scanning the laser beam (if the receiver has only a single or limited number of detectors) or by flood illuminating a large 
area and detecting the scattered return on a 2D focal plane array. A laser radar uses controlled illumination, which means 
that the sensor can operate at times of day and in locations that other EO sensing modes may not be able to operate.  
Another characteristic is the ability to turn on the receiver only when the scattered return from an object of interest is 
expected to arrive, a technique called range gating. Thus one can neglect the backscatter from intervening obscurants and 
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develop a higher contrast image through scattering media.  The major downsides of laser radar are the costs involving 
money, weight, space, and power. 

Because of the costs of laser radar, there has been increasing interest in passive 3D sensing and imaging systems among 
researchers in recent years [8, 21, 24, 31-37]. One of the most promising passive 3D technologies is Integral Imaging 
(II), where multiple 2D intensity imagers capture 3D image data from multiple perspectives [22, 31, 33, 38,]. Because 
multiple perspectives are used, optical directional information is obtained in addition to intensity data. The original 3D 
scene can be recreated optically by back propagating each captured 2D perspective image through the original pickup 
optics into a display space. By doing this, light cones that originally emanated from a specific location in object space 
will overlap at the same location in the display space, thus forming a 3D image. This process can be computationally 
simulated [22-24, 27, 29, 30-32, 36, 37, 40] so that the 2D perspective images are propagated through a virtual optical 
system to different reconstruction locations. An object will appear in focus when the reconstruction location is the same 
as the object’s original position and the object will appear out of focus at other reconstruction locations. In fact, the 
further the origin of light rays from the reconstruction plane, the more defocused they appear after reconstruction. 
Computational reconstruction of elemental images has proved to be promising in a variety of applications including 3D 
object recognition [7,8, 11, 12, 14, 16-18], occlusion removal [24, 25, 28, 29], multiple viewing point generation [25]. 

This overview keynote address paper is organized as follows. In section 2, scanning laser radar and flash laser radar are 
described as two active imaging modalities of LADAR. In section 3, concepts of passive 3D Integral Imaging (II) are 
presented. Optical pickup and computational reconstruction are discussed. Section 4 is devoted to application of passive 
3D II for Automatic Target Recognition (ATR) using optimum non-linear distortion tolerant filters. Section 5 discusses 
the novel application of 3D passive photon counting Integral Imaging (II) to ATR, Section 6 presents sensing and 
recognition experimental results for both active and passive systems. We conclude the paper in section 7 with a 
discussion of the benefits of the active and passive approaches under different circumstances. 

2 LASER RADAR BASED IMAGING 
2.1 Scanning Laser Radar 

This type of system utilizes a simple receiver (a single detector, or a limited number of detectors, with electronics that 
are relatively easy to implement) and a high pulse repetition rate laser (PRF ~ 10’s of KHz) with low energy per pulse.  
While these characteristics may make those components of the laser radar easier to fabricate, the complexity comes in 
the optical aperture, scanning mechanism, image stabilization, and post-detection processing.  Agile beam steering is 
required to scan the laser and the field of view of the detector, while considerable post detection processing is needed to 
compensate for motion while the image is gathered over significant fractions of a second.  Precise image stabilization, to 
a fraction of one angular resolution pixel, is required or it will not be possible to put the image together.  A 10 KHz PRF 
laser would require over 1 second to capture a 128X128 image. As a result, platform and object motion will result in 
smearing of the image that must be undone in post detection processing.  While such image artifacts can reduce image 
quality in the cross-range dimensions, range estimation can be high quality because high bandwidth range estimation 
electronics for a single detector are easier to fabricate than for an array of detectors.   For an array of detectors, high 
bandwidth electronics must either be located behind each pixel or located around the focal plane in some manner, thus 
reducing fill factor. In addition, the lower pulse energies required for a high PRF laser imply that shorter pulse widths 
can be used, resulting in less range blur.  A benefit of high rep rate lasers used for scanning systems is that laser diodes 
tend to be quasi continuous wave (CW) sources, so the laser diode cost will be lower than for a low duty cycle laser 
radar system. 

We can evaluate the utility of scanning laser radar for platforms at various altitudes.  Interestingly, the signal to noise 
ratio does not necessarily change much for the different platforms.  The desired sampling rate and resolution at the target 
will determine the laser spot size and number of measurements across the object.  Hence, it is assumed that the optical 
system on different platforms will change to produce constant resolution (which implies the optics diameter changes) 
and constant sampling rate (which implies the focal length changes).  The result is the f/# of the receiver optics remains 
constant and hence so does the gathered image irradiance.  There is a dependence on range associated with losses in the 
atmosphere, but for clear air these losses are not significant if the wavelength of the laser radar is chosen properly.  
Obscurants such as fog, clouds, dust, etc, can of course introduce large range dependence.  Typical pulse energies 
required in clear air can be on the order of 0.1 - 1 mJ for thermal noise limited receivers (no cooling) with reasonable 
optical gain such as provided by an avalanche photodiode. 
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One parameter that does change with platform is the angular scanning or pointing accuracy.  To provide undistorted 
imagery the laser must be pointed within a small fraction of the sampling distance.  If a ground sampling distance of one 
foot is desired, then pointing accuracies on the order of a few mrad are required for ranges of hundreds of meters, while 
accuracies on the order of 10 microrad are required for 10’s of km ranges.  Such pointing accuracies are expensive to 
achieve. 

2.2 Low Rep Rate Flash Laser Radar 

When used with an array of linear mode APDs a flash imaging system is characterized by low PRF lasers (10’s of Hz) 
and high peak pulse energies.   In single pulse flash imaging, images are acquired over a few nanoseconds so  platform 
and object motion have little effect.  Large pulse energies are required for low rep rate flash imaging to flood-illuminate 
the object to be measured (actually an area larger than the object to overcome pointing errors). There is an increased risk 
of damage to the optical components in the transmitter and an increased cost of quasi CW diodes to pump the high pulse 
energy lasers.  Eye safety is also a concern.   

There are a few techniques that can be used to implement a flash ladar. One method is to use high bandwidth electronics 
behind or in close proximity to each detector in the array. This has resulted in the need to trade the number of range bins 
that can be recorded against the physical size of the detector pixel. Larger physical format focal plane arrays require 
larger focal length optics to provide the required sampling rate at the ranges of interest. Longer focal lengths are more 
difficult and expensive to implement. A second approach to low rep rate flash imaging is to use an external polarization 
rotator in front of the detector area. The orientation of polarization is then used to encode range and a slow response 
detector array can be used.i   

An advantage of all flash imaging techniques is reduced processing load due to the entire image being gathered within a 
few nanoseconds. Another significant advantage for longer range applications is reduced image stabilization 
requirements. For flash imaging you only need to angle stabilize to a fraction of the flash illumination beam divergence.  
For a 128 x 128 detector area this means you only need to stabilize to 128 times the angular accuracy you need for a 
scanning 3D laser radar. Pointing to only a fraction of the illuminated spot diameter is required, or about 1 mrad at 10 
km range. This can have a significant positive cost impact.   

As with the scanning ladar system, SNR does not vary much as a function of platform or range because the optics must 
change to keep a constant illuminated spot size on the ground in transmission and constant f/# on receiver to maintain 
sampling and resolution. The pulse energies, however, are much higher because the entire scene must be illuminated on 
each pulse.  Hence, a 10m x 10m illuminated scene with .3 m x .3 m resolution would require about a thousand times 
more energy per pulse than the example given above for the scanned laser radar.  This increases the cost of the laser 
diodes required to produce such a high energy pulse. A long storage time solid state medium mitigates the diode cost 
issue. 

2.3 C High Rep Rate Flash Imaging Using Geiger Mode APDs 

A Gieger mode 3D imaging system will have low pulse energies and high rep rate, similar to a scanning system. The 
detector array in this case is sensitive enough to detect a single incident photon. Pulse energies from the laser are 
deliberately kept low so that the probability of detecting a single photon per laser pulse per pixel is less than unity. This 
prevents saturation of the detector from intervening obscurants. The image is then built up on a statistical basis using 
many pulses over the same area to compile a range distribution. A typical rep rate will be tens of kilohertz. Pointing 
accuracy and required stabilization is similar to low rep rate flash imaging. Laser requirements are similar to scanning 
systems. Processing may be complex because many samples must be used to estimate the location of the surface of the 
object. This technique usually produces range images with limited gray scale.  

3 PASSIVE THREE DIMENSIONAL SENSING 
3.1 3D Passive Integral Imaging (II) 

Among various techniques which can quantitatively measure one or more of the psychological depth cues, one major 
thrust is Integral Imaging (II) (a.k.a integral photography) which is based on the original work of Lippmann with 
lenticular sheets [41, 42] and is classified under multi-perspective 3D imaging systems. Integral Imaging provides 
autostereoscopic images by recording intensity and direction of light rays (i.e. the light field [31]) in the form of a set of 
elemental images from slightly different perspectives. This technique is a promising method compared to other 
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techniques due to its continuous viewing angle, full parallax and full color display without the need for coherent sources 
of illumination and its relative simplicity of implementation.  

Conventional II systems use a microlens array to capture light rays emanating from 3D objects in such a way that the 
light rays that pass through each pickup microlens are recorded on a 2D image sensor [22, 30, 35, 36, 40]. The captured 
2D images are referred to as elemental images. The elemental images are 2D images, flipped in both the x and y 
direction, each with a different perspective of a 3D scene. To reconstruct the 3D scene optically from the captured 2D 
elemental images, the rays are reversely propagated from the elemental images through a display microlens array that is 
similar to the pickup microlens array. Developments in 3D II display [21, 33] include use of gradient index lens arrays to 
handle the orthoscopic to pseudoscopic conversion, also resolution improvement methods including use of moving 
lenslet technique (MALT) [36, 40] and electronically synthesized moving Fresnel lenslets. However, the optical 
reconstruction approach suffers from low resolution, low sampling rate, quality degradation due to light diffraction, 
limited dynamic range and overall visual quality due to limitation of electro-optical projection devices.  

In order to overcome image quality degradation introduced by optical devices used in the optical II reconstruction 
process, and also to obtain arbitrary perspective within the total viewing angle, computational II reconstruction 
techniques have been proposed [22-32, 36]. Computational II simulates the optical reconstruction process by back 
propagating the elemental images through a virtual optical system similar to the original pickup system. Objects will 
appear in focus at a reconstruction plane equal to the original object distance and will appear out of focus at other 
reconstruction planes.  This technique allows us to reconstruct 3D voxel values at any arbitrary distance from the display 
microlens array and create 3D data sets that may be manipulated or analyzed.  Because computational reconstruction 
operates in the electronic domain rather than optical, optical reconstruction image degradations are eliminated.  
However, manipulation of integral image data does cause some computational burden.  

Conventional II systems use an array of small lenses mounted on a planar surface (lenslet array) to capture elemental 
images on a single opto-electronic sensor. There has been effort to increase depth of field of each lenslet [35]. Each lens 
creates a unique perspective view of the scene at its image plane. As long as elemental images do not overlap in the 
image plane of the lenslet, one can capture all elemental images on a CCD at once. Figure 1 depicts a system setup to 
capture an occluded 3D scene using lenslet arrays. This technique has the merits of simplicity and speed. However, for 
objects close to the lenslet array, the elemental images may overlap in the image plane, which requires one to use 
additional optics to project the separated elemental images on a sensor. Also, the small aperture of the lenslets creates 
low resolution or abberated elemental images. In addition, the pixels of the imaging device has to be divided between all 
elemental images which leads to low number of pixels per elemental image. 

 
Fig. 1. Experimental setup for 3D object capturing and computational reconstruction with II system. The full 3D volume 

image at various distances can be reconstructed separately. 
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Synthetic Aperture Integral Imaging (SAII) is a method that can potentially resolve some of the problems associated 
with conventional II [23, 25, 29]. In this technique, each perspective view is acquired separately by a 2D imaging sensor 
located at the respective location on the pickup aperture. Thus, this method involves mechanical translation of one or 
more imaging devices on a grid and capturing elemental images at certain positions. This way, high resolution 
perspective views are captured from a synthetic aperture in which the imaging device scans. Figure 2 shows a conceptual 
diagram of the SAII technique. Since capturing the perspective views requires multiple acquisitions, SAII in this form is 
not suitable for imaging dynamic objects in which the movements are faster than the time required for a complete 
aperture scan. However, methods have been proposed to solve this problem by introducing an array of imaging devices 
(cameras) on a grid. In addition, since the elemental images can be captured with well corrected optics on a large 
optoelectronic sensor, the resolution and aberration of each elemental image can be enhanced dramatically comparing to 
lenslet based II. [25, 26] 

3.2 Computational reconstruction of elemental images 

Once the elemental images from different perspectives were picked up, the collected visual information can be 
computationally reconstructed to recreate the 3D scene. Several methods have been investigated for computational 
reconstruction of II data. In the Fourier domain, digital refocusing has been proposed [30] by applying Fourier slice 
theorem in 4D light fields. This technique is relatively fast with complexity of O(n2logn), n being the total number of 
image pixels. In the spatial domain, a fast, ray tracing based reconstruction from the observers point of view is proposed 
in [22] with complexity of O(m), m being the number of elemental images. Although fast and simple, this method yields 
low resolution reconstructions. Yet another spatial domain reconstruction method is based on series of 2D image back 
projections [25, 37]. This method offers a much better reconstruction resolution comparing to at the expense of an 
algorithm with complexity of O(n), since typically n>>m.  

 
Fig. 2. Pickup process of three dimensional synthetic aperture integral imaging. The camera at each location captures the 

scene form a unique perspective, which is later used for 3D computational reconstruction. 

For 3D computational reconstruction in spatial domain, one approach is to simulate the pinhole array from which the 
elemental images were taken and perform the inverse propagation for rays. Since each elemental image conveys a 
unique perspective of the scene, the directional information is also recorded in an integral image as well as the 2D 
intensity information. The depth information in particular can be extracted from the relative shift of an object between 
the elemental images. Therefore, a 2D scene can be reconstructed at a particular distance by properly propagating the 
rays back from their respective pickup locations. The collection of 2D scenes reconstructed at all distances then gives the 
full 3D scene.  

A computationally efficient algorithm for II reconstruction is described in [37]. Each elemental image can be described 
as Okl(x,y), where k and l denote the position indices of the elemental image in the pickup grid [see Fig. 3]. The 
magnification factor M, is given by z0/g, where z0 is the desired reconstruction distance and g denotes the effective focal 
length of the sensor. In a synthetic aperture mode [see Fig. 2], the reconstruction by ray back propagation is possible by 
flipping elemental images and shifting them according to z0, and averaging the overlapping pixels. The following 
expression describes the reconstruction process:  

3D Scene 
Pickup Grid 

Computational 3D scene 
reconstruction  
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in which Sx and Sy denote the separation of sensors in x and y directions at the pickup plane respectively, K and L denote 
the number of elemental images acquired in the x and y directions; also R compensates for intensity variation due to 
different distances from the object plane to elemental image Okl on the sensor and is given by R2(x,y)=(z0+g)2+[(Mx-
Sxk)2+(My-Syl)2]×(1+M-1)2 [see Fig. 3 and [37]]. 
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Fig 3. Schematic of II reconstruction process (left), Arrangement of elemental images (right) 

Note that in computational reconstruction the adjacent flipped and shifted elemental images overlap such that for objects 
close to the reconstruction plane, the overlap of all elemental images would be aligned, whereas for objects located away 
from the reconstruction plane the overlap would be out of alignment resulting in a blurred reconstruction. Thus, with 
computational reconstruction one is able to get an in-focus image of an object at the correct reconstruction distance, 
while the rest of the scene appears out of focus. 

4 AUTOMATIC TARGET RECOGNITION USING 3D PASSIVE SENSING 
In a computational three-dimensional (3D) volumetric reconstruction integral imaging (II) system, volume pixels 
(voxels) of the scene are reconstructed plane by plane. At desired target planes where the target is in focus, the 
foreground occlusion appears completely washed out if there is enough spatial separation between the occlusion and the 
occluded object. Using volumetric computational II reconstruction, we are able to recognize distorted and/or occluded 
objects with correlation based recognition algorithms [11, 15]. A distortion tolerant optimum non-linear filter is 
developed based on minimize a linear combination of the output energy due to the input noise and the output energy due 
to the input scene under the filter constraint [7, 13, 15]. 

4.1 Distortion Tolerant Optimum Non-Linear Filters for ATR 

In this section we briefly overview synthesis of a distortion tolerant optimum nonlinear filter for ATR [12, 13, 15]. 
When ri(t) denotes one of the distorted reference targets where i = 1, 2, …, T, T is the size of reference target set, the 
input image s(t) is: 
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where iv  is a binary random variable which takes a value of 0 or 1. iv  indicates whether the target ri(t) is present in the 

scene or not.  p( iv =1)=1/T, p( iv =0)=1-1/T. If )(tri  is one of the reference targets, )(tnb  is the non-overlapping 
background noise with mean bm , )(tna  is the overlapping additive noise with mean am , )(tw  is the window function 
for the entire input scene, )(twri  is the window function for the reference target )(tri , iτ  is a uniformly distributed 
random location of the target in the input scene, whose probability density function is dwf ii /)()( ττ =  (d is the area of 
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the support region the input scene). )(tnb  and )(tna  are assumed to be wide-sense stationary random processes and 
statistically independent of each other.  

The filter is designed so that when the input to the filter is one of the reference targets, then the output of the filter in the 
Fourier domain expression becomes: 
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where H(k) and Ri(k) are the discrete Fourier transforms of h(t) (impulse response of the distortion tolerant filter) and 
ri(t), respectively. * denotes complex conjugate, M is the number of sample points, and Ci is a positive real desired 
constant. Equation (3) is the constraint imposed on the filter. To obtain noise robustness, we minimize the output energy 
due to the disjoint background noise and additive noise. We can gather both disjoint background and additive noise in 
one noise term and define { } )()()()()()(
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output energy due to the input noise and the output energy due to the input scene under the filter constraint: The 
minimization is done through Lagrange multipliers λ1i, λ2i. For detailed derivation of the filter, we refer the reader to 
[15]. The following optimum nonlinear distortion tolerant filter H(k) is computable:  
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where )(0 kbΦ  is the power spectrum of the zero-mean stationary random process )(0 tnb , and )(0 kaΦ  is the power 

spectrum of the zero-mean stationary random process )(0 tna . W(k) and Wri(k) are the discrete Fourier transforms of w(t) 

and wri(t), respectively. ⊗  denotes a convolution operator. λ1i and λ2i are the Lagrange multipliers. 

If we have an input model without background noise, the optimum nonlinear distortion tolerant filter H(k) becomes: 
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This filter can be created by using true class training targets. Once synthesized, this filter can be used to distinguish 
between true class non-training objects and false class objects. 

5 PHOTON COUNTING THREE-DIMENSIONAL PASSIVE SENSING FOR ATR 
In this section, we present 3D passive sensing ATR using photon counting integral imaging [16-20]. Photon counting is 
a passive sensing technique which has been applied in many fields such as night vision, laser radar imaging, radiological 
imaging, and stellar imaging. The photon counting can be binary at low light level [10, 43]. The advantage of the 
photon-counting detector may be enhanced by the processing of binary photon numbers which can be simpler and faster. 
Photon counting techniques have been applied to infrared imaging and thermal imaging [43]. Photon counting detectors 
have been considered for 3D active sensing by LADAR as well. 

Photon counting 3D passive sensing shows significant benefits for automatic target recognition (ATR) [16-18]. The 
discrimination capability of the proposed system is quantified in terms of Fisher ratio and receiver operating 
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characteristic (ROC) curves using nonlinear matched filtering. Each lenslet in the lenslet array generates a photon-
limited elemental image on a photon counting detector array. Multiple perspectives of photon-limited scenes are 
recorded according to the corresponding lenslet.  

The aim of automatic target recognition (ATR) is to identify unknown objects in a scene and categorize them into 
distinct classes. In this section, we review the passive sensing and recognition of 3D objects by means of photon 
counting integral imaging [16-18]. Nonlinear matched filtering is developed for the recognition of 3D objects. The 
nonlinear matched filtering is performed between a reference (irradiance image) and unknown inputs (photon-limited 
images). We present analysis of the statistical properties of the nonlinear correlation normalized according to the power 
law of the sum of photon numbers assuming the low level of photons. We define our matched filtering as the nonlinear 
correlation normalized with the power v of the photon-limited image as shown below: 

 
,

)(ˆ

)(

)(ˆ)(

)(ˆ)(
);(

1

1

1

2
1

1

2

1
vN

i
i

N

k
jk

vN

i
i

N

i
i

N

i
iji

jrs
T

TT

T

xSA

xxR

xSxR

xSxxR
vxC

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

∑

∑

∑∑

∑

=

=

==

=
 (6) 

where 
1
2

2

1
( )

TN

i
i

A R x
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ , R is the irradiance of the reference image which is denoted by r, s represents an unknown input 

object from which the photon-limited image Ŝ  is generated, NT is the total number of pixels, and N is the total number 
of photon detection events occurred in the scene. It is noted that Crs(xj;v) has the maximum value at xj = 0 in our 
experiments. One advantage of photon counting detection is that the computational time of the matched filtering at low 
light level is much faster than conventional image correlation. As shown in the second term in Eq. (6) the correlation 
becomes merely the sum of the reference radiance at particular pixels (photon arrivals) [18]. 

The following statistical properties of nonlinear correlation peak Crs(0;1) have been proven in [16]:  
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where ⋅  denotes the expectation operator, “var” denotes the variance operator, S is the irradiance of the input object s, 
and NP is a predetermined mean number of photo-counts in the entire scene. The nonlinear matched filtering shows 
different behaviors according to v. For the linear matched filtering (v=0), both the mean and variance of the correlation 
peak Crs(0;0) are approximately proportional to NP [16]. However, the mean of Crs(0;1) does not depend on the number 
of photons, i.e., the same correlation value can be theoretically achieved with any small number of photons. Although 
the variance of Crs(0;1) increases when using lower number of photons, this property of photon-limited images might be 
beneficial for pattern recognition applications.  

6 EXPERIMENTAL RESULTS 
6.1 Occlusion removal 

Figure 4 shows two toy cars and foreground vegetation illuminated by incoherent light used in the experiments [15].  

 
Fig. 4. 3D object used in the experiments. The blue car is a true class target, green car is a false object. Vegetation is 

positioned in front of the cars to partially occlude the background objects. 
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The pickup microlens array is placed in front of the object to form the elemental image array. The distance between the 
microlens array and the closest part of the occluding vegetation is around 30 mm, the distance between the microlens 
array and the front part of the green car is 42 mm, and the distance between the microlens array and the front part of the 
blue car is 52 mm. The minimum distance between the occluding object and a pixel on the closest background object 
should be equal to or greater than 9.6 mm, where the rhombus index number in our experiments is 7 for the green car.  

This satisfies the constraint of the experimental setup to reconstruct the background objects. The background objects are 
partially occluded by foreground vegetation, thus, it is difficult to recognize the occluded objects from the 2D scene in 
Fig. 4. The elemental images of the object are captured with the digital camera and the pickup microlens array. The 
microlens array used in the experiments has 53 × 53 square refractive lenses. The size of each lenslet is 1.09 mm x 1.09 
mm. The focal length of each microlens is 3.3 mm. The size of each captured elemental image is 73 pixels × 73 pixels. 

With volumetric computational II reconstruction, Eq. (1), it is possible to separate the foreground occluding object and 
background occluded objects with the reduced interference of the foreground objects. Figs. 5 show the reconstruction of 
the objects at different depths, respectively. 

 
Fig. 5. Reconstructed images from the elemental images sets rotated at an angle of 32.5° at (a) z = 29 mm, (b) z = 45 mm, 

(d) z = 52 mm, and (d) z = 69 mm. 

6.2 Distortion Tolerant Automatic Target Recognition 

In this section we present experimental results which show recognition of 3D rotated and occluded targets in a 
reconstructed scene [15]. We also show the ability of the proposed technique to recognize distorted and occluded 3D 
non-training targets. In our experiments, we have used a blue car as a true class target, and a green car as a false object. 
We have obtained 7 different elemental image sets by rotating the reference target from 30° to 60° in 5° increments. The 
reconstructed images from the elemental image sets are shown in Fig. 6 at various angles.  

 
 (a)            (b)         (c)   (d)            (e) 

Fig. 6. Five of the seven sets of the reconstructed images from the elemental image sets ranging from z = 60 mm to z = 72 
mm with 1mm increment. These 7 reconstructed image sets are spaced at 5° apart from 30°-60°. Sets shown at (a) 30°, 
(b) 40°, (c) 50°, (d) 55°, and (e) 60° 

From each elemental image set with rotated targets, we have reconstructed the images from z = 60 mm to z = 72 mm in 
1mm increments. Therefore, for each rotated angle (from 30° to 60° in 5° increments) 13 reconstructed images are used 
as a 3D training reference target. The input elemental images have a true class training target, or a true class non-training 
target and a false object (green car). A true class training and non-training target are located on the right side of the input 
scene and the false object is located at the left side of the scene. 

The true class non-training target used in the test is distorted in terms of out-of-plane rotation, which is challenging to 
detect. With volumetric computational II reconstruction, it is possible to separate the foreground occluding object and 
background occluded objects with the reduced interference of the foreground objects. According to Eq. (4) The 
distortion tolerant optimum nonlinear filter has been constructed in a 4D structure, that is, x, y, z coordinates and 3 color 
components. We set all of the desired correlation values of the training targets, Ci, to 1 in Eq. (3).  

Figures 7(a)-7(d) are the normalized outputs of the 3D optimum nonlinear distortion tolerant filter at the depth level of 
the occluding foreground vegetation, the true class non-training target, and the false object, respectively. Figure 7(d) 
shows a dominant peak at the location of the true class non-training target. The peak value of the true class training 
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target is higher than that of the true class non-training target. The ratio of the non-training target peak value to the 
training target peak value is 0.9175. The ratio of the peak value to the maximum side-lobe is 2.8886 at the 3D coordinate 
of the false object. It is possible to easily distinguish the true class targets and false object or occluding foreground 
objects. Therefore, we can easily threshold the output level to detect the 3D location of the training and distorted true 
class non-training targets. 

 
     (a)    (b)      (c)               (d) 

Fig. 7. Normalized optimum nonlinear filter output for the reconstructed input scene in Figure 7 with 32.5° rotated true class 
non-training target and a false object at (a) z = 29 mm, (b) z = 45 mm, (c) z = 52 mm, and (d) z = 69 mm, 

6.3 Photon Counting Three Dimensional Passive Sensing for ATR 

In this section, we present the results of passive photon counting ATR [16-18]. For experiments, we use a lenslet array 
and a pick-up camera for the recording of elemental images as seen in Fig. 8(a). 

   
(a)     (b) 

Fig. 8. (a) Experimental setup for the integral imaging, (b) three cars used in the experiments; car 1, 2 and 3 are shown from 
right to left. 

Three sets of elemental images have been obtained for each car [see Fig. 9]. The irradiance image of the reference (r) or 
the unlabeled input (s) corresponds to one set of elemental images captured during the recording process. We generate 
photon-limited images, each with a random number of photons following Bernoulli distribution. To compute the 
statistical means and variances we generate 1000 images for each car. We also vary the mean value photon numbers 
(NP) from 10 to 1,000. The irradiance image of car 1 is used as our reference image.  
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Fig. 9. Photon-limited image when NP=1,000 of three cars used in the experiment, (a) car 1 (green), (b) car 2 (white), (c) car 

3 (yellow). 

Figure 10(a) shows the experimental results (sample mean) of correlation coefficients and their fluctuations (sample 
standard deviation) when v=1 with theoretical prediction in Eq. (7). The red solid line graph represents the sample mean 
of autocorrelation between the irradiance image and photon-limited images of car 1, and the blue dotted line graph is the 
sample mean of cross-correlation between the irradiance image of car 1 and photon-limited images of car 2, and the 
black dashed line graph is the sample mean of cross-correlation between the irradiance image of car 1 and photon-
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limited images of car 3. Figure 10(b) shows the sample variance of Crs(0;1) with theoretical prediction in Eq. (8). The 
deviation from the theoretical prediction becomes larger as the number of photons decreases as shown in Fig. 10(b).  
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(a)       (b) 

Fig. 10. Mean and variance of Crs (0;1), (a) sample mean and theoretical prediction, (b) sample variance and theoretical 
prediction. 

Figures 11(a)-(d) show ROC curves corresponding to cars (r=1, s=2) and cars (r=1, s=3) for Crs (0;0) and Crs (0;1), 
respectively. The number of photons varies from 100 to 10. 

 

 
Fig. 11. ROC curves when r = 1, (a) s = 2 for Crs(0;0), (b) s = 3 for Crs(0;0), (c) s = 2 for Crs (0;1), (d) s = 3 for Crs (0;1). 
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Table 1 shows the Fisher ratio defined for Crs(0;0) and Crs(0;1) [16]. Fisher ratio decreases when using a lower number 
of photo-counts, but for photo-counts greater than one hundred, the Fisher ratios show a good separability between the 
reference and false objects when v = 1.  

Table 1. Fisher ratios when r = 1 
NP 1000 500 100 50 10 

s = 2 77.41 38.63 7.53 3.59 0.76 v = 0 s = 3 131.04 66.05 12.98 6.46 1.33 
s = 2 204.14 105.54 19.90 9.5 1.77 v = 1 s = 3 377.83 191.69 37.72 18.16 3.5 

6.4 Underwater 3D Integral Imaging 

We have conducted introductory modifications to the integral imaging reconstruction algorithms to conduct ranging 
experiments with an SAII system viewing objects submerged in water [28].  To the best of our knowledge, we are the 
first to report on the implementation of integral imaging systems for underwater 3D imaging applications. 

When imaging underwater, one must consider refraction caused by water’s ~1.33 index of refraction differing from the 
~1.00 index of refraction of air. An object located in water at a physical distance zwater from the air-water interface will 
appear to have a distance zwater’ = zwater/nwater from the interface to an observer looking perpendicular to the interface. The 
overall pathlength from observer to object is equal to the distance between the observer and the air-water interface added 
to the apparent water distance. To accurately reconstruct to an underwater plane, magnification must be modified as 
Mr=[zair + zwater / nwater] / fr, with zair the distance between the lens and air-water interface, zwater the physical distance 
between the air-water interface and underwater object, and reconstruction focal length fr again equal to the focal length 
of the acquisition lens, fl.  Additionally, a camera looking perpendicular to the air-water interface will experience a 
change in its angle of view such that θ’HAOV = arcsin(sin(θHAOV)/1.33).  

A scene was set up in fish tank consisting of a sign placed 230mm away from the viewing wall, a treasure chest at 
340mm, a toy fish at 380mm, and a Lego deep sea creature from 435mm to 495mm. The tank was filled with water and 
illuminated from above by diffuse incoherent light to simulate sun light. Data was collected by translating a single 
camera along a transverse x-y 5mm x 5mm grid with the lens flush with the fish tank, and zair was considered to be 0mm. 
Overall, 9 horizontal nodes and 7 vertical nodes were used for 63 elemental images in a 40mm x 30mm plane. A full 
frame 35.8mm x 29.9mm CMOS imaging sensor with 4,368 x 2,912 pixels and 8.2µm pixel pitch was used with a 50mm 
lens. The lens was stepped down to its smallest aperture to achieve the maximum depth of field.  A central 2D image of 
the unoccluded scene is shown in Fig. 12(a), and Fig. 12(b) shows the same scene after foreground occlusion has been 
added.  Three-dimensional computational reconstructions of the occluded scene are shown in Fig. 12(c)-(d). Each object 
is clearly in focus at its corresponding reconstruction plane and appears blurred at other reconstruction planes. The 
objects are successfully seen through the occlusion that troubled the 2D image shown in Fig. 12(b).  

      
Fig. 12 Underwater Synthetic Aperture Integral Imaging example. a) A central 2D elemental image of the unoccluded 

underwater scene. b) Same scene as (a) with added foreground occlusion. 3D computational reconstructions of the 
occluded scene at c) z = 230mm, bringing the occluded foreground sign into focus, d) z = 440mm with jaws in focus 

6.5 Sensitivity of Integral Imaging to position measurement uncertainty 

We present the results an analysis on the sensitivity of 3D passive II with respect to the position measurement 
uncertainty during pickup [37]. SAII experiments are used to demonstrate the quantitative and qualitative degradation of 
computational 3D reconstructions by introducing sensor position uncertainty in the pickup process. The experimental 
scene is composed of two toy cars and a model helicopter located at 24cm, 32cm and 40cm from the sensor [see Fig. 
13(a)]. The scene is illuminated with diffused incoherent light. 

a b c d
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Fig. 13. (a) A 2D image of the 3D scene, (b) subset of elemental images for 3D scene in (a).  

The experiment is performed by moving a digital camera transversally in an x-y grid with the pitch of Sp=5mm in both x 
and y directions. At each node, an elemental image is captured from the scene. The imaging sensor is 22.7×15.6mm and 
has a 10µm pixel pitch. Effective focal length of the camera lens is about 20mm; and elemental images are captured in a 
planar 16×16 grid. A subset of elemental images can be seen in Fig. 13(b) each conveying different perspective 
information. In Fig. 14 we show the 3D reconstruction of the scene in three different distances of the objects in Fig. 
13(a) according to Eq. (1). As is clear, at each distance one of the objects is in focus while the others appear washed out. 

 
Fig. 14. 3D scene reconstruction at distances (a) z=24 cm, (b) z=30 cm and (c) z=36 cm. 

It has been shown in [37] that Mean Square Error (MSE) can be calculated as:  
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where E{.} denotes expectation operation, Ikl is the kl-th elemental image; (∆Px,∆Py) are the random variables describing 
the sensor position error and are modeled as two independent Gaussians, ∆Px,y~N(0,σ2). We define the fraction 100σ2/Sp 
to be the pitch error percentage that represents a normalized positioning error measure.  

 
Fig. 15. Reconstruction at z= 24 cm using (a) original camera position, and (b) using distorted camera position with 30% 

pitch error. (c) Box-and-whisker diagram of the MSEs for z=24cm (M=12) to z=40cm (M=20) with pitch error of 30% 
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Monte Carlo simulation is used to study the degradation effect of sensor position uncertainty during the pickup process 
on the reconstructed images. We perform computational reconstruction with Eq. (1) to reconstruct a plane of the 3D 
scene at the specific distance z by utilizing the distorted camera positions. To measure the error, the MSE of the 
reconstruction results compared with the ones using the correct positions on the equally spaced grid is calculated. Figure 
15(a)-(b) shows the result of reconstruction using known and random positions respectively at z=24cm with 30% pitch 
error. Dislocated position of the camera is a random vector from which we choose 500 samples and utilize them in Eq. 
(1) to computationally reconstruct one plane of the 3D scene at the distance z. As a result, 500 MSE values are obtained 
(via Eq. (9)) for each reconstruction distance. Figure 15(c) shows the box-and-whisker diagram of all MSEs for z=24cm 
(M=12) to z=40cm (M=20).  

Figure 15(c) also shows the statistical properties of MSEs at a specific distance z=z0 (M=M0). The blue box shows the 
variance of the MSE which is limited to its upper and lower quartiles and dotted blue line is limited to the smallest and 
largest computed MSEs. At each plane, the average of 500 MSEs is computed and shown with the solid red line in Fig. 
15(c). This average for each particular plane of the scene is a reasonable estimation of the error one can expect due to a 
30% camera positioning error. 

7 CONCLUSION 
We have presented an overview of both active and passive 3D sensing techniques for ATR. We have highlighted a 3D 
sensing and imaging technique based on passive sensing, and its applications in ATR, under water 3D imaging, photon 
counting sensing ATR, and removal of partial obscurations for ATR. The benefits and weaknesses of both active and 
passive 3D sensing techniques have been discussed. For small, inexpensive platforms such as small UAVs, it is likely 
that 3D passive imaging will be preferable to active 3D imaging in terms of cost, size, and complexity. 
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