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ABSTRACT

We investigate the interaction between a single atom and a light field in the strong focusing regime. Such a
configuration is subject to recent experimental work not only with atoms but also molecules and other atom-like
systems such as quantum dots. We derive the scattering probability for photons by such a microscopic object
modeled by a two-level system, starting with a Gaussian beam as the spatial mode of the light field. The focusing
by an ideal lens is modeled by adopting a field with spherical wave fronts compatible with Maxwell equations.
Using a semi-classical approach for the atom-field interaction, we predict a scattering probability of photons by a
single atom of up to 98% for realistic focusing parameters. Experimental results for different focusing strengths
are compared with our theoretical model.
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1. INTRODUCTION

Atom-light interaction at the single quanta level plays an important role in many quantum communication
and computation protocols. While spontaneous emission allows a simple transfer of atomic states into ‘flying’
qubits, strong interaction of light with an atom is needed to transfer a photonic qubit into internal atomic
degrees of freedom (stationary qubit). This process is essential to implement quantum light-matter interfaces,1–3

unless post-selection techniques are used.4 A measure of interaction strength useful for a variety of physical
configurations is the excitation probability of an atom by a single photon, independent of any particular scheme
of information transfer from a photon to an atom.

The common approach to achieve this strong interaction pursued for a long time is to use a high finesse cavity
around the atom, in which the electrical field strength of a single photon is enhanced by multiple reflections
between two highly reflective mirrors, resulting in a high probability of absorption.

Another approach to increase the excitation probability of an atom due to a single photon is simply to focus
the light field of a single photon down to a diffraction limited area, motivated by the fact that the absorption
cross section of an atom is on the order of the square of the optical wavelength. Recent theoretical research
on this matter predicts that the absorption probability may reach the maximal value of 100%5 for dedicated
focusing geometries. However, the coupling scheme suggested there is challenging to realize experimentally. An
alternative scheme would be to use a lens to tightly focus the beam to the position of an atom.

Such a system has been theoretically investigated by van Enk and Kimble6 and they concluded that one can
expect only low scattering (interaction) probability for lenses with realistic focal lengths. While experiments on
single atom absorption have been carried out a long time ago in the weak focusing regime7 where this theoretical
treatment is applicable, our recent experimental results8 showed that the predictions given in their work greatly
underestimate the scattering probability of a tightly focused coherent light beam by a single atom. In this paper
we extend the model used in6 such that it is applicable in the strong focusing regime. We find that, by dropping
two of their approximations, the interaction of a coherent light field with a single atom can be very strong even
for realistic lenses. Further experimental data is provided for comparison with theoretical predictions.
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The paper is organized as follows: Section 2 provides the theoretical description of atom-light interaction
for a strongly focused light beam. In Section 2.1, we define the scattering probability and express it in terms
of the electric field strength at position of the atom. In Section 2.2 we calculate the field strength at the focus
of an ideal lens by considering a Gaussian incident beam identical to6 but adopting a different description of
lens action on the field from the one used in,6 using a spherical wave front for the focusing field, and making it
compatible with Maxwell equations. From the calculation we obtain a scattering probability for incident photons
and compare the results with experimentally measured values in Section 3.

2. THEORY

2.1 Scattering probability of a focused monochromatic beam by a two-level atom

The system that we investigate is a single two-level atom localized in free-space illuminated by a focused
monochromatic light field (probe) with an incident power Pin. The interaction strength of the probe with
the atom is directly related to the amount of incident power that is scattered by the atom. We define the
scattering probability of the probe photons by the atom as the ratio of the scattered light power Psc to the total
incident power Pin, i.e.

psc ≡ Psc

Pin
, (1)

where Psc is defined by (34) which represents the average optical power spontaneously emitted by a two-level
system exposed to a monochromatic light field. The expression for the scattered power is commonly obtained
using the steady state solutions of the optical Bloch equations.13

We now derive an expression for the scattering probability of a focused Gaussian beam by a two-level atom
assuming weak on-resonant excitation, making use of the fact that the atom only interacts with the field at the
location of the atom in the long wavelength limit. We consider a circularly polarized Gaussian beam since it
was adopted in the experiment.8 Assuming that the waist of the beam coincides with the lens and the beam
propagates along the +Z axis, the electric field strength before the focusing lens is given by

�E(ρ, t) =
EL√

2
[cos(ωt)x̂ + sin(ωt)ŷ] e−ρ2/w2

L , (2)

where ρ is the radial distance from the lens axis, wL the waist of the beam, x̂, ŷ are the unit vectors in X and Y
directions respectively, and EL is the field amplitude. The total power carried by the incident beam is given by

Pin =
1
4
ε0πcE2

Lw2
L , (3)

where ε0 is the electric permittivity of vacuum, and c the speed of light in vacuum. Due to the symmetry of the
system, the field on the lens axis is always circularly polarized. So for an atom that is stationary on the z-axis
at the focus of the lens, the electric field can be written as

�E(t) =
EA√

2
[cos(ωt)x̂ + sin(ωt)ŷ] , (4)

where EA denotes the amplitude of the field at the focus. For a field that is resonant with the atomic transition
and with an intensity much below saturation, the power scattered by a two-level atom is13 (see A for more
details)

Psc =
3ε0cλ

2E2
A

4π
, (5)

leading to a scattering probability for photons of

psc =
Psc

Pin
=

3λ2

π2w2
L

(
EA

EL

)2

. (6)
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(6) is exact under weak and on-resonant excitation. For a weakly focused field where the paraxial approximation
holds one finds that (

EA

EL

)2

=
(

wL

wf

)2

, (7)

where wf is the Gaussian beam waist at the focus. This leads to the following expression for the scattering
probability:

psc =
3λ2

π2w2
f

. (8)

One can see that by defining a Gaussian focal spot area A = πw2
f /2, (8) leads to psc = σmax/A, where σmax =

3λ2/2π is the absorption cross section of a two-level system exposed to a resonant plane wave. However, for
strongly focused light, the paraxial approximation breaks down, and we need other methods to find (EA/EL)2.

2.2 Calculation of electric field strength after the lens
A useful method to calculate the field strength after an ideal lens was presented by van Enk and Kimble in.6

The main idea of their method is to first assume a focusing field near the exit of the lens, taking into account the
focusing effects of an ideal lens. They then decomposed the focusing field into a set of modes that takes a simple
form in the cylindrical coordinates, thus making use of the symmetry of the system. Once the contribution of
each mode is known, the full properties of the field after the lens can be determined with certainty. Unfortunately,
their description for the focusing field near the lens is only suitable for weak focusing. In this section we extend
their model such that it becomes applicable to the strong focusing regime. The extension is done by modeling the
lens action such that the focusing field has a spherical wave front after the lens and is compatible with Maxwell
equations. Thus the model is now applicable for description of lenses with high numerical aperture (NA).

2.2.1 Decomposition of the field into modes with cylindrical symmetry

We briefly outline the main properties of the cylindrical modes, directly following.6 The complete orthogonal set
of modes �Fν is defined such that an electric field that satisfies the source-free Maxwell equations can be expanded
in these modes as

�E(t) = 2�
[∑

ν

aν
�Fνeiωt

]
, (9)

where the summation over ν is a short-hand notation for
∑

ν

≡
∫

dk

∫
dkz

∑
s

∑
m

, (10)

and aν are arbitrary complex amplitudes. The modes are characterized by four indices ν ≡ (k, kz , m, s), where
k = 2π

λ is the wave vector modulus, kz = �k · ẑ the wave vector component in z-direction, m an integer-valued
angular momentum index, and s = ±1 the helicity.

Since the electrical field has to satisfy Maxwell equations, the mode function should be transverse, i.e.,
∇ · �Fν = 0. The dimensionless mode functions �Fν in cylindrical coordinates (ρ, z, φ) are defined in9 as

�Fν(ρ, z, φ) = 1
4π

sk−kz

k G(k, kz , m + 1)ε̂− + 1
4π

sk+kz

k G(k, kz , m − 1)ε̂+

−i
√

2
4π

kt

k G(k, kz , m)ẑ , (11)

where kt =
√

k2 − k2
z is the transverse part of the wave vector, ε̂± = (x̂±iŷ)/

√
2 are the two circular polarization

vectors, and
G(k, kz , m) = Jm(ktρ)eikzzeimφ, (12)

with Jm the m-th order Bessel function. As we are interested in a monochromatic beam with a fixed value of
k = 2π/λ propagating in the positive z direction (kz > 0), the set of mode indices is reduced to µ ≡ (kt, m, s)
where, for convenience, kt is taken as a mode index instead of kz. Now, we introduce the notation

∑
µ

≡
∫

dkt

∑
s

∑
m

(13)
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for a complete summation over all possible modes. For a fixed k the modes �Fµ are orthogonal in planes perpen-
dicular to the z axis: ∫

dS �F ∗
µ(�r) · �Fµ′(�r) = δ(kt − k′

t)δmm′δss′/(2πkt) , (14)

where dS is a surface element on such a plane.

2.2.2 Focusing with an ideal lens

Similar to6 we start modeling an ideal lens by multiplying a local phase factor ϕ(ρ) to the incoming field �Fin.
As in Section 2.1, we consider a collimated circularly polarized Gaussian beam which is focused by an ideal lens
in the plane z = 0. In the new notations, the dimensionless incoming field is given by

�Fin = exp(− ρ2

w2
L

)ε̂+ , (15)

and the output field right after the lens is modeled by

�Fout(ρ, φ, z = 0) = ϕ(ρ) exp(− ρ2

w2
L

)ε̂+ . (16)

The complete output field is then obtained by

�Fout(�r) =
∑

µ

κµ
�Fµ(�r) , (17)

with
κµ = 2πkt

∫
z=0

dS �Fout(�r) · �F ∗
µ(�r) . (18)

Now one has to choose an appropriate phase factor ϕ(ρ) to describe the action of the lens on the incoming
field. In the original paper6 the local phase factor was chosen to be

ϕpb(ρ) = e−ikρ2/2f , (19)

where f is the focal length of the lens. This phase factor gives rise to a parabolic wave front after the lens for
small ρ. The choice of this phase factor allows an analytical integration for obtaining the coefficients κµ but
does not apply for description of lenses with high numerical aperture. Moreover, in our recent experiment much
higher values of extinction than that predicted with the help of (19) were directly measured.8 This motivates us
to adopt a different description for the focusing field.

Light emitted by a small object like an atom has a spherical wave front in the far field. One can thus expect
that the lens has to reverse the spherical emission in order to direct most of the incoming energy into the focal
region around the atom. Therefore, we describe action of the lens with a phase factor

ϕsp(ρ) = e−ik(
√

ρ2+f2−f), (20)

which is expected to create a focusing field with a spherical wave front after the lens. Note that ϕsp approaches
ϕpb for small ρ. With phase factor ϕsp the expansion coefficient κµ becomes

κµ = δm1πkt
sk + kz

k

∫ ∞

0

dρ
[
ρJ0(ktρ) × e−ik(

√
ρ2+f2−f)−ρ2/w2

L

]
. (21)

This integration has no analytical solution and thus is computed numerically. As one of the mode indices kt is a
continuous variable, a sufficiently large number of κµ must be first computed and then interpolated in order to
construct the output field correctly. The largest component of the output field (17) is the ε̂+ component, which
is given by

F+(ρ, φ, z) =
1

4πk

∑
s=±1

∫ k

0

dkt

[
(sk + kz)J0(ktρ) × eikzzκµ=(kt,1,s)

]
, (22)
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Figure 1. |F+|2 along the lens axis obtained with a spherical phase factor ϕsp and a parabolic phase factor ϕpb for the
parameters mentioned in the text.

where F+ ≡ �Fout · ε̂∗+, and ε̂∗+ is the complex conjugate of ε̂+.

Figure 1 shows the near-focus dimensionless intensity |F+|2 obtained for the parameters: f = 4.5mm,
λ = 780nm and wL = 1.1mm, using the phase factors ϕsp (solid line) and ϕpb (dashed line) respectively. The
horizontal axis shows the displacement from the ideal focal position along the lens axis ∆z = z − f . It is clear
from the figure that adopting a parabolic wave front significantly reduces the maximal intensity behind the lens.
Unlike ϕsp which concentrates the energy of the field in a small region, ϕpb spreads the energy of the focused field
over a region closer to the lens, and thus results in a reduced intensity in the focus similar to spherical aberration
in classical optics. This problem becomes more serious for a larger input waist wL (or stronger focusing) because
a parabolic wave front deviates more from a spherical wave front for larger ρ. The numerical result for |F+|2
allows calculation of the scattering probability using (6). With

(
EA

EL

)2

= |F+|2 (23)

we obtain a value for psc of 14.8% for a spherical phase factor ϕsp, whereas the parabolic phase factor adopted
in6 only leads to a scattering probability of 2.6%.

2.2.3 Focusing field compatible with Maxwell equations

As one can see from Figure 1, adoption of the spherical phase factor ϕsp(ρ) predicts a higher intensity at the
focus. However, an initial outgoing field near the lens modeled with the help of (16) is not compatible with
Maxwell equations for two reasons: (i) the power carried by this field directly behind the lens was found to be
different from the total power flowing through the focus; (ii) the complete outgoing field �Fout(�r) obtained through
Equations (17) and (18) has non-vanishing ẑ and ε̂− components at z = 0 even though the initial outgoing field
we start with only has the ε̂+ component. Such discrepancies are negligible for small wL, but become very large
for large wL.

To be more precise, the reconstructed field (17) must satisfy Maxwell equations since it is a linear combination
of �Fν which themselves are the solutions of source-free Maxwell equations. If the reconstructed field is not
identical to the initial field, then the initial field cannot satisfy Maxwell equation, and vice versa. Therefore,
(16) cannot represent a physical field.

In view of this, we model the field right after the lens by considering changes in local polarization on top
of using the spherical phase factor with three requirements in mind. The requirements are: (i) A rotationally
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Figure 2. A spherical wave front (half of the sphere) formed after passing an ideal thin lens. Here F is the focal point of
the lens, f is the focal length, S is the intercept point of line PF and the wave front.

symmetric lens does not alter the local azimuthal field component, and only tilts the local radial polarization
component of the incoming field towards the axis; (ii) The polarization at point P (see Figure 2) after transfor-
mation by the lens should be orthogonal to the line FP to form a spherical wave front; (iii) The modulus of the
local field strength before and after the lens should be the same, so that the local intensity of the outgoing field
is the same as that of the incoming Gaussian beam. These requirements are identical to the assumptions made
by Richards and Wolf on the transformation of polarization of optical rays by optical elements.10 With these
requirements, we model the field right after the lens as (see B for details)

�Fout(ρ, φ, 0) =
(

1+cos θ
2 ε̂+ + sin θeiφ√

2
ẑ + cos θ−1

2 e2iφε̂−
)

exp
(−ρ2/w2

L

)

× exp
[
−ik(

√
ρ2 + f2 − f)

]
. (24)

The expansion coefficient κµ (18) becomes

κµ = δm1πkt

∫ ∞

0

dρ ρ

{
sk + kz

k

(
1 + cos θ

2

)
J0(ktρ) + i

√
2kt

k

(
sin θ√

2

)
J1(ktρ)

+
sk − kz

k

(
cos θ − 1

2

)
J2(ktρ)

}
exp

[
−ik(

√
ρ2 + f2 − f) − ρ2

w2
L

]
, (25)

where θ = tan−1(ρ/f). The Kronecker symbol δm1 expresses the fact that the angular momentum of the incident
light beam is still conserved under the new transformation we use.11, 12 Finally, we determine the complete
outgoing field with three polarization components defined by F+ ≡ �Fout · ε̂∗+, Fz ≡ �Fout · ẑ, and F− ≡ �Fout · ε̂∗−,
with

F+(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt
1
4π

sk + kz

k
J0(ktρ)eikzzκµ, (26)

Fz(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt (−i)
√

2
4π

kt

k
J1(ktρ)eikzzeiφκµ, (27)
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Figure 3. Absolute field strengths after the ideal lens reconstructed from the expansion into cylindrical components at
z = 0 obtained with parameters: f = 4.5 mm, λ = 780 nm, and wL = 7mm. (a) Polarization-corrected outgoing field
given by (24). (b) Only with spherical wave front phase factor ϕsp, no polarization correction. The traces are: the
amplitude of the original ε̂+-polarized field |F0|, and the reconstructed field strengths |F+|, |Fz| and |F−|.

F−(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt
1
4π

sk − kz

k
J2(ktρ)eikzze2iφκµ. (28)

We now consider a set of focusing parameters, say f = 4.5 mm, λ = 780 nm, and wL = 7 mm, for which the
incident beam is strongly focused by the lens. We reconstruct the field after passage through the lens at z = 0
using Equations (26), (27), and (28) and compare it to the starting output field given by Equation (24) that is
corrected for polarization. Figure 3a shows (from top to bottom) the reconstructed |F+|, |Fz | and |F−| at z = 0.
As the reconstructed fields overlap visually with the polarization-corrected field behind the lens, the original field
distributions are not shown. Quantitatively, the relative difference between the original and reconstructed field
is less than 10−3, a bound limited by our numerical accuracy. For comparison, the reconstructed fields obtained
using ϕsp without polarization correction are shown in Figure 3b. The reconstructed fields at z = 0 are not the
same as the original field |F0| we start with. A successful reconstruction, therefore, shows that our extended
model (24) is physical (compatible with Maxwell equations) even for very strong focusing ∗∗.

Another check that further confirms this is that the total energy carried by the field is conserved after the
lens. To verify this we compare the power flowing through the focus to the incoming power at the lens. The
power flowing through the focus is obtained from

P (z) = 2π

∫ ρ0

0

dρ ρ
(|F+(z)|2 + |Fz(z)|2 + |F−(z)|2) (29)

by setting z = f . We find that a power flowing through the focus is only 0.02% less than the incoming power for
this set of parameters that provide the strongest focusing for the polarization-corrected field (Figure 3a). If we
only adopt the spherical phase factor without polarization correction, the power at the focus is only � 78% of
the incident power for the same set of focusing parameters. This check provides further evidence that (24) gives
a physical focusing field after the lens.

2.2.4 Field at the focus

Having found a field with a spherical wave front that is compatible with Maxwell equations, we can now examine
the field at the focus in more details. Figure 4 shows the field on the focal plane for different focusing strengths

∗∗In principle, since we can only tell that the reconstructed fields coincides with the initial fields within our numerical
accuracy, we cannot prove that (24) satisfies Maxwell equations. In any case, we confirm that (24) is at least a very good
approximation to a physical field for all parameters we have used in this report, namely, f = 4.5 mm and wL from 0.1 mm
to 10 mm.
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Figure 4. Absolute field strengths at the focus for different focusing strengths. Different plots are obtained with the same
focal length of 4.5 mm and wavelength of 780 nm, but with different input waist wL.

obtained with this model. Every individual plot in the figure assumes the same focal length (f=4.5mm) and
wavelength (λ=780nm), but with different input waists wL. In each plot, we show the absolute field strengths
|F+|, |Fz |, and |F−|, together with the field predicted using paraxial approximation given by

�F parax
focus =

wL

wf
exp(− ρ2

w2
f

)ε̂+, (30)

with a paraxial focal waist wf = fλ/πwL. For weak focusing, |F+| overlaps completely with the paraxial
prediction with negligible |Fz| and |F−| (Figure (4a)). For wf � 3.7µm (about 5λ), discrepancies between
paraxial approximation and the extended model start to appear (Figure (4b)). The ẑ- and ε̂−-polarized fields
become stronger when wL gets larger. However, they never appear on the lens axis. Therefore, an atom localized
on the lens axis would only experience the ε̂+-polarized field. Figure 4d shows the focused field that maximizes
|F+| for the parameters in our model. It is obtained with a incident waist wL = 7mm. Increasing the incident
waist further can no longer make the focal spot tighter due to the diffraction limit. Instead, more energy is
transferred to the |Fz| and |F−| side lobes, thus decreasing the magnitude of the |F+| component again.

It should also be noted that a strongly focused field does not have a planar wave front at the focus. This can
be understood from the fact that

Fz(ρ, φ, z) = Fz(ρ, z)eiφ, and F−(ρ, φ, z) = F−(ρ, z)e2iφ, (31)

which means the phase of the field on the focal plane z = f is not uniform (Equations (27) and (28)).

2.2.5 Scattering probability

Once we know the field at the focus, we can obtain the scattering probability of a light beam by a two-level
atom. Figure 5 displays the scattering probability as a function of incident waist wL, obtained for focusing
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parameters f = 4.5mm, λ = 780nm. The curves in the figure are obtained using (from top to bottom) paraxial
approximation (Equation (30)), spherical wave front with polarization correction (Equation (24)), spherical wave
front without polarization correction (Equations (16) and (20)), and parabolic wave front without polarization
correction (Equations (16) and (19)). It is clear that adopting a parabolic wave front after the lens only leads
to a small scattering probability (ϕpb curve). With a spherical wave front, the scattering probability increases
significantly especially for stronger focusing (ϕsp curve). However, as was pointed out in the previous sections,
modeling the output field without considering the action of the lens on the polarization of the field gives rise to
an unphysical focusing field. Our attempt to construct a physical focusing field predicts even larger scattering
probability with a maximal value of � 98% (ϕcor

sp curve). It should be noted that all three models agree with the
paraxial model for small wL. For large wL, the parabolic model shows the largest discrepancy with respect to
the physical field model. The result obtained shows that a scattering probability should be high enough to be
directly measured in a simple transmission experiment with realistic, readily available lenses.

3. EXPERIMENT

In this section, we report the results of our experiment which tries to quantify the scattering probabilities of light
fields with different focusing strengths by a single 87Rb atom. Obtaining the scattering probability defined by
(1) is not straightforward in an experiment. Normally, the total incident power of the probe Pin can be measured
directly. However, measuring the total scattered power Psc is challenging since the detection area must cover the
whole solid angle, including that subtended by the probe beam. A simpler method for quantifying the scattered
power is to infer it from a transmission measurement. Figure 6 illustrates a simple transmission setup with an
atom located at the focus of two confocal lenses. There, a second lens collects all the excitation power if no atom
is present at the focus. For an optical power measuring device, the measured transmission is defined as the ratio
of the outgoing power Pout to the incident power Pin. Considering from the perspective of balancing the optical
powers, one can relate the measured transmission T to the scattered power Psc by

T ≡ Pout

Pin
=

Pin − Psc + αPsc

Pin
, (32)
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Figure 6. A transmission measurement setup with an atom at the focus of a lens. The transmitted power is a result of
interference between the scattered light and the probe for coherent scattering.

where α is a factor related to the solid angle subtended by the power detector area. The scattering probability
is then related to the measured transmission by

psc =
ε

1 − α
, (33)

where ε = 1 − T is the extinction of the probe beam.

A more accurate description of this transmission measuring system requires consideration of the interference
between the attenuated probe and the coherently scattered field in order to obtain the value of α. Finding α
or the exact relation between the scattering probability and the measured extinction is complicated and not
the focus of our current discussion. We note in passing that if the solid angle subtended by the probe beam is
small, most of the scattered field is directed out of the probe mode. In this case, |α| is expected to be much
smaller than one, and thus psc ≈ ε. Since the solid angle subtended by the transmission collecting lens used in
our experiment is less than 0.06× 4π, we expect that our measured extinction to be comparable with the actual
scattering probability of the light beam by the atom.

A detailed description of our single atom transmission experiment is reported in.8 Here, we give a brief
outline of the setup and report the measured extinction values for different focusing strengths by changing the
input waist of the probe beam. Figure 7 shows the experimental setup. The heart of the setup consists of two
aspheric lenses that are mounted in a UHV chamber in a confocal arrangement. A single 87Rb atom is localized
in a far-off resonant dipole trap (FORT) that is formed by 980nm light at the focus of the lens system. A probe
beam is delivered from a single-mode fiber and focused onto the atom by one of the aspheric lenses. The confocal
arrangement of lenses ensures that the second lens picks up all the incident probe power, thus implementing
the scheme discussed in Section 2.1. We use a circularly polarized probe to optically pump the atom into a
closed cycling transition. This procedure effectively ensures that the atom can be viewed as a two-level system
during interaction with the probe, so that a maximal scattering probability can be expected. After allowing
some time for optical pumping, we measure the transmission of the probe beam that is defined as the ratio of
count rates at detector D1 when the atom is present in the trap, to the count rate when the atom is absent.
Such a measurement is carried out for different probe frequencies and the transmission spectrum of a single Rb
atom is obtained. The spectrum is fitted to a Lorentzian from which we obtain three parameters: the resonant
frequency, full width at half maximum (FWHM) of the transmission spectrum and the minimum value for the
transmission Tmin at resonance frequency. We obtained transmission spectra for four different input waists of the
probe, thus measuring extinction for different focusing strengths. For all measured spectra the observed FWHM
did not exceed 7.7 MHz, which is close to the natural linewidth of the transition that we addressed (6 MHz).
From that we conclude that during the measurement, the atom was successfully kept in the cycling two-level
system. During each transmission measurement at all frequencies of the probe, the probe power was maintained
at a level much below saturation, such that the atom scatters ≈ 2500 photons per second. The properties of
various transmission spectra obtained with different probe incident waists are summarized in Table 1.
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Figure 7. Experimental setup for measuring the extinction of a light beam by a single atom. AL: aspheric lens (f = 4.5 mm,
full NA = 0.55), P: polarizer, DM: dichroic mirror, BS: beam splitter with 99% reflectivity, λ/4, λ/2: quarter and half
wave plates, F1: filters for blocking the 980 nm FORT light, F2: interference filter centered at 780 nm, D1 and D2:
Si-avalanche photodiodes. Four more laser beams forming the MOT lie in an orthogonal plane and are not shown.

We also carefully characterized the losses of the probe beam in its optical path to ensure that our measured
extinctions are not exaggerated by interference artefacts that can happen when certain elements in the trans-
mission path preferentially filter more probe than the scattered light.8 From point A to point B in Figure 7 we
measured 53–60% transmission without the atom in the trap. The losses are mostly determined by 21% loss
through the uncoated UHV chamber walls and 17–24% loss due to the coupling into the single-mode fiber at the
transmission measurement channel. The loss at the coupling into the fiber increases as the input waist of the
probe beam wL increases. Almost all losses can be ascribed to reflections at optical surfaces, except for a 9–16%
re-coupling loss into a single mode fiber that is due to mode mismatch. We are thus reasonably confident that
our measurement is free from artefacts that may arise due to improper collection of the probe.

4. DISCUSSION

In Figure 8 we compare the extinctions obtained from the experiment with scattering probability predicted
using the models presented in Section 2. However, we do not have yet a clear model that relates the measured
extinction to the scattering probability. We suspect that the measured extinction is comparable to the actual
scattering probability in our experiment according to the previous discussion. Following this assumption, we see
that adoption of the spherical phase factor with polarization correction predicts larger values of the scattering
probability than that observed in the experiment. We see a few possible reasons for this discrepancy. First of all,
the lens used in the experiment can show some aberrations, and the intensity distribution of the focusing field
after the lens might also be different from (24) due to the finite thickness of a real lens. Besides, the motion of the

wL(mm) wf(µm) wD(µm) εmax (%) W (MHz) pcalc
sc (%)

0.5 2.23 2.0 2.38 ± 0.03 7.1 ± 0.2 3.59
1.1 1.01 2.0 7.2 ± 0.1 7.4 ± 0.2 15.6
1.3 0.86 1.4 9.8 ± 0.2 7.5 ± 0.2 20.8
1.4 0.80 1.4 10.4 ± 0.1 7.7 ± 0.2 23.5

Table 1. Summary of transmission spectra of the probe for different focusing strengths. wL: incident waist of the probe;
wf and wD: estimated focal waists of the probe and of the FORT respectively using paraxial approximation; ε and W:
maximum observed extinction value and FWHM of the transmission spectrum respectively. The scattering probability
pcalc
sc is calculated using the physical focusing field with a spherical wave front (24) for the corresponding waist.
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Figure 8. Comparison of experimentally obtained extinction values to scattering probabilities predicted by various models
mentioned in the text.

atom in the dipole trap also results in reduced scattering probability. Finally, to obtain the field at the location
of the atom, we expanded the incident field into modes that satisfy source-free Maxwell equations. However, the
single atom itself acts as a microscopic current source that can influence the field. For strong focusing where
a large scattering probability is achieved, obtaining the field using source-free Maxwell equations may not be
justified.

Another approach to describe the system we are investigating is to use the ‘overlap’ argument for the cal-
culation of the scattering probability.5, 14 The approach is based on the time reversibility of the Schrödinger
equation under the assumption of a closed ‘atom+field’ system. A scattering probability of 100% is predicted
for an incoming photon that is prepared as a time-reversed replica of the spontaneously emitted photon. In
order to match the spatial overlap with the spontaneously emitted photon, a probing photon must occupy the
full solid angle of 4π. This suggests, that by using an infinitely large lens, a scattering probability of only 50%
may be expected since the collection solid angle of the lens is equal to 2π. This contradicts the result of our
calculation, which suggests that a scattering probability of more than 50% can be achieved even if the atom is
excited by a field that is focused from solid angle less than 2π. An experiment with a lens of higher NA can test
the applicability of both models.

5. CONCLUSION

We have demonstrated both theoretically and experimentally that a substantial coupling efficiency of a light
beam to a single atom can be achieved by focusing a light beam with a lens. By modifying the model given
in,6 we have constructed a field compatible with Maxwell equations after the lens that is suitable for the strong
focusing regime. High values for the scattering probability of light (up to 98%) by a two-level atom stationary at
the focus under the assumption of weak on-resonant coherent probe are predicted. Experimental results confirm
the possibility of observing a substantial coupling efficiency. These results may also be of interest for experiments
with single molecules15, 16 and quantum dots.17
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APPENDIX A. POWER SCATTERED BY THE ATOM IN COHERENT LIGHT
FIELD

Using optical Bloch theorem, it can be shown that the average power scattered by a two-level atom exposed to
a monochromatic light beam is given by13

Psc = ρ22Γh̄ω , (34)

where ρ22 is the excited state population and Γ is the spontaneous decay rate, such that ρ̇22 = −Γρ22 in the
absence of an external light field. The excited state population and its spontaneous decay rate are related to the
atomic dipole moment |d12| and the amplitude of the field at the location of the atom EA (Equation (4)) by

ρ22 =
|Ω|2/4

δ2 + |Ω|2/2 + Γ2/4
, (35)

Γ =
ω3

12|d12|2
3πε0h̄c3

, (36)

where Ω = EA|d12|/h̄ is the resonant Rabi frequency and δ = ω − ω12 is the detuning of the driving field
frequency ω from the atomic two-level resonance frequency ω12. These formulas are obtained using the dipole
approximation of the interaction Hamiltonian and the rotating wave approximation. For a weak (Ω � Γ) on
resonant (δ = 0) excitation, the scattered power (Equation (34)) becomes

Psc =
3ε0cλ

2E2
A

4π
. (37)

APPENDIX B. TRANSFORMATION OF LOCAL POLARIZATION BY THE LENS

To obtain the local polarization of the focusing field in (24), we consider an arbitrary point P(ρ, φ, 0) before the
lens and an incident light field with polarization

ε̂in = ε̂+ =
x̂ + iŷ√

2
, (38)

or in the cylindrical basis,

ε̂in =
eiφ

√
2

ρ̂ +
ieiφ

√
2

φ̂ , (39)

where ρ̂ = cosφ x̂ + sinφ ŷ and φ̂ = − sinφ x̂ + cosφ ŷ are two unit vectors along the radial and azimuthal
directions respectively. The ideal lens leaves the azimuthal component unchanged but tilts the radial component
such that the local polarization of the field right after the lens is perpendicular to the line FP in Figure 2 (F is
the focus point), that is:

ε̂out =
(

cos θ eiφ

√
2

ρ̂ +
sin θ eiφ

√
2

ẑ

)
+

ieiφ

√
2

φ̂ (40)

=
1 + cos θ

2
ε̂+ +

sin θeiφ

√
2

ẑ +
cos θ − 1

2
e2iφ ε̂− ,

where θ = arctan(ρ/f) and ε̂− = (x̂ − iŷ)/
√

2.
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