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Abstract. Fine needle aspiration biopsy �FNAB� is a rapid
and cost-effective method for obtaining a first-line diagno-
sis of a palpable mass of the breast. However, because it
can be difficult to manually discriminate between adipose
tissue and the fibroglandular tissue more likely to harbor
disease, this technique is plagued by a high number of
nondiagnostic tissue draws. We have developed a por-
table, low coherence interferometry �LCI� instrument for
FNAB guidance to combat this problem. The device con-
tains an optical fiber probe inserted within the bore of the
fine gauge needle and is capable of obtaining tissue struc-
tural information with a spatial resolution of 10 �m over a
depth of approximately 1.0 mm. For such a device to be
effective clinically, algorithms that use the LCI data must
be developed for classifying different tissue types. We
present an automated algorithm for differentiating adipose
tissue from fibroglandular human breast tissue based on
three parameters computed from the LCI signal �slope,
standard deviation, spatial frequency content�. A total of
260 breast tissue samples from 58 patients were collected
from excised surgical specimens. A training set �N=72�
was used to extract parameters for each tissue type and the
parameters were fit to a multivariate normal density. The
model was applied to a validation set �N=86� using like-
lihood ratios to classify groups. The overall accuracy of
the model was 91.9% �84.0 to 96.7� with 98.1% �89.7 to
99.9� sensitivity and 82.4% �65.5 to 93.2� specificity
where the numbers in parentheses represent the 95% con-
fidence intervals. These results suggest that LCI can be
used to determine tissue type and guide FNAB of the
breast. © 2008 Society of Photo-Optical Instrumentation Engineers.

�DOI: 10.1117/1.2837433�

Keywords: breast cancer; low coherence interferometry; needle
guidance; fine needles aspiration; breast biopsy; automated.
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1 Introduction
Fine needle aspiration biopsy �FNAB� is often the first line of
diagnosis for a palpable mass.1–3 To perform a FNAB, the
mass is manually stabilized, a small diameter needle �typi-
cally 23 to 25 gauge� is inserted into the mass, and a small
amount of tissue or fluid is aspirated into the needle. The
aspirate within the bore of the needle is then expressed onto a
slide, smeared, stained, and examined by a pathologist. Due to
the small size of the needle, patient discomfort is generally
limited to the initial stick of the needle. Complications includ-
ing hematoma and infection are rare. The simplicity of FNAB
significantly reduces the time and cost of obtaining an initial
1083-3668/2008/13�1�/014014/8/$25.00 © 2008 SPIE
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iagnosis compared with core or excisional tissue biopsy and
llows rapid feedback to both the clinician and patient. In
ddition, comparisons of the sensitivities and specificities of
ore needle biopsy �CNB� and FNAB for palpable masses
how them to be high and similar.4,5 As a result, FNAB has
ecome a frequently used diagnostic tool for the evaluation of
any superficial, palpable masses.
Manual palpation of a superficial mass is often the only

ue for determining the optimal position of the needle in tis-
ue during biopsy. As a result, FNAB can frequently be non-
iagnostic, especially with an inexperienced operator.6–10

ample adequacy is graded on a sliding scale based on the
egree of epithelial cellularity from which a diagnosis can be
ade.9,10 Nondiagnostic samples are completely void of epi-

helial cells and consist primarily of adipose cells and cyst
uid.10 When not guided by an imaging modality, breast
NABs obtain diagnostic tissue in approximately 65 to 78%
f cases.6,8,9 This difficulty is particularly problematic when
erforming FNABs in locations that are rich in adipose tissue,
uch as the breast and axilla. One method of increasing FNAB
ield is concomitant use of noninvasive imaging devices, such
s ultrasound, to guide needle placement. Radiologic guid-
nce is almost always employed when FNAB is performed on
onpalpable masses. Although the addition of noninvasive im-
ging technology has been shown to increase FNAB yield, it
s time-consuming, relatively expensive, and often requires
dditional personnel with specialized expertise.11

Recently, a portable, low-cost device based on low coher-
nce interferometry �LCI� has been developed for fine needle
spiration �FNA� needle guidance.12 LCI is an optical ranging
echnique that is capable of measuring depth-resolved �axial,
� tissue structure, birefringence, flow �Doppler shift�, and
pectra at a micrometer-level resolution.13–15 Other groups
ave investigated the use of needle-based optical probes for
iopsy guidance based on imaging16 or by direct measure of
issue optical properties such as multispectral reflection
nalysis,17 scattering coefficient,18 and refractive index19 mea-

ig. 1 Schematic of the LCI biopsy guidance instrument. A super lumi
he reference arm optical delay line �ODL� consists of a retroreflecto
f a single mode fiber inserted through a hub connecting the syring
ample arm of the interferometer.
urements. Miniature LCI needle probes have also been used

ournal of Biomedical Optics 014014-
to correlate brain motion with electrocardiogram waves in a
minimally invasive fashion.20

An initial feasibility study performed on excised breast
surgical specimens indicated that LCI may have the potential
for classifying adipose and fibroglandular breast tissue based
on the slope and standard deviation of the axial depth
profiles.12 The sample size for this study was small and the
accuracy of LCI for breast tissue type diagnosis was therefore
not evaluated. Furthermore, this data was analyzed in a semi-
automatic fashion that is not suitable for clinical use; the
minimum and maximum boundaries over which the data were
analyzed were selected manually. Here, we present an auto-
mated algorithm for classifying adipose and fibroglandular
breast tissues that includes an additional, independent param-
eter that quantifies LCI signal spatial frequencies. The accu-
racy of this algorithm was determined prospectively in a
blinded fashion on a cohort of 260 biopsy correlated LCI
scans from 58 patients. Intrasample variability of the algo-
rithm was also tested. Similar classification parameters were
recently introduced to develop methods for computationally
driven differentiation of human breast tissue.21 However, to
our knowledge, our study represents the first complete study
to test the efficacy of such parameters for classification of
human breast tissue.

2 Methods
2.1 System Description
The LCI system and probe have been described previously
and are shown schematically in Fig. 1.12 Briefly, the LCI sys-
tem consisted of a nonreciprocal fiber optic Michelson inter-
ferometer. A broadband super luminescent diode �SLD� cen-
tered at 1310 nm with a full width at half maximum
bandwidth of 50 nm �Optiphase, Inc., Van Nuys, California�
was used as a light source. The axial resolution was �15 �m
in air, or 11 �m in tissue �n=1.4�. Light from the source was
transmitted through the first output port of a circulator and an

t diode �SLD� is sent through a circulator �Circ� and an 80/20 splitter.
ted on a galvanometer-driven lever arm. The LCI-FNA probe consists
he needle. An optical connector attaches the LCI-FNA probe to the
nescen
r moun
e and t
80 /20 splitter, which directed approximately 750 �W to the

January/February 2008 � Vol. 13�1�2
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ample arm. LCI depth scans �A-lines� were obtained at a rate
f 40 Hz and the path length in the reference arm was
canned by illuminating a retroreflector mounted on a
alvanometer-driven lever arm �Model 6220, Cambridge
echnology, Lexington, Massachusetts�. Light from the
ample and reference arms were recombined and directed to-
ard a polarization beamsplitter and two photodetectors, en-

bling polarization diverse detection. Shot noise limited de-
ection was achieved with a maximum signal-to-noise ratio
SNR� of 101 dB.

The optical probe consisted of a single mode optical fiber
nserted through the bore of a 23 gauge ��570-�m outside
iameter� FNA needle. No focusing lens was used. The needle
as attached to a regular syringe through a hub �Model
4501, Inrad, Northvale, New Jersey�. The syringe was held
ithin a FNA biopsy gun. The fiber probe was designed to be

imple and therefore inexpensive. Because the fiber core ap-
rture was always at the needle tip, there was no uncertainty
egarding the probe location, and the interrogated tissue was
irectly in front of the needle location. Although the fiber
robe was housed within a FNA needle, no tissue aspirates
ere collected during the measurements.

.2 Experimental Protocol
xcised surgical specimens were collected, stored in 10%
hosphate buffered saline and data was collected at 37°C
ithin 24 h of collection. The needle and FNA gun were se-

Fig. 2 FNA gun mounted with needle and positioned above sample.
ured onto a vertical translation stage as shown in Fig. 2.

ournal of Biomedical Optics 014014-
During imaging, samples were placed flat on a piece of cor-
rugated cardboard within a Petri dish and positioned under the
needle probe. The needle was lowered onto the sample until
the fiber surface came into contact with the sample. Ten con-
secutive A-lines were collected at each site. Following imag-
ing, the needle was raised, and the needle location was
marked with India ink. The samples were then fixed in forma-
lin. Histologic sections were obtained and stained with hema-
toxylin and eosin.

Histology slides were read by a pathologist who was
blinded to the LCI data. Slides were randomly ordered to
avoid bias from reading samples from the same patient con-
secutively. Histology samples were grouped into two critical
cases for this application—adipose and fibroglandular tissue
types. Fibroglandular tissues included benign fibrous paren-
chyma, adenocarcinoma, and ductal carcinoma in situ �DCIS�
tissue types. Only homogeneous samples classified as pure
adipose or fibroglandular tissue were included for parameter
extraction and algorithm development/classification. Samples
with significant heterogeneity in the image field as defined by
the pathologist or samples where no ink was visible on his-
tology were excluded. Heterogeneous samples were defined
as tissues where the ratio of major to minor tissue type was
approximately less than 3:1 within 1 mm of the ink mark.

2.3 Parameter Extraction
For each sample, 10 consecutive A-lines were acquired. Sig-
nal parameters were extracted for each A-line, and the mean
value for each parameter was used to represent the sample.
Each parameter was calculated using an automated MATLAB

script without the need for additional user input other than the
sample file. Prior to parameter extraction, the raw LCI inter-
ferogram data was converted to depth-dependent reflectivity
profiles in the standard fashion.12 The signal was transformed
using discrete Fourier transform �DFT�, bandpass filtered, fre-
quency shifted to zero, and inverse transformed. The resulting
linear intensity values were then converted to decibel scale by
20 log10 multiplication.

2.3.1 Automatic LCI scan boundary extraction
At the beginning and end of the LCI scan, the signal contains
data that are not representative of the tissue sample. As a
result, prior to parameter extraction, the data must be auto-
matically parsed to determine the segment of the LCI scan
that contains tissue reflectivity information. The location of
the fiber-sample interface was automatically determined by
the following procedure. The noise floor was determined by
averaging the signal within the first 200 �m of imaging
depth, which corresponded to a region proximal to the fiber-
sample interface. All signal points below the threshold were
set to be equal to the noise floor, using a threshold of 20 dB.
Next, a first-order derivative was computed and the first peak
was determined by the first zero crossing of the derivative. To
avoid error from specular reflection at the fiber-sample inter-
face, the start index was shifted an additional 100 �m beyond
the first peak. Automatic selection of the beginning location of
the LCI scan in this manner allowed the effective start index
to always fall within signal values representing the tissue
structure. The last 100 �m of the LCI signal were also

skipped because the signal was generally low in this region.

January/February 2008 � Vol. 13�1�3
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hus, the analyzed data consisted of the region from the ef-
ective start index to the end of the LCI scan minus the last
00 �m. This algorithm was automated and applied to all
CI scans to determine the data range over which to compute

he slope, standard deviation, and spatial frequency content
arameters. The average depth over which the signal was ana-
yzed was 936 �m with a range from 820 �m to 1.03 mm.

.3.2 Slope
o first order, the LCI reflectivity intensity decreases in accor-
ance with the Beer-Lambert law. At a source wavelength of
300 nm, tissue optical properties are such that scattering
ominates over absorption.22 Therefore, the slope of the loga-
ithmic axial depth profile is related to the scattering coeffi-
ient and can be used as a parameter for classifying tissue
ype. A higher slope indicates more attenuation and a larger
cattering coefficient, whereas, a lower slope indicates a lower
cattering coefficient. The slope was calculated by a first-
rder polynomial fit over the region of interest.

.3.3 Standard deviation
he variation of scattering cross sections within a LCI depth
can can be used as another parameter for classifying tissue
ype. One way to assess the scattering variance is to measure
he slope-subtracted standard deviation of the axial depth pro-
le. If the scattering fluctuates significantly, the reflection pro-
le will have peaks interspersed with periods of low signal
nd the standard deviation will be high. Conversely, if the
cattering is relatively homogeneous, the signal will be more
ontinuous and the standard deviation will be low. To remove
he effect of the bulk averaged scattering coefficient, the re-
idual of the linear fit was used to compute the standard de-
iation.

.3.4 Spatial frequency content
cattering center distribution, representing the distance be-

ween scatterers, may be evaluated by analyzing the spatial
requency components of the signal. The power spectrum of
he signal can be interpreted as the signal energy within spa-
ial frequency windows, and the unique signature from differ-
nt tissue types was recently described as a method for differ-
ntiating human breast tissue.21 The spatial frequency
arameter was computed in the following manner. First, as
ith the computation of the standard deviation, the linear re-
ression was conducted and the residual was used for subse-
uent processing. Next, the dc component was removed by
ean subtraction. Data outside the start and end index were

et to zero. The resulting signal was zero mean, with compo-
ents that fluctuated with varying frequency content depend-
ng on tissue type. The DFT was then computed. The spatial
requency parameter was then defined by integrating the mag-
itude of the spatial frequency content over a particular win-
ow band. The window was defined by calculating the aver-
ge DFTs for the entire training set and observing where the
dipose and fibroglandular tissue samples differed. A zoomed
ortion of the mean DFTs for the training set are shown in
ig. 3. The vertical lines represent the width of the integration

indow.

ournal of Biomedical Optics 014014-
2.4 Algorithm Model
A multivariate Gaussian model was used for classification.
The data set was randomly split into training and validation
sets. A pooled estimate of the covariance matrix was used for
the training set. The result of the model was an equation for
each class that defined the probability that any new set of
parameters fell within that class. Prospective analysis was
then performed on the validation set. Classification was car-
ried out by extracting parameters for each test sample, calcu-
lating the probability of falling within a particular class, and
then assigning classification based on the highest probability.

2.5 Intrasample Variability
To test the intrasample variability of the device and algorithm,
an additional experiment was conducted using another data
set. The needle probe was lowered onto each sample and a
10–A-line acquisition was performed. The needle was then
raised off of the sample using the vertical translation stage
and relowered back onto the sample for an additional 10–A-
line acquisition. This process was repeated 10 times so that
each sample had 10 data sets of 10 A-lines each all from the
same exact location. After the 10 measurement, the needle
was raised and the sample was marked with India ink and sent
for histology sectioning and staining. Each set of 10 A-lines
was processed in the same manner as the earlier experiments
so that a single set of extracted parameters characterized each

Table 1 Training set statistics.

Parameter
Adipose
�N=37�

Fibroglandular
�N=35� p

Slope −1.74±1.36 −4.39±2.23 �1.7�10−7

Std. Dev. 7.23±1.54 5.41±0.71 �2.2�10−7

Spat. Freq. 1.42±0.54 0.97±0.27 �2.2�10−9

Fig. 3 Average power spectrum data from LCI depth scans over the
entire training set that show a region of difference between adipose
and fibroglandular tissues types. The integration window �green lines�
represents the area over which the spatial frequency content param-
eter is generated. �Color online only.�
January/February 2008 � Vol. 13�1�4
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et of A-lines. The samples were then classified using the
ultivariate Gaussian model. The result was a set of 10 clas-

ifications from the same sample at the same location. The
ntrasample variability was defined as the percentage of mis-
lassified measurements within a particular sample.

.6 Statistical Analysis
he accuracy of LCI for classifying breast tissue type was
ssessed by comparing the predicted tissue type to the gold
tandard histopathologic classification. All data processing
nd parameter extraction were done within MATLAB. Each pa-
ameter is listed as ���, where � is the mean, and � is the
tandard deviation. The p-values were calculated using a two-
ided unpaired t-test to determine if the difference in sample
eans between parameters were statistically significant, and

5% confidence intervals �CI� are also reported.

Results
ypical LCI profiles of adipose and fibroglandular breast tis-
ue were very different �Fig. 4�. The adipose samples con-
ained multiple reflectivity peaks, presumably representing the
ipid core and cell membrane interface �Fig. 4�. Human adi-
ocytes range in size from 50 to 150 �m, which makes the
ocation of the reflectivity peaks highly variable.23 The scat-
ering centers in the fibroglandular tissue case are much closer
ogether and most likely come from small changes in the re-
ractive index from within the extracellular matrix. As a re-
ult, the LCI signal for fibroglandular tissue was smoother and
ore continuous.
Data was collected from a total of 260 samples from 58

atients. Of those, 34 were not analyzed due to the absence of
fiducial ink mark in the histopathologic slide, and 54 were

xcluded owing to the presence of heterogeneous tissue at the
CI measurement site. The set of 158 histopathology corre-

ated LCI data sets included 71 adipose and 87 fibroglandular
ases. The fibroglandular data set included 71 benign fibrous
arenchyma, 13 adenocarcinoma, and 3 DCIS cases. The data
ets were randomly separated into a training set �n=72; 37
dipose, 35 fibroglandular� and a validation set �n=86; 34
dipose, 52 fibroglandular�. There were 7 �5 adenocarinoma, 2
CIS� and 9 tumor �8 adenocarcinoma, 1 DCIS� cases in-

luded in the fibroglandular group for the training and valida-
ion sets, respectively. The additional samples were used for

ig. 4 Characteristic axial depth scans from adipose �left� and fibrogla
hrough the data. Intensity data shown in logarithmic scale. �Color on
ntravariability testing �N=14�.

ournal of Biomedical Optics 014014-
3.1 Training Set
The results from the training set are listed in Table 1. As the
table demonstrates, each parameter has a significant p-value.
The average magnitude of the slope parameter was higher for
fibroglandular tissue, which indicates a higher scattering co-
efficient for fibroglandular breast tissue compared with adi-
pose tissue. The mean standard deviation was higher for adi-
pose tissue as a result of the signal variation resulting from
refractive index fluctuations. The spatial frequency parameter
had more energy for the adipose samples within the integrated
window band. There was no spatial frequency region where
the fibroglandular tissue had higher energy as was seen at
higher spatial frequencies in Zysk et al.21 This could be due to
differences in axial resolution �10 �m versus 2 �m� because
the Fourier transform resolution highly depends on spatial
sampling frequency.

Another way to represent the training data is through the
use of a scatter matrix as shown in Fig. 5. The scatter matrix
plots two-dimensional scatter plots between each set of pa-
rameters and can be used to observe correlations between
classification parameters. It can be seen that there is little
correlation between the slope and standard deviation as well
as the slope and spatial frequency parameters. In addition, the
slope–standard deviation and slope–spatial frequency scatter
plots show that the adipose and fibroglandular data sets fall
into separate regions, making classification based on these
parameters possible. The scatter plot matrix also shows that
the standard deviation and spatial frequency parameters are
highly correlated. This is expected as both parameters are re-
lated to the scattering strength and scatterer distribution. The
correlation is higher for the adipose �R=0.938� than for the
fibroglandular �R=0.780� tissue samples.

3.2 Validation Set
The results from the validation set using all three parameters
for classification are listed in Table 2. The classification pa-
rameters show the same trends as were seen in the training set
data. The classification results are listed in Table 3. During a
FNA procedure, the collection of adipose tissue is seen as a
nondiagnostic result. Therefore, the correct classification of
adipose tissue can be viewed as a true negative �TN�, and the
correct classification of fibroglandular tissue can be viewed as
a true positive �TP�. In this way, the sensitivity, as defined by

�right� human breast tissue. The red line is a first-order polynomial fit
ly.�
ndular
line on
TP / �TP+FN� �FN=false negative� is equivalent to the ac-

January/February 2008 � Vol. 13�1�5
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uracy of detecting fibroglandular tissue. In addition, the
pecificity, as defined by TN / �TN+FP� �FP=false positive�
s equivalent to the accuracy of detecting adipose tissue. The
ensitivity and specificity of the validation set were 98.1%
95% CI: 89.7 to 99.9� and 82.4% �95% CI: 65.5 to 93.2�,
espectively. The overall accuracy was defined as the total
umber of correctly classified tissue samples regardless of
issue type. With 86 �34 adipose, 52 fibroglandular� samples
n the validation set, the overall accuracy was 91.9% �95% CI:
4.0 to 96.7�. CIs were calculated using the normal approxi-
ation to the binomial distribution.24 The one misclassified

ample from the fibroglandular validation set was an adeno-
arcinoma case. The other 8 of 9 tumor cases were correctly
lassified as fibroglandular tissues.

These results use all three classification parameters as pre-
iously described. To determine whether or not the three-

ig. 5 Scatter plot representation of the entire training set data that
egree of correlation between the standard deviation and the spati
broglandular �blue cross� tissue types. Tumor tissues are labeled in
Color online only.�

Table 2 Validation set statistics.

Parameter
Adipose
�N=34�

Fibroglandular
�N=52� p

Slope −1.69±1.25 −5.04±2.21 �1.9�10−11

Std. Dev. 6.92±1.35 5.51±1.55 �7.0�10−5

pat. Freq. 1.23±0.31 0.82±0.23 �4.6�10−9
ournal of Biomedical Optics 014014-
parameter model was statistically better than simply using the
slope and standard deviation parameters,12 it was necessary to
look at a truth table describing the differences between the
two models. The overall classification results using only the
slope and standard deviation parameters are shown in Table 3.
The sensitivity and specificity were 80.8% �67.5 to 90.4� and
82.4% �65.5 to 93.2�, respectively. Using only the two-
parameter model, four tumor cases, all adenocarcinoma, were
misclassified as adipose tissue. A truth table to quantify the
differences between the two models is shown in Table 4. In
Table 4, a �/� cell indicates that both the two-parameter and
the three-parameter models correctly classified the sample. A
�/� cell indicates that the two-parameter model correctly
classified a sample, whereas, the three-parameter model mis-
classified a sample. Similarly, a �/� cell indicates that the
three-parameter model classified the sample correctly when
the two-parameter model misclassified the sample, and a �/�
cell indicates that both models misclassified the samples. The
table shows that there are nine cases where the three-
parameter model classified a fibroglandular sample correctly
when the two-parameter model misclassified the sample, and
no cases with the reverse scenario. The associated p-value is
calculated using McNemar’s test for correlated proportions
and shows that there is a statistically significant difference
between the two- and three-parameter models in terms of fi-
broglandular tissue classification. No statistical difference was

used to visualize relationships between parameters. There is a high
uency content parameters for both the adipose �red plus sign� and
circles and were included in the fibroglandular tissue classification.
can be
al freq
green
observed for the adipose case.

January/February 2008 � Vol. 13�1�6
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Because the standard deviation parameter is calculated
rom the slope-subtracted LCI signal, errors in the slope cal-
ulation could result in an artificially high standard deviation
easurement. To test the effect this would have on our clas-

ification, we simulated errors in the slope by randomly modi-
ying the slope parameter �/� 5, 10, and 20% of its nominal
alue. The standard deviation and spatial frequency content
arameters were then recalculated using the modified slope
alue. The resulting classification was compared to the nomi-
al value result using McNemar’s test as previously de-
cribed. There was no significant difference in the classifica-
ion results for either the adipose or fibroglandular tissue type.
or the maximum error of �/� 20%, the sensitivity was
6.2% �95% CI: 86.8 to 99.5� and the specificity was 76.5%
95% CI: 58.8 to 89.3�.

.3 Intrasample Variability
ata to test intrasample variability were collected and ana-

yzed from a separate set of 14 samples from 6 patients �6
dipose, 8 fibroglandular�. The average intrasample variability
as 18.3% �9.5 to 30.4� for adipose and 1.3% �0.03 to 6.8� for

he fibroglandular tissue samples. The overall Cohen’s � sta-
istic was 0.821 �0.725 to 0.981�. The number of errors for
ach 10–A-line set was as follows: adipose �1 0 0 0 7 3� and
broglandular �0 0 0 1 0 0 0 0�. The one outlier sample within

he adipose data set �7 /10 error rate� was due to low signal
ontent, which tended to reduce the spatial frequency content
arameter and shift the probability toward the fibroglandular
issue type. If the outlier were be removed, the adipose in-
rasample variability rate would become 8.0% �2.2 to 19.2�
nd the � value would become 0.918 �0.847 to 0.988�.

Table 3 Clas

Two-Para
Slope

Adipose

True Class Adipose 28

Fibroglandular 10

Table 4 Model comparison.

3 Parameter Model

Fibroglandular Adipose

wo-Parameter
Model

+ − + −

+ 42 0 26 3

− 9 1 2 3

p�0.01 p�1
ournal of Biomedical Optics 014014-
4 Discussion
We present an automated algorithm for differentiating ex vivo
adipose tissue and fibroglandular human breast tissue using
LCI interferometry that achieves a high sensitivity and speci-
ficity. The extracted parameters used for classification are
simple and require minimal additional computation time com-
pared with the standard postprocessing of the LCI signals.
The goal of this project is to differentiate between nondiag-
nostic adipose tissue and the fibroglandular tissue more likely
to harbor disease. The ability of LCI to differentiate between
adipose and fibroglandular tissue indicates that this technol-
ogy has the potential to be a useful tool in FNA procedures in
an attempt to reduce nondiagnostic sampling rates. More im-
portantly, tumor samples are correctly classified as fibroglan-
dular, meaning that they will not be misclassified as adipose
tissue, resulting in a missed diagnosis.

There remain a few challenges to taking such a system into
a FNA clinic. First, in this work only homogeneous samples
were used for analysis and classification. This was done to
define a clear set of parameters that represent the true nature
of adipose and fibroglandular tissue types. In a clinical set-
ting, heterogeneous samples will be encountered that will de-
crease the accuracy of the model. Future work will focus on
further defining boundaries between tissue types to provide a
regional diagnosis that will account for heterogeneity. In ad-
dition, some clinical applications may require further differ-
entiation of fibroglandular tissues into normal fibrous and tu-
mor tissue types as well as identification of additional
categories such as necrotic tissue. The classification of nondi-
agnostic adipose tissue samples, however, does not require
this distinction, and as such, was outside the scope of this
paper. Also, LCI assumes that the signal comes from single-
scattering events, but the presence of multiple scattering, es-
pecially at larger depths within the sample can lead to de-
creased resolution, and changes in the signal profile. In
particular, the slope parameter, with its connection to the
Beer-Lambert law is particularly sensitive to the single-
scattering assumption. It may be necessary to define the bor-
der between single and multiple scattering to improve the
model and include additional tissue types. In addition, be-
cause the standard deviation parameter is calculated from the
slope-subtracted LCI scan, any error in the slope fit could
result in artificially high standard deviation measurements.
However, we found that errors up �/� 20% did not signifi-
cantly affect the classification result.

n results.

Predicted Class

Model
ev.

Three-Parameter Model
Slope, Std. Dev., Spat. Freq.

glandular Adipose Fibroglandular

6 29 5

42 1 51
sificatio

meter
, Std. D

Fibro
Insertion of the LCI needle probe within the tissue struc-
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ure in an in vivo setting, as opposed to surface-only measure-
ents as were done in this study, may introduce additional

bstacles that could limit the algorithm’s effectiveness. Issues
uch as bleeding, tissue or optical fiber compression, and op-
rator motion artifacts will all come into play. We plan on
tudying these issues through in vivo animal experiments to
urther define any limitations of the LCI needle probe. We
nticipate that higher speed systems will significantly reduce
ny motion artifacts seen in the current device. Lastly, the
bility to collect tissue aspirates directly following a LCI
easurement will need to be addressed. Issues such as the

ollection of sufficient aspirate material as well as the devel-
pment of a disposable probe are the subject of an ongoing
nvestigation. Additional future work will focus on the devel-
pment of higher speed systems based on recent advance-
ents in LCI technology.25,26 These advancements will allow

or higher speed imaging, improved SNR, and greater imag-
ng depth.
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