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Abstract. We investigate the potential of near-infrared Raman
microspectroscopy to differentiate between normal and malignant
skin lesions. Thirty-nine skin tissue samples consisting of normal,
basal cell carcinoma �BCC�, squamous cell carcinoma �SCC�, and
melanoma from 39 patients were investigated. Raman spectra were
recorded at the surface and at 20-�m intervals below the surface for
each sample, down to a depth of at least 100 �m. Data reduction
algorithms based on the nonlinear maximum representation and dis-
crimination feature �MRDF� and discriminant algorithms using sparse
multinomial logistic regression �SMLR� were developed for classifica-
tion of the Raman spectra relative to histopathology. The tissue Raman
spectra were classified into pathological states with a maximal overall
sensitivity and specificity for disease of 100%. These results indicate
the potential of using Raman microspectroscopy for skin cancer de-
tection and provide a clear rationale for future clinical studies. © 2008
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2899155�
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Introduction

kin cancers are the most prevalent form of human cancer;
heir incidence is nearly equal to that of all other cancers
ombined.1 Nonmelanoma skin cancers, including basal cell
arcinomas �BCC� and squamous cell carcinomas �SCC�,
resent more than one million cases each year in the United
tates alone.1 Melanomas contribute another �50,000 cases
ach year.1,2 As in most cancers, early diagnosis is crucial for
favorable prognosis.
Recognition of skin cancers typically relies on visual in-

pection and patient history. Although skin presents an easy
ite for inspection, diagnosis of skin cancers is difficult, as
any benign lesions visually resemble malignancies. Thus,

ccurate clinical diagnosis relies on biopsy and subsequent
istopathologic examination. Clinicians are presented with the
hallenge of deciding which and how many skin lesions to
iopsy, usually relying on visual inspection and palpation.
urthermore, as treatment depends on the pathology of the

esion and the extent of its margins, time-consuming histo-
athologic confirmation of lesion malignancy is required for

ddress all correspondence to: Chad A. Lieber, Ph.D., CHOC Research Institute,
hildren’s Hospital of Orange County, 455 South Main St., Orange, CA 92868.
el: 714–516–4257; E-mail: clieber@choc.org
ournal of Biomedical Optics 024013-
proper treatment. Despite many efforts, there is a continued
need for an automated, noninvasive diagnostic method of
characterizing skin lesions in situ that can direct biopsies and,
ultimately, circumvent the need for histology. Such a tech-
nique could streamline and combine diagnostic and therapeu-
tic procedures in a single visit, saving time and expense for
both the clinician and the patient.

1.1 Optical Diagnosis
Optical methods present a viable approach for providing au-
tomated, noninvasive, real-time diagnosis of skin lesions, as
well as guidance of therapy. There has been much interest in
recent years to develop “optical biopsy” methods for tissue
diagnosis. Several optical techniques have been applied in a
variety of organ systems, with varying degrees of success.

A number of optical imaging modalities have been em-
ployed to study skin structures and malignancy, including op-
tical coherence tomography �OCT�, laser scanning micros-
copy, and polarized light imaging. Welzel et al. obtained OCT
images from various skin lesions and were able to differenti-
ate skin layers and morphological changes.3 Knüttel et al. uti-
lized OCT to measure refractive index and scattering differ-
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nces in skin structures.4 However, OCT typically provides
xial sections that are based on morphological structures
lone and requires expert interpretation. On the other hand,
onfocal reflectance imaging typically provides transverse
ections of tissues by depth resolution that is again based on
issue morphology. This method has been used to study a
umber of skin conditions and diseases.5–8 In particular, Ra-
adhyaksha et al. constructed a portable confocal microscope
or in vivo skin imaging with positional accuracy within

25 �m.9 Thus, both confocal imaging and OCT are two
ethods that provide in vivo morphological images that still

equire an expert to interpret. Both these imaging methods
rovide little quantitative information and no biochemical in-
ormation with respect to the disease state.

Pellacani and Seidenari compared polarization microscopy
ith epi-illuminescence microscopy of pigmented skin lesions

nd found that the polarization revealed excellent contrast be-
ween morphological structures while obscuring the observed
igment colors in the lesions.10 Yaroslavsky et al. used polar-
zation imaging to accurately detect locations and shapes of
ye-enhanced samples with BCC and SCC in vitro.11 Olivier
t al. found polarization imaging to be a superior alternative
o clinical examination for determining necrotic regions of
kin flaps.12 While these results show that polarization mi-
roscopy provides semiquantitative information about tissue
tate, it provides little biochemical information and lacks the
apability for automated, graded tissue diagnosis.

Spectroscopic techniques, in contrast, are based on quanti-
ative measurement of specific native tissue chromophores.
linical application of these techniques can be performed by
nskilled personnel, with automated, statistical algorithms
roviding objective correlation of measured data with patho-
ogical state. In the case of skin cancer diagnosis, perhaps the

ost often applied spectroscopic techniques have been fluo-
escence spectroscopy and Raman spectroscopy.

Fluorescence spectroscopy has been used to characterize
elanomas13 as well as nonmelanoma skin cancers �BCC and
CC� from normal skin spectra.14 Fluorescence spectra could
e correlated to the disease state, and some of these differ-
nces were attributed to tryptophan moieties related to the
arcinomas. Doukas et al. found a linear relationship between
he fluorescence intensity at 295 nm and epidermal kerati-
ocyte proliferation.15 In another study, Gillies et al. found
his same relationship in psoriatic lesions and observed a clear
istinction between the fluorescence signals of epidermis and
ermis.16 These studies indicate that the biochemical constitu-
nts detected by fluorescence spectroscopy are capable of pre-
icting morphological and pathologic changes. However, be-
ause there are relatively few autofluorescent biological
arkers, the fluorescence spectra provide a limited capability

o perform graded diagnosis of skin lesions. Moreover, Lau-
idsen et al. found pigmentation to be the greatest factor in the
ariability of fluorescence spectra from normal skin measured
n vivo.17 Sandby-Møller et al. also found skin redness due to
un exposure affected the fluorescence spectra, while epider-
al thickness had no effect.18 Thus, intrinsic tissue param-

ters such as skin color can modulate the fluorescence spectra
easured, thus affecting the performance of fluorescence

pectroscopy for skin cancer diagnosis.
Raman spectroscopy is an optical technique that probes the

ibrational energy levels of molecules. In the Raman spec-
ournal of Biomedical Optics 024013-
trum, specific peaks correspond to particular chemical bonds
or bond groups. Because of Raman’s chemical specificity, it
has the ability to discern the slight biochemical changes asso-
ciated with malignant transformation, thereby aiding in differ-
ential diagnosis. Furthermore, when utilized in a confocal
configuration, Raman spectra can be acquired from various
depths and locations within the tissue. Several groups have
used Raman spectroscopy to study the molecular composition
and biochemistry of normal skin. One study on the normal
skin measured in vivo shows Fourier-transform �FT� Raman
spectra to vary as a function of hydration state and related
collagen structure, while pigmentation was found to have very
little contribution to spectral differences.19 Caspers et al. cor-
related confocal Raman spectra measured in vitro and in vivo
with molecular composition and hydration of skin layers.20–23

FT-Raman spectra have also been measured from normal and
psoriatic lesions in vitro, and distinct differences due to lipid
content and related keratin content were found.24 Hata et al.
found a relationship between Raman spectral differences and
carotenoid concentrations and therefore, cancerous and pre-
cancerous skin lesions.25 For skin cancer detection, Gniadecka
et al. used FT-Raman spectroscopy to characterize skin
structures26 and to differentiate BCC from normal skin in
vitro.27 Sigurdsson et al. utilized surface-level FT-Raman
spectra to discriminate BCC and melanoma from actinic kera-
tosis, pigmented nevi, and normal skin tissue with �94%
sensitivity and �98% specificity.28 Nuclear and tissue envi-
ronmental changes between BCC and normal epidermal cells
were found using confocal Raman microscopy by Short et
al.29 Nijssen et al. used a confocal system to generate Raman
maps of 15 skin sections and were able to diagnose BCCs
with 100% sensitivity and 93% specificity.30 Thus, these dif-
ferent studies demonstrate the ability of Raman spectroscopy
to detect subtle molecular transformations associated with
skin and skin malignancy. Furthermore, a confocal approach
has been shown to be essential in order to maximize Raman
signal collection from relevant structures while avoiding in-
terference from irrelevant sources. However, none of the pub-
lished reports explore the capability of Raman spectroscopy to
differentiate both melanomas and nonmelanomas �BCC and
SCC� from normal skin toward clinical detection, nor com-
pare the diagnostic performance of depth-resolved Raman
measurements with non-depth-resolved measurements such as
those obtained from a simple fiber probe.

While skin is easily accessible for optical diagnostic tech-
niques, its stratified composition, inherent variability between
and within patients, and presentation of malignancy at various
depths within the skin provide a unique challenge. Any optical
diagnostic technique, then, must not only be able to discern
normal skin from various pathological conditions, but also be
spatially resolved in order to minimize the effect of extrane-
ous contributors in the superficial layers. Due to its molecular
specificity, clinically viable acquisition times ��30 seconds�,
and spatial resolution, confocal Raman spectroscopy was se-
lected for differential skin cancer diagnosis. The goal of this
study was to characterize the Raman signatures of normal and
malignant skin and to develop a strategy for clinical imple-
mentation. Using an in-house built confocal Raman mi-
crospectrometer, spectra were acquired from various normal
and malignant skin tissues in vitro at various depths, and the
spectra were characterized using simple and multivariate sta-
March/April 2008 � Vol. 13�2�2
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istical techniques. Logistic discrimination was performed to
redict pathological classification of the samples, and prelimi-
ary analyses indicate the ability of confocal Raman spectros-
opy to successfully differentiate the various types of skin
esions and suggest that further clinical studies are warranted.

Materials and Methods
.1 Skin Samples
ll skin samples were obtained under a protocol approved by

he Vanderbilt University Institutional Review Board �IRB�.
ach sample was obtained fresh-frozen from the Vanderbilt
niversity Medical Center immediately after resection.
hirty-nine samples were obtained for this study, of which 17
ere normal, 8 basal cell carcinoma �BCC�, 7 squamous cell

arcinoma �SCC�, and 7 melanoma. Normal samples were
btained from either breast reduction or amputation proce-
ures. Malignant samples were partial sections of lesions that
ad been surgically removed. All samples were maintained at
80°C until time of spectral study, at which point they were

hawed in buffered saline. Because of their small size and
arvest from within the resected tumor boundaries, gross tis-
ue pathology from the parent lesion was used as the gold-
tandard for classification.

.2 Confocal Raman Microscope
he confocal Raman microscope �CRM� used in this study is
n in-house built system designed specifically for tissue inter-
ogation and is shown in Fig. 1. The excitation source of the
icroscope is an external cavity diode laser �ECDL� built

n-house, which includes a 150-mW diode at 825 nm
DL8032, Sanyo Electric, Japan� and an 1800-line/mm, gold-
oated, high-modulation holographic grating �ThermoRGL,
ochester, New York�. The ECDL output beam is shaped by a
eak cylindrical lens to minimize astigmatism, and an an-

ig. 1 Schematic of confocal Raman microscope used in this study:
CDL=laser, AP=anamorphic prism pair, C+ =positive cylindrical
ens, BP=bandpass filter, DM=dichroic mirror, M=mirror, BS=50/50
eamsplitter, SP=shortpass filter, LP=longpass filter, and Obj
microscope objective.
ournal of Biomedical Optics 024013-
amorphic prism pair transforms the elliptical cross section
into a circular beam with Gaussian energy distribution. A
longpass dichroic beamsplitter at 840 nm �Omega Optical,
Brattleboro, Vermont� separates the excitation beam path from
the emitted Raman scatter. A second dichroic �hot� mirror
�Edmund Industrial Optics, Barrington, New Jersey� separates
both the excitation beam and the Raman scatter from the
shortpass-filtered white light illumination source to allow con-
current Raman acquisition and white light viewing of the
sample via a color video camera. An achromatic near-
infrared-optimized microscope objective �0.35 NA, Nachet,
France� serves both to focus the excitation light on the sample
and to collect the Raman scatter. A longpass edge filter at
840 nm �Omega Optical, Brattleboro, Vermont� eliminates re-
sidual Rayleigh scatter. The Raman signal from the sample is
focused into a 100-�m core diameter, multimode optical fi-
ber, which serves as the confocal aperture. The fiber is con-
nected to a holographic imaging spectrograph �HoloSpec
f/1.8i, Kaiser Optical Systems, Ann Arbor, Michigan� and
liquid-nitrogen-cooled, back-illuminated, deep-depletion
CCD �EEV1024EB, Roper Scientific, Trenton, New Jersey�
for detection. In addition, a motorized microscope stage
�4400RP, Conix Research, Springfield, Oregon� allows auto-
matic positioning of the sample with mechanical resolution
better than 0.7 �m.

Axial and lateral optical resolution of the CRM was deter-
mined by the average full-width-at-half-maximum �FWHM�
of the intensity profile of a small �1 �m� polystyrene bead as
it was repeatedly scanned through the beam focus in the three
respective dimensions. This produced an axial resolution of
22 �m and lateral resolutions of 2.4 and 6.6 �m in the x and
y directions, respectively. The axial resolution was deliber-
ately increased over true diffraction-limited resolution �theo-
retically �10 to 14 �m with 0.35 NA objective� in order to
guarantee tissue-level measurement volumes ��2 to 3 cells�
while maintaining volume resolution and increasing overall
collection efficiency. The discrepancy between the lateral
resolutions can be attributed to residual astigmatism in the
excitation beam. The spectral resolution of the detection sys-
tem was calculated to be �7 cm−1, based on the holographic
grating dispersion, slit width, and CCD pixel size.

2.3 Data Acquisition and Processing
Raman spectra were recorded from the surface of each tissue
specimen �determined by focusing the microscope on the tis-
sue surface using a video image� and at 20-�m increments
below the surface, down to a depth of at least 100 �m �de-
termined by translation of the motorized stage�. These depth
measurements were made at various locations �2 to 5, depend-
ing on sample size� within each tissue specimen to ensure
repeatability of the spectral data. All spectra were recorded
using a 30-s integration time, with an excitation power of
40 mW at the sample. The spectral dispersion of the system
was characterized using the atomic emission lines of a Ne:Ar
lamp; wave number calibration was performed using naphtha-
lene and acetamidophenol as standards. Spectra were binned
to half the spectral resolution of the system for direct com-
parison. High-frequency readout noise and shot noise were
removed from the spectra by a second-order Savitzky-Golay
filter.31 Tissue autofluorescence was subtracted using an auto-
March/April 2008 � Vol. 13�2�3
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ated modified polynomial fitting method.32 To account for
nherent variation in intra- and intersample absolute signal
ntensity, the spectra were normalized to their respective mean
ntensity across all wave numbers.

.4 Data Analysis
or each sample, spectra from all measurement locations were
veraged, and a mean spectrum was calculated for each depth.
utlier spectra were determined as those residing outside

hree standard deviations ��� of the respective mean spectrum
i.e., from same sample, same depth, different locations�, and
ean spectra were recalculated with outliers removed. All

urther data analysis used only the mean spectral values from
ach sample, at each measured depth.

Integrated Raman spectral surrogates were created from
he depth-resolved spectra to approximate spectra that would
e obtained from a traditional, nonconfocal Raman probe.
hese integrated spectra were created by summing the inten-
ity values of the depth-resolved spectra �processed as earlier
ut without any normalization� at each respective wave num-
er across all measured depths and locations within each
ample. While depth-related optical absorption was not math-
matically factored into this integration, the depth resolution
f the Raman microscope and the associated decrease in Ra-
an intensity with increasing measurement depth allows a

eneral approximation of non-depth-resolved spectra. Outli-
rs, identified earlier, were excluded from integration. Each
esultant spectrum �one for each tissue specimen� was then
ormalized to its mean intensity across all wave numbers to
liminate inherent intersample absolute intensity variation.

Each measurement depth �and the integrated spectra� was
valuated independently to assess the effect of measurement
epth on the pathological predictive capabilities of the Raman
pectra, using leave-one-out cross-validation. The analysis
echnique employed has been described previously33–35 and
onsists of two steps: �1� extraction of diagnostic features
rom the spectra using the nonlinear maximum representation
nd discrimination feature �MRDF�, and �2� development of a
robabilistic scheme of classification based on linear sparse
ultinomial logistic regression �SMLR� for classifying the

onlinear features into corresponding tissue categories.
Given a set of input data comprising samples from differ-

nt classes with a given dimensionality, nonlinear MRDF
ims to find a set of nonlinear transformations on the input
ata that optimally discriminate between the different classes
n a reduced dimensionality space. It uses nonlinear trans-
orms that are polynomial mappings of the input data. In the
ase of spectral data, the aim of nonlinear MRDF is to com-
ute K�N nonlinear transformation vectors, �K, from
-dimensional �where N is the number of wave numbers over
hich spectra were recorded� spectra of skin tissues, such that

he projections of the input data on �K from the different
issue categories are statistically well separated from each
ther. Since the dimensionality N is much larger than the size
of the data, a two-stage MRDF with restricted polynomial

ransform at each stage was used. In the first stage, the input
ata x �intensities corresponding to wave numbers of the spec-
ra� from each tissue type were raised to the power p� and
ubject to a transform to produce the first stage output features
� in the feature space of reduced dimension M �S�N. In
M

ournal of Biomedical Optics 024013-
the second stage, the reduced M-dimensional output features
yM� for each tissue type were further raised to the power p�
and subject to a second transform to yield the final output
features yK in the nonlinear feature space of dimension K
�K�M�. Since the nonlinearities introduced in the two stages
were different �p� in the first stage, and p in the second stage�,
this is expected to produce more general nonlinear transforms
on the input spectral data leading to improved separation of
the final nonlinear features for the tissue types in the new
feature space.

Classification with SMLR is a probabilistic multiclass
model based on a sparse Bayesian machine-learning frame-
work of statistical pattern recognition. The central idea of
SMLR is to separate a set of labeled input data into its con-
stituent classes by predicting the posterior probabilities of
their class membership. It computes the posterior probabilities
using a multinomial logistic regression model and constructs a
decision boundary that separates the data into its constituent
classes based on the computed posterior probabilities follow-
ing Bayes’s rule. Classification of a given set of input data x
is based on the vector of posterior probability estimates
yielded by the SMLR algorithm, and a class is assigned to
each dataset �transformation of the original spectrum� for
which its posterior probability is the highest.

3 Results
Figure 2 shows typical Raman spectra �normalized to their
respective mean intensity� obtained from each layer of a nor-
mal skin tissue specimen, alongside a hematoxylin and eosin
�H&E� stained histological section of representative normal
skin. Spectral variations between the different layers can be
observed at 890 to 1030, 1170, 1230 to 1345, 1440, and
1650 cm−1, corresponding to biochemical differences inher-
ent in the major skin strata, notably collagen, elastin, keratin,
and lipids.23,24,36

The mean spectra of the various skin malignancies studied
at each measured depth are presented in Fig. 3�a�. Numerous
differences between the tissue pathologies can be observed at

Fig. 2 Representative Raman spectra acquired from various depths in
skin, along with H&E stained section of normal skin. Several spectral
differences between the major layers of the skin �stratum corneum,
epidermis, and dermis� are evident, attributable to intrinsic biochemi-
cal differences between the skin strata.
March/April 2008 � Vol. 13�2�4
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any depths. The melanoma spectra are noticeably different
s compared to the other categories at all depths. Differences
etween normal, BCC, and SCC are subtler: the ratio of the
ands between 1200 to 1300 �tryptophan, phenylalanine,
mide III: proteins� and 1440 cm−1 �CH2 bending: proteins,
ipids� varies with depth, and this variation is different be-
ween normal and malignant tissues. The peak at 1650 cm−1

ig. 3 �a� Mean Raman spectra of the four pathologies studied �nor-
al, BCC, SCC, melanoma� at each measured depth, and �b� inte-

rated Raman spectra approximating a probe-based system. Signifi-
ant differences are seen between the melanoma spectra and all other
athologies at all depths. The BCC and SCC variations are much more
ubtle with respect to the normal samples, and with depth.
ournal of Biomedical Optics 024013-
�amide I: proteins, lipids� as well as the small peak near
1550 cm−1 �tryptophan� is higher in the BCC and SCC than
in the normal tissue. Other variations include changes in the
band patterns between 850 and 1100 cm−1 �tyrosine, proline,
glucose, glycogen, phenylalanine, proteins� evident as a func-
tion of pathology and depth. Figure 3�b� shows the mean in-
tegrated spectra of the various malignant tissues. As expected,
the spectral changes evident between the pathologies at each
depth are not as easily visible in the integrated spectra. Figure
4 shows the mean normal, BCC, and SCC Raman spectra
taken at a measurement depth of 40 �m excluding the mela-
noma spectrum, allowing the subtle variations between these
pathologies to be more evident. While there are many observ-
able spectral differences, it is more relevant to explore the
significance of these variations toward pathological classifica-
tion.

In order to quantify the spectral variations of the different
pathologies at each depth, both data reduction �MRDF� and
classification �SMLR� algorithms were applied. The MRDF
algorithms reduced the dimensionality of the spectra such that
the features most important to differentiation are retained �as
opposed to techniques such as principal components analysis,
which compress the data with regard to common variance�
through higher-order nonlinear transformation. The SMLR al-
gorithms received as input the compressed �via MRDF�
datasets and provided probabilistic class memberships. Figure
5 shows the posterior probability plots at each depth, grouped
by tissue pathology �as determined by histopathological diag-
nosis of parent lesions�. These plots show both the surface and
the 40-�m-depth measurements as those with the highest
overall probabilities of class membership.

The confusion matrices for each measurement depth and
the integrated spectra are shown in Fig. 6, with each value
corresponding to the percentage of correct classifications �i.e.,
agreement between SMLR classification of Raman spectra
and histopathologic diagnosis�. It can be seen that the surface
spectra provide 100% sensitivity and specificity of disease
versus normal and misclassify only a single spectrum as a
SCC rather than BCC. Increasing the measurement depth

Fig. 4 Mean Raman spectra of the nonmelanoma cancers and normal
skin tissues from 40-�m measurement depth. In this enlarged view,
the subtle variations between the BCC, SCC, and normal tissue spectra
are evident in a number of Raman band regions.
March/April 2008 � Vol. 13�2�5
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auses further classification error, although not necessarily in
linear fashion. All measurement depths from the surface

own to 80 �m provide reasonable classification accuracy,
hile the classification at 100-�m depth incurs much more

ig. 5 Posterior probability plots generated by sparse multinomial logi
istopathologic diagnosis.
ournal of Biomedical Optics 024013-
error. The integrated spectra are seen to provide slightly lower
classification accuracy than the surface and 40-�m-depth
measurements, although higher than some of the deeper mea-
surements.

ression of the Raman spectra at each measurement depth, grouped by
stic reg
March/April 2008 � Vol. 13�2�6
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Discussion
hese results show that a spatially resolved Raman measure-
ent technique provides a moderate increase in diagnostic

erformance as compared to integrative measurements. Skin
ancers manifest in specific skin strata, and non-spatially-
esolved measurement techniques can attenuate the slight
pectral differences caused by slight biochemical changes in
ocalized regions. However, this technique is not without limi-
ations. Spatial resolution of a confocal system depends not
nly on the system optics, but also on sample stability. While
his is not a problem in vitro, clinical application will require
tabilizing the tissue for the duration of the measurements.
hort measurement times will aid in this sample stabilization
rocedure and also minimize the impact of the Raman mea-
urements on the patient and clinician. Furthermore, accurate
istopathologic correlation of the Raman measurement sites
ill allow accurate correlation of the Raman spectra with spe-

ific morphological structures.
The spectral differences in the melanoma spectra are seen

o be much more significant, and at different wave number
anges than the BCC and SCC spectra, while the BCC and
CC spectra show significant differences in similar wave
umber ranges. This is likely due to differences in the cellular
rigins of the cancers, as both BCC and SCC involve malig-
ancy of keratinized epidermal cells and melanomas result
rom malignancy of melanocytes.37–40 While melanomas were
ncluded in this study for completeness, the direct comparison
etween BCC or SCC and melanoma is much less relevant
linically. Melanomas, being pigmented lesions, generally re-
uire diagnosis to differentiate them from other pigmented

ig. 6 Confusion matrices of the actual �via histopathologic diagnosis�
nd predicted �via sparse multinomial logistic regression� classifica-
ions of the Raman spectra. All values are percentages of total samples
or each pathologic class.
ournal of Biomedical Optics 024013-
lesions such as nevi, while BCC and SCC are often mistaken
for unpigmented lesions such as actinic keratoses or inflamed
scar tissue. As such, future studies are planned to include the
aforementioned benign lesions in a larger clinical study. This
obvious disparity between the melanoma spectra and the non-
melanoma cancer and normal tissues is, thus, not unexpected,
and shows the Raman technique to be more sensitive to
pigment-related variations than the subtle biochemical differ-
ences leading to skin disease. This observation strengthens the
argument for a depth-resolved measurement technique, in or-
der to minimize the effect of inherent pigment variations be-
tween subjects on optical-based diagnosis.

The data analysis methods used in this study were selected
for their ability to both compress the large amount of data
obtained with each Raman spectrum as well as retain only the
diagnostically relevant portions of the spectra in this compres-
sion. Principal components analysis �PCA�, in contrast, cre-
ates only a single model for a dataset and compresses the data
in decreasing degrees of shared variance. Since the diagnos-
tically relevant features in the Raman spectra are very small in
comparison with the shared spectral content, it is imperative
that these features be retained. However, while MRDF is de-
monstrably adept at exploiting diagnostically relevant features
for maximum discrimination, its nonlinear mathematical
transformation of the original data space does not allow re-
tracing of the specific wave number regions responsible for
each transform. It is, therefore, not possible to identify which
particular Raman band differences are ultimately responsible
for the MRDF/SMLR discrimination, as opposed to the com-
ponent loadings generated by PCA. Further comparisons be-
tween the MRDF/SMLR technique and conventional data
reduction/discrimination techniques can be found in other
literature.33,34

As seen in the depth-specific classification of the Raman
spectra, there is a clear variation in classification accuracy
with increasing measurement depth, particularly between 80
and 100 �m. This is likely due to the anatomical structure of
the skin and the thickness of the epidermis. The epidermis is
the site of manifestation for most skin tumors and is com-
prised of keratinized cells superficial to the basement mem-
brane �stratum basale�. Although the depth of the basement
membrane varies considerably, it is likely that this heteroge-
neity was accounted for within the 80-�m depth, whereas the
100-�m depth sampled larger portions of the underlying der-
mis, which is comprised primarily of structural collagen. His-
tological analysis of each measurement site could reveal this
heterogeneity but unfortunately was not available for these
samples.

These results also show that an optical diagnostic tool such
as Raman spectroscopy would benefit from a tandem optical
imaging technique �i.e., OCT, laser confocal imaging�, which
would allow rapid, noninvasive visualization of the skin strata
in addition to the quantitative spectral measurements. The tan-
dem imaging technique could easily coexist with the Raman
sampling optics and allow visual identification of lesion depth
and size prior to targeting the depth-specific spectral acquisi-
tion. These capabilities are being planned in future revisions
of the CRM.
March/April 2008 � Vol. 13�2�7
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Conclusion
he accessibility of most skin lesions make them ideally
uited for the application of optical diagnostic techniques, yet
he stratified architecture of the skin and its malignancies pre-
ents an obstacle for optical techniques that cannot discern
hese strata. Raman microspectroscopy provides the ability to
btain optical signals only from specified volumes within the
issue, and therefore can circumvent the extraneous optical
ignals of non-disease-predictive regions. Using multivariate
nalysis methods, we were able to accurately predict the pa-
hology of several skin samples in vitro. These results indicate
he potential of Raman spectroscopy to accurately diagnose
kin lesions clinically. Based on this success, the development
f a handheld confocal Raman system has been initiated, and
linical studies are planned for the near future.
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