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Abstract. Low-coherence enhanced backscattering (LEBS) is a depth selective technique that allows noninvasive
characterization of turbid media such as biological tissue. LEBS provides a spectral measurement of the tissue
reflectance distribution as a function of distance between incident and reflected ray pairs through the use of partial
spatial coherence broadband illumination. We present LEBS as a new depth-selective technique to measure optical
properties of tissue in situ. Because LEBS enables measurements of reflectance due to initial scattering events,
LEBS is sensitive to the shape of the phase function in addition to the reduced scattering coefficient (μ∗

s ). We
introduce a simulation of LEBS that implements a two parameter phase function based on the Whittle–Matérn
refractive index correlation function model. We show that the LEBS enhancement factor (E) primarily depends
on μ∗

s , the normalized spectral dependence of E (Sn) depends on one of the two parameters of the phase function
that also defines the functional type of the refractive index correlation function (m), and the LEBS peak width
depends on both the anisotropy factor (g) and m. Three inverse models for calculating these optical properties
are described and the calculations are validated with an experimental measurement from a tissue phantom. C©2011
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3589349]
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1 Introduction
The optical characterization of biological tissue is an important
goal for many diagnostic and scientific applications. The mul-
tilayered property of most tissue types presents the need for a
depth-resolved measurement in order to obtain layer-specific in-
formation about optical properties. A complete characterization
of the optical properties in each layer would involve knowledge
of the reduced scattering coefficient (μ∗

s ), absorption coefficient
(μa), and the phase function. Perhaps the most reliable exist-
ing method for measuring optical properties is the integrating
sphere approach. The integrating sphere technique allows for
the measurement of μ∗

s , μa , and the anisotropy factor (g). How-
ever, integrating sphere measurements require the samples to be
optically thin and the results are subject to optical alterations
due to the sample preparation. Furthermore, integrating sphere
measurements are less robust for media with large values of
g, which is typically the case for many types of soft tissue.
Noninvasive measurements of the reduced scattering coefficient
and absorption coefficient in intact tissue are most commonly
accomplished with diffuse reflectance measurements. Although
this method can assess the bulk optical properties of the sample
(μ∗

s and μa in large tissue volumes), the long penetration depth of
light in biological samples (several millimeters) prevents these
measurements (e.g., diffuse optical tomography) from having
an adequate depth resolution to accurately characterize most ep-
ithelial layers. Additionally, diffuse reflectance measurements
cannot yield any information about the scattering phase function.

In recent years, several techniques have been demonstrated
that can measure local optical properties of tissue. For example
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the exponential decrease in intensity due to scattering away from
an incident beam can be measured with a confocal microscope
and used to estimate the local reduced scattering coefficient.1

However, this measurement does not yield information about the
scattering phase function and is limited to a small field of view.
Some examples of other highly depth-selective light scattering
methods that have been used for the characterization of epithe-
lial tissue include techniques involving polarization gating,2–4

spatial gating,5 and coherence gating.6–8 The calculation of op-
tical properties from any of these methods involves the solution
of an inverse problem in light scattering at sub-diffusion length
scales, where the backscattering is dependent on properties of
the scattering phase function in addition to the reduced scat-
tering coefficient. These methods use simplifying assumptions
because the large number of variables in more precise models
exceeds the number of measured parameters. For example, Mie
theory-based models typically require assumptions that deter-
mine the refractive index of the spheres and the surrounding
medium as well as the size distribution of the spheres; in other
words, some a priori knowledge of the phase function is re-
quired. Despite the lack of a robust tissue scattering model,
optical spectroscopy of epithelial tissue has been demonstrated
to have the potential for noninvasive cancer diagnostics,9–14 an
attractive alternative to the conventional biopsy and pathology
approach. The promising results obtained in these studies un-
derscore the importance of knowing the optical properties of
the tissue under investigation. Therefore, the challenge for these
novel diagnostic methods is to be able to convert light scat-
tering measurements into optical properties of the scattering
medium.

1083-3668/2011/16(6)/067007/14/$25.00 C© 2011 SPIE

Journal of Biomedical Optics June 2011 � Vol. 16(6)067007-1

mailto: VT@u.northwestern.edu


Turzhitsky et al.: Measurement of optical scattering properties with low-coherence...

Low-coherence enhanced backscattering (LEBS) is a method
that utilizes the self-interference of backscattered light under
partial coherence illumination.15, 16 This reflectance method is
not hindered by the measurement geometry limitations that are
present in the integrating sphere technique and does not require
any manipulation of the sample. LEBS is capable of measuring
the reflectance distribution at small scattering distances (i.e.,
separations between incident and collected ray pairs well below
the transport mean free path length or even the mean free path
length) resulting in a high sensitivity to the phase function.17

Furthermore, the capability for spectroscopic measurements al-
low LEBS to measure optical properties such as μa with depth
selectivity.18 In this work, we will present a methodology for
how LEBS can be used to measure μ∗

s and two parameters of
the scattering phase function (g and m). LEBS spectroscopy has
previously been shown to have promise for the detection of sev-
eral types of epithelial cancers.14, 19, 20 These studies have shown
that LEBS parameters such as the peak width, enhancement fac-
tor, and spectral dependence have diagnostic potential for can-
cer detection. The aim of this work is to relate the measured
LEBS parameters (width, enhancement factor, and spectral de-
pendence) to the optical properties of the scattering media. This
is accomplished by applying a general light scattering model
that is well suited for characterizing continuous random media.

The general layout is as follows: we will first review the
methodology for performing numerical simulation of LEBS in
Sec. 2. We will then discuss a theoretical light scattering model
based on a weak scattering approximation and a general equa-
tion for the refractive index correlation function in Sec. 3. The
dependencies between the optical properties of the scattering
media and the LEBS peak properties are described in Sec. 4.
In Sec. 5, we will present several approaches for solving the
inverse problem based on this model. We then follow with an
evaluation of each of these approaches and an error analysis
in Sec. 6. Finally, in Sec. 7, we will demonstrate the validity
of the approach with an experimental measurement of a tissue
phantom composed of a mixture of microsphere suspensions
and compare the results of the measured optical properties from
LEBS with theoretically expected results. The conclusions are
then summarized in Sec. 8.

2 Monte Carlo Method for Simulation of LEBS
Monte Carlo simulations can be utilized to obtain reflectance
distributions corresponding to varying optical properties. In
this work, a publicly available Monte Carlo code21 was
modified to use the phase function described in Sec. 3
[Eq. (4b)]. The code was validated for the Henyey–Greenstein
case against another publicly available code that utilizes the
Henyey–Greenstein phase function.22 The two-dimensional
probability distribution of backscatterd light resulting from an
infinitely narrow collimated beam, p(r, ϕ), can be obtained from
the Monte Carlo simulation.23 In the absence of polarization
(i.e., no ϕ-dependence), this distribution can be integrated to ob-
tain a one-dimensional backscattering distribution P(r ), where
P(r ) = ∫

p(r, ϕ)rdϕ = 2πr p(r ). As required in a Monte Carlo
simulation of LEBS, the backscattering distributions were col-
lected at small angles (0 deg to 10 deg) in order to minimize the
alteration to P(r ) due to finite angular collection.23 The effects
of the finite angular collection were further reduced by storing

the radial position of the final scattering event as opposed to the
exiting radial position at the surface of the medium. The results
of a Monte Carlo simulation were generalized to any value of
l∗s (l∗s = 1/μ∗

s ) by rescaling all of the lengths used in the simu-
lation, a well-known scaling property of Monte Carlo.24, 25 It is
also convenient to present the backscattering distribution rela-
tive to l∗s in order to obtain convergence for all optical properties
in the diffusion regime of r � l∗s . The absorption coefficient
was assumed to be negligible and all exiting photon packets
were assigned equal weights. Therefore, it is assumed that at
least part of the LEBS peak measurement is obtained for a non-
absorbing wavelength range. A discussion of how absorption
measurements can be obtained from an LEBS peak is presented
elsewhere.18

The LEBS angular distribution can be calculated as the two-
dimensional Fourier transform of the radial reflectance intensity
distribution, p(�r ):

ILEBS(θ ) =
∫∫

p(�r )c(�r ) exp(i �k · �k)d�r , (1)

where c(�r ) is the illumination coherence function and can be
calculated according to the van Cittert–Zernike theorem as the
Fourier transform of the angular distribution of the source.18, 26

Equation (1) is a generalization of the conventionally known
Fourier transform relationship between the enhanced backscat-
tering angular distribution and the spatial distribution of light
backscattered from a random medium illuminated by an in-
finitely narrow collimated beam [p(�r )].27, 28 Therefore, a simula-
tion of LEBS can be accomplished by utilizing the Monte Carlo
method to obtain p(�r ) and then applying Eq. (1). Alternatively,
other recently developed methods that keep track of the phase
of the propagating light can also be used to simulate enhanced
backscattering.29, 30 In this paper, we model LEBS through
Eq. (1) because a number of experimentally obtained results
are in good agreement with the approach.17, 18 In a typical LEBS
experiment, a circular aperture acts as the secondary source re-
sulting in a first order Bessel function of the first kind as the
coherence function. The two-dimensional backscattering distri-
bution p(r, ϕ) [p(�r ) = p(r, ϕ)], where ϕ is the polar azimuth
angle in the interface plane, is therefore sampled by c(r, ϕ).
c(r, ϕ) acts as a low-pass filter by isolating backscattering from
length-scales that are determined by the spatial coherence length
(Lsc ). Small lateral separations between exit and entry into the
medium can be isolated by selecting a c(�r ) with a short Lsc and
result in a shorter average penetration depth of the collected
signal.31 Correspondingly, larger radial separations, and there-
fore penetration depths, can be selected by increasing the Lsc.
In the limiting case where Lsc approaches infinity, the measure-
ment becomes the conventional enhanced backscattering (also
known as coherent backscattering or CBS), which has been
well-modeled under the diffusion approximation.17, 32 In con-
trast, the backscattering at r < l∗s (the LEBS regime), cannot be
predicted with any existing diffusion approximations.33, 34 This
is because the diffusion approximation does not capture proper-
ties of the scattering phase function that determine scattering at
length scales smaller than l∗s .35

Applying Eq. (1) to obtain the LEBS peak requires a two-
dimensional Fourier transform. However, in cases of circularly
symmetric peaks, a Henkel transform can be used. We im-
plemented the fast Fourier transform algorithm in MATLAB to
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compute the Henkel transform, allowing for faster and more
memory-efficient computation. We also applied interpolation
to translate one-dimensional P(r ) distributions into a two-
dimensional grid according to the average position of each radial
bin in P(r ).36 Similarly, the average position of the central bin
in p(x, y) was calculated, while the positions of all other bins
in p(x, y) were approximated to be the central point of the bin.
The method of interpolation was validated by performing sim-
ulations with varying grid resolutions, but otherwise identical
parameters. It was found that the error due to the absence of
interpolation can greatly affect peak properties due to the sensi-
tivity of the LEBS signal to small radial distances.

Earlier findings indicated that Monte Carlo simulations accu-
rately predicted LEBS peak properties from microsphere phan-
toms when the output Monte Carlo data is multiplied by a factor
of 0.5.17 The Monte Carlo data presented here were likewise
scaled by the same factor in order to obtain excellent agreement
with experimental results.

3 Theoretical Model Based on the
Whittle–Matérn Correlation Function

The Monte Carlo method provides an exact solution to the ra-
diative transfer equation given that the correct phase function
and geometry is implemented and an adequate number of rays
are traced such that the signal is not affected by numerical noise.
For the case of spherical particle scattering, the Mie theory pro-
vides an exact prediction of the phase function. However, it is
arguable that spheres are not an adequate approximation to scat-
tering in tissue. The commonly used Henyey–Greenstein phase
function, adapted from the light scattering of interstellar dust
particles,37 offers an attractively simple model in which the first
moment of the phase function is determined by the anisotropy
factor g. The disadvantage of this phase function is that its
higher order moments are pre-determined by the first moment
as gn = gn , where g1 = g = 〈cos θ〉. In reality, higher order mo-
ments for most tissue phase functions are very different from
those of the Henyey–Greenstein phase function34 not giving the
phase function enough flexibility to accurately describe mea-
surements from many types of biological samples.38, 39 There-
fore, a more flexible phase function would present a more
realistic characterization of tissue. Fortunately, LEBS is sen-
sitive to higher order moments of the phase function than g1.
For instance, two phase functions that have the same value of
g but different shapes (e.g., Henyey–Greenstein phase function
with g = 0.9 versus Mie phase function with g = 0.9), result
in different LEBS peak widths.17 This is because the shape
of the phase function (i.e., higher order moments), not just
the anisotropy factor, plays an important role in determining
the backscattering at small length-scales. We will therefore de-
scribe a general model that results in a two-parameter phase
function where the shape of the phase function and g can be
altered independently.

Recent work has shown that statistical models of the
refractive index fluctuations can be well suited for tissue
characterization.40–42 These models involve the characteriza-
tion of the refractive index correlation function, which is then
used to predict the scattering properties of the medium. In par-
ticular, the correlation function that results from a fractal dis-
tribution of length scales has been shown to be of relevance

for tissue scattering.41, 43 A fractal distribution of sizes results
in a power law decay of the refractive index correlation func-
tion and a power law dependence of the backscattering intensity
as a function of wavelength (λ). The power law dependence
of scattering intensity as a function of wavelength has been
observed by several authors and often used to characterize tissue
scattering.35, 38 Sheppard et al. presented a model for scattering
that utilizes the Born approximation and a general form of the re-
fractive index correlation function.43 Rogers et al. then extended
this model to incorporate the Henyey–Greenstein phase function
and the phase function corresponding to the mass fractal scatter-
ing regime. The model also includes phase functions resulting
from other commonly assumed types of refractive index cor-
relations including the stretched exponential, exponential, and
Gaussian.

This general model involves a minimal number of assump-
tions and is well suited for characterizing continuous turbid
media such as tissue. The refractive index correlation function
is written as a dependence on three sample properties: the vari-
ance of the refractive index (�n2), the correlation length (lc),
and an additional parameter that determines the functional form
of the correlation function (m). A weak scattering (Born) ap-
proximation then results in a two-parameter phase function,
where the parameters lc and m determine the shape of the phase
function.43, 44 It is possible to achieve variations in the shape
of the phase function while maintaining the same value of g,
resulting in a more flexible model than the Henyey–Greenstein
phase function. This flexibility is important for the characteriza-
tion of superficial tissue as superficial scattering determines the
reflectance at small length scales and the phase function plays a
significant role in this regime.

In the Born approximation, all scattering properties (e.g., the
differential scattering cross section and its derivative quantities
such as the scattering coefficient and the phase function) of a
medium with a continuously varying refractive index are com-
pletely determined through a Fourier transform relationship that
involves the refractive index correlation function Bn(r). Because
optical refractive index n is a linear function of the local mass
density (n = nwater + αρ, where ρ is the portion of tissue solids
by volume and refractive index increment α ∼ 0.17 to 0.2),
Bn(r ) is proportional to the density correlation function. There
are two assumptions to the model: one needs a comprehensive
description of the refractive index (or density) correlation func-
tion pertinent to tissue and the first order Born approximation
has to be valid.

First, the refractive index correlation function is assumed to
have a general form that is described by the Whittle–Matérn
family of correlation functions:45

Bn(r ) ∝ �n2

(
r

lc

)m−3/2

Km−3/2

(
r

lc

)
, (2)

where �n2 is the variance of the refractive index spatial fluc-
tuations, lc is the characteristic length of the fluctuations, m
is a parameter that determines the shape of the function (e.g.,
power law, exponential, Gaussian, etc.), and the function Km−3/2

denotes the modified Bessel function of the second kind of or-
der m − 3/2. The physical meaning of lcdepends on the type
of the correlation function and thus the value of m. When
m < 3/2, Bn(r ) is an inverse power law, which characterizes the
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correlation function of a mass fractal medium with mass frac-
tal dimension Dmf = 2m. In this case, lc determines the upper
length scale at which the medium is no longer fractal. As m
approaches 3/2, the function begins to deviate from a power
law for r progressively lower than lc and lc transitions to be-
coming the correlation length of the function. The correlation
function becomes a stretched exponential when 3/2 < m < 2,
an exponential when m = 2, and a Gaussian as m approaches in-
finity. When 3/2 < m < 2, lc is the correlation length of Bn(r ).
A key advantage of this model is that by a choice of a sin-
gle parameter m, Bn(r ) covers essentially all realistic types of
correlation functions. If necessary, more complex correlation
functions can be constructed as a superposition of a number of
basic Bn(r ). The resulting phase function and scattering cross
section derived from Bn(r ) consist of these three physical corre-
lation function properties (�n2, m, and lc), thereby relating the
statistical characteristics of a continuous random medium to its
optical scattering properties. This general model for a correla-
tion function can be applied to a variety of scattering scenarios
including fractal models that have been successfully utilized for
tissue scattering.40, 41, 43

The second assumption is the validity of the Born approxima-
tion. It has been shown that in case of a medium with continuous
refractive index fluctuations, the approximation is valid if the re-
fractive index fluctuations are small, relative to the correlation
length:46

�n2(klc)2 	 1, (3)

where k is the wavenumber. Thus, the validity of the approxima-
tion depends on how weakly scattering the sample is and should
be tested for the tissue type in which the model is being ap-
plied. Given that the refractive index fluctuations are weak [i.e.,
Eq. (3) is true] and the correlation function can be described
by Eq. (2), the Born approximation can be applied to calcu-
late the differential scattering cross section from the spectral
density.43, 44 A scalar-wave approximation of the phase function
can then be obtained by normalizing the differential scattering
cross section.

σ (θ ) ∝ �n2k4l3
c 
(m)

{1 + [2klc sin(θ/2)]2}m
, (4a)

F(θ ) = 2g̃(m − 1)

(1 − g̃)2−2m − (1 + g̃)2−2m
· 1

(1 − 2g̃ cos θ + g̃2)m

= 2(klc)2(m − 1)

1 − [1 + (2klc)2]1−m
· 1

{1 + [2klc sin(θ/2)]2}m
, (4b)

g̃ = 1 −
√

1 + 4(klc)2 − 1

2(klc)2
, klc =

√
g̃

1 − g̃
, (4c)

where σ is the differential scattering cross section, and F is
the scattering phase function. Note that the dipole factor is ne-
glected here as part of the scalar-wave approximation. The nor-
malization is such that

∫
F (cos θ) · d cos θ = 1. We will refer to

F(θ ) from Eq. (4b) as the Whittle–Matérn phase function. The
phase function depends on two parameters: g̃ and m. m = 3/2
results in the well-known Henyey–Greenstein phase function
with g̃ = g = 〈cos θ〉. For other values of m, g is calculated ac-
cording to g = ∫

cos θ · F (cos θ ) · d cos θ and depends on both
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Fig. 1 Whittle–Matérn phase functions for m = 3/2 and varying g
(a) and g = 0.9 and varying m (b). A higher value of g results in and
increase in the probability of forward scattering and a decrease in the
probability of backscattering. A smaller value of m results in an increase
in both the probability of forward and backward scattering.

g̃ and m [see Eq. (6)]. Figure 1 shows several examples of the
Whittle–Matérn phase function. In Fig. 1(a), the dependence
of the phase function is shown for varying values of g and a
constant value of m. When g increases, the scattering becomes
more forward-directed and the peak of the phase function in
forward-directed angles increases. In this case, the increase in
forward scattering is at the expense of a decrease in backscat-
tering. When m is increased for a constant g [Fig. 1(b)], the
forward scattering peak becomes lower along with the probabil-
ity of backscattering. As discussed in Sec. 4, these features of
the phase function have an important contribution in scattering
at small length scales and therefore have an influence on the
shape of the LEBS peak.

4 Dependence of LEBS Peak Properties on the
Optical Properties of the Scattering Medium

The LEBS peak can be parameterized into three measurements:
the peak width, enhancement factor, and spectral slope. In
this section, we will define the width of the peak as the full
width at half maximum at a given wavelength (a second use-
ful definition will be introduced later). The enhancement fac-
tor is defined as the height of the peak relative to an isotropic
semi-infinite reflectance standard (Ocean Optics Inc.). The re-
flectance standard serves to normalize the measured angular
profile by the total reflected intensity per unit solid angle and
unit wavelength. The solid angle and wavelength are determined
by the angular and spectral resolution, respectively, of the de-
tection arm. The LEBS spectral slope is defined as the rate of
change in the enhancement factor with respect to wavelength.
These parameters have been found to have diagnostic value for
the detection of colon, pancreatic, and skin cancer.20, 47–49 In this
section, we will discuss the dependence of these parameters on
the optical properties l∗s , g, and m. Several inverse models for the
calculation of these optical properties are presented in Sec. 5.

The LEBS signal is related to the Fourier transform of the
backscattering probability distribution [Eq. (1)] and some gen-
eral understanding about LEBS can be attained by observing the
dependence of the alterations of P(r ) due to alterations in the
phase function. Figures 2(a) and 2(b) show backscattering distri-
butions, P(r/ l∗s ), for the phase functions displayed in Figs. 1(a)
and 1(b), respectively. We can observe that several features of
the phase function correlate with features at small length scales
of P(r ). First, the probability of forward scattering is correlated
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Fig. 2 (a) and (b) Backscattering distributions obtained from Monte Carlo simulations at small radial distances corresponding to the phase functions
shown in Fig. 1. (c) Scattering angle distribution for rays at three exit radii (r = l∗s /100,r = l∗s /10, and r = l∗s ) for a scattering media with g = 0.9
and m = 3/2. Note that the distributions in (c) differ from the actual phase function because each backscattered ray has an equal contribution
(as opposed to each scattering event having an equal contribution). The distribution of scattering angles is heavily weighted toward forward and
backward scattering events for r/l∗s 	 1, indicating that a large majority of rays collected at small radii undergo primarily forward and backward
scattering.

with the initial peak in P(r ) that is present for values of r near 0.
As g increases, the forward scattering peak of the phase function
becomes higher, resulting in an increased peak in P(r ) at small
r [Fig. 2(a)]. Additionally, the peak at small r also increases
when m decreases [Fig. 2(b)], also correlating with the forward
scattering peak in the phase function [Fig. 1(b)]. Note that the
values shown in the P(r ) curves are dimensionless and are cases
where absorption is neglected. The measurement of absorption
from LEBS is a separate topic that is described elsewhere.18

This results in
∫

P(r )dr = 1 for any value of l∗s , constraining
the values of P(r ) at r < l∗s to be approximately inversely pro-
portional to l∗s . In other words, a medium with a longer l∗s will
have a broader and shorter P(r ) with identical area.

The relationship between the backscattering distribution
P(r ) and the phase function F(θ ) can be understood by ob-
serving how the phase function is sampled for small exit radii
(r 	 l∗s ). In other words, we can observe the average distribu-
tion of scattering angles per backscattered ray that exits at a
given radius. We therefore define H (θ ) as the angular distribu-
tion of all scattering events that results in light exiting at distance
r [as compared to the phase function F(θ ) that is the angular
distribution of a single scattering event]. H (θ ) describes how
the phase function is being sampled at the collection radius of
interest. Figure 2(c) shows H (θ ) at three exit radii for the case of
g = 0.9 and m = 3/2. Interestingly, the probability of scattering
into forward and backward directions is increased by approx-
imately 2 orders of magnitude for r = l∗s /100 as compared to
side scattering into angles around 90 deg. We can infer that the
phase function is primarily sampled in the forward and back-
ward directions for small radial distance and forward scattering
media. Therefore, the height of the backscattering peak at small
values of r in Figs. 2(a) and 2(b) can be related to the height
of the phase function in the forward and backward directions
(Fig. 1).

The enhancement factor is defined as the height of the LEBS
peak at θ = 0. This value can be calculated from Eq. (1) as∫

P(r )c(r )dr . Therefore, for l∗s > Lsc [i.e., P(r ) extends much
farther than c(r )], we would expect the enhancement factor to be
approximately proportional to Lscμ

∗
s . The deviation to this ap-

proximate proportionality would be due to fluctuations in P(r )
at r < Lsc, but we can neglect these fluctuations as a first-order
approximation. We can therefore estimate the enhancement

factor to be proportional to Lscμ
∗
s for Lscμ

∗
s < 1, such that

E = CE Lscμ
∗
s , (5)

where CE is the proportionality factor. Figures 3(a) and 3(b)
show the LEBS enhancement versus Lscμ

∗
s , for a variety of phase

functions indicating that the enhancement factor appears approx-
imately proportional up to Lscμ

∗
s ≈ 1. As Lscμ

∗
s approaches

infinity, E is expected to approach a value of 1 (i.e., same in-
tensity as incoherent baseline signal) according to conventional
enhanced backscattering theory.50 Figures 3(c) and 3(d) show a
more detailed evaluation of the proportionality relationship with
a plot of the proportionality factor CE = E/

(
Lscμ

∗
s

)
. Although

CE can be estimated as approximately 0.2, it is also dependent
on g and m for small values of Lscμ

∗
s . The variation of the pro-

portionality coefficient with parameters of the phase function
is most dramatic when Lscμ

∗
s 	 1. This variation can be un-

derstood by observing P(r/l∗s ) distributions for varying optical
properties (Fig. 2). The sharp peak at values of r approaching
0 that is observed for small values of m or high values of g
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Fig. 3 Enhancement factor dependence on optical properties. The en-
hancement factor appears to be approximately proportional to L scμ

∗
s

and weakly dependent on g (a) and m (b). However, when the pro-
portionality coefficient [CE = E /(L scμ

∗
s )] is plotted, variations with g

(c) and m (d) become apparent. These variations are attributed to the
variation in the sharp peak of P (r ) at small radial distances.
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m. The inverse width decreases as g increases (a) and increases as m
increases (b). The width of the peak is scaled to the angular extent of the
source, which is related to the spatial coherence length: α = λ/(2π L sc).

result in an increase in the enhancement factor and therefore an
increased proportionality coefficient.

The LEBS peak width (W ) is also related to the alterations
of p(r ) at small length scales. The width of the two-dimensional
Fourier transform of p(r, ϕ)c(r, ϕ) is inversely proportional to
the width of p(r, ϕ) at small r as well as the width of c(r, ϕ).
Assuming a circular aperture as a secondary source and defining
α as the angular extent of the source, we can relate the width of
c(r ), defined as Lsc, to α with the van Cittert–Zernike theorem:
α = λ/(2π Lsc).26 As a result, α/W is a dimensionless param-
eter that only depends on Lscμ

∗
s and the phase function. For

l∗s /Lsc � 1, α/W decreases with increasing g [Fig. 4(a)] and
increases with increasing m [Fig. 4(b)]. The width of the LEBS
peak is primarily sensitive to g and m for l∗s /Lsc > 10 and has
a weak dependence on l∗s . This is again the regime where the
coherence function is isolating the first sharp peak in P(r ) that
is located at r 	 l∗s .

The spectral LEBS measurements can be utilized to ob-
tain additional information about the optical properties of the
medium. The scattering coefficient, μs , and the anisotropy coef-
ficient, g, can be calculated from the Whittle–Matérn differential
scattering cross section by following the procedure detailed by
Rogers et al.44 for the scalar wave case (neglecting the dipole
factor). We obtain the following equation for g:

1 − g = 1

2 (m − 2) (klc)2 − 2 (m − 1)

(m − 2)
{[

1 + 4 (klc)2
]m−1 − 1

} .

(6)

For klc � 1, Eq. (6) has three regimes of behavior depending
on the value of m:

1 − g ∝
⎧⎨
⎩

(klc)0 m < 1
(klc)2−2m 1 < m < 2
(klc)−2 m > 2

. (7)

Similarly, we can also express the klc dependence for the
scattering coefficient:

μs ∝
{

�n2k (klc)3−2m m < 1
�n2k2lc m > 1

. (8)

The most relevant range of m for tissue scattering is 1 < m
< 2 because it includes fractal scattering with mass fractal
dimensions between 2 and 3, the Henyey–Greenstein phase
function (m = 3/2), as well as stretched exponential correlation

functions. From Eqs. (7) and (8), we can obtain a dependence
for the reduced scattering coefficient for the tissue scattering
regime of klc � 1 and 1 < m < 2,

μ∗
s ≈ f (m)�n2k (klc)3−2m

μ∗
s ∝ λ2m−4 . (9)

The proportionality factor f (m) in Eq. (9) will be an m de-
pendent function, with no dependence on k, lc, or �n2. By using
Eq. (9) in Eq. (5) and employing the van Cittert–Zernike theo-
rem to determine the spatial coherence length as Lsc = (kα)−1,
we can obtain a spectral dependence of the LEBS enhancement
factor.

E(k) = CE Lscμ
∗
s = CE

α
f (m)�n2(klc)3−2m, (10a)

E(λ) = CE

α
f (m)�n2 (2πlc)3−2m λ2m−3. (10b)

We will first assume that CE can be approximated to be
a constant (about 0.2 for Lscμ

∗
s ≈ 1). Then, we will extend

the analysis to include all values Lscμ
∗
s . Assuming that �n2

does not significantly vary with the wavelength (which is a
generally safe assumption considering the wavelength variation
of refractive index for most biologically relevant materials), m
can be measured from the LEBS spectral slope. If a relatively
narrow range of wavelengths are used, the slope approximates
the tangent to the E (λ) dependence and can be equated to the
derivative of E (λ) with respect to λ.

d [E(λ)]

dλ
= CE

α
f (m)�n2 (2πlc)3−2m (2m − 3)λ2m−4. (11)

m can then be obtained by multiplying this derivative by the av-
erage wavelength and normalizing by the average enhancement
factor:

m = 1

2

{
d[E(λ)]

dλ

〈λ〉
〈E〉 + 3

}
(12)

We will refer to the quantity Sn = d[E(λ)]
dλ

〈λ〉
〈E〉 as the normal-

ized spectral slope.
In obtaining Eq. (12), we have assumed the proportional-

ity factor CE does not vary with optical properties. However,
this assumption is not valid for Lscμ

∗
s 	 1, as shown in Fig. 3.

Therefore, it is important to understand how CE depends on op-
tical properties in this regime and how this variation will impact
the spectral slope. This is accomplished by performing a se-
ries of Monte Carlo simulations with the Whittle–Matérn phase
function and varying klc and m for Lscμ

∗
s 	 1. The resulting

values of CE are plotted as a function of klc in Fig. 5(a) in log–
log scale. Note that for a constant m, klc is directly related to
g̃ through Eq. (3). In log–log scale, CE has linear dependence
on klc for klc > 1. This linearity indicates a power law behav-
ior, where the power is determined by the slope of the curve
and varies with m. A deviation from the power law dependence
is only seen at klc < 1, where the value of CE approaches the
case of isotropic scattering (we will call this value C0). We will
approximate the power law dependence on klc with a 2nd order
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polynomial function of m:

CE = C0 (klc)S

S ≈ am2 + bm + c
(13)

where a, b, and c depend on Lscμ
∗
s . The coefficients a,

b, and c can be obtained by fitting the observed values
of CE from Monte Carlo with Eq. (13). Their dependence
is plotted in Fig. 5(b). The values of all three of the co-
efficients gradually decay to zero as Lscμ

∗
s approaches 1.

The value C0 does not remain constant with Lscμ
∗
s and has

a gradual decline that is shown in Fig. 5(b). For Lscμ
∗
s

= 0.06, C0 is approximately 0.225. For Lscμ
∗
s � 1, C0 is ex-

pected to approach 0 because the enhancement factor approaches
a constant value in the fully coherent CBS regime. Figure 5(c)
shows an evaluation of the accuracy of the 2nd order polyno-
mial used in Eq. (13) at predicting the values of the coefficient
CE. The symbols represent Monte Carlo simulations utilizing
varying values of g and m(excluding klc < 1). We can obtain
a prediction of the normalized spectral slope based on Eq. (13)
and the known coefficients a, b, and c by substituting Eq. (13)
into Eq. (10):

E(λ) = CE f (m)�n2α−1 (2πlc)3−2m λ2m−3

= C0 f (m)�n2α−1 (2πlc)3−2m+S λ2m−3−S, (14)

Sn = d[E(λ)]

dλ

〈λ〉
〈E〉

= (2m − 3) − S ≈ (2m − 3) − (am2 + bm + c).

(15)

The dependence of the normalized spectral slope from
Eq. (15) is shown in Fig. 5(d) for three cases of Lscμ

∗
s . When

Lscμ
∗
s ∼ 1, the normalized spectral slope is 2m − 3 because

S ≈ 0. When Lscμ
∗
s 	 1, the spectral slope has a quadratic de-

pendence on m, but is well approximated by 2m − 3 in the
range of 0.7 < m < 1.5. This range of m is within the mass
fractal regime of the Whittle–Matérn correlation function.

The changes in the LEBS peak enhancement, width, and
spectral slope can be summarized as being related to optical
properties. The enhancement factor is approximately propor-
tional to Lscμ

∗
s . The width is related to both g and m. The width

increases as g increases and decreases with increasing m. Fi-
nally, the spectral slope is related to 2m − 3 in the mass fractal
regime where 0.7 < m < 1.5. The spectral slope is also related
to m outside of this range, but this relationship also depends on
a, b, and c, from Eq. (15), which in turn depend on Lscμ

∗
s .

5 Inverse Models for Optical Property
Measurements

There are several options for building an inverse model that can
translate measured properties of the LEBS peak into the optical
properties (g, l∗s , and m) or physical properties (lc, �n2, and
m) of the scattering medium. In the following discussion, we
will present these methods for solving the inverse problem to
calculate optical properties as the equations presented in the pre-
ceding sections and elsewhere44 can be used to convert between
optical and physical properties.
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Fig. 5 Effect of varying proportionality coefficient on the normalized
spectral slope. In (a), the proportionality coefficient CE is plotted with
klc in log–log scale for three values of m. The lines represent linear
fits for klc > 1. (b) Shows a least squares fit for the coefficients a, b,
and c from Eq. (13) along with the parameter C0. The coefficient val-
ues decay to zero as L scμ

∗
s approaches 1 and the normalized spectral

slope therefore approaches 2m − 3. (c) Evaluation of the accuracy of
the 2nd order polynomial at predicting the power S from Eq. (13).
The value of CE that is predicted according the Eq. (13) closely mimics
the coefficient obtained from Monte Carlo data for klc > 1. (d) Graph
of the normalized spectral slope versus m from Eq. (15). The normal-
ized spectral slope has a quadratic behavior for small L scμ

∗
s but is

well approximated by the 2m − 3 relationship in the range of 0.7 < m
< 1.5. For L scμ

∗
s ∼ 1, the normalized spectral slope exactly follows

the 2m − 3 relationship.

One class of inverse models for the prediction of LEBS re-
lies on a predictive model of P(r ). The prediction of P(r ) at
r 	 l∗s is made possible due to several factors that simplify the
inverse problem. First, absorption is assumed to be negligible.
This is justifiable because the LEBS signal can be measured
at a wavelength where tissue absorption is much less than the
scattering (i.e., λ > 600nm). Furthermore, the spectral signal
due to hemoglobin absorption can be removed by fitting with
the hemoglobin absorption spectrum. Without the presence of
absorption, the only length scale that can alter P(r ) is ls . For
a nonabsorbing medium, it is also known that in the diffusion
regime where r � l∗s , l∗s is the parameter that determines the
scattering signal. By scaling the radius as r/l∗s , we remove the
ls dependence and also obtain the conversion of the backscat-
tering signal for varying properties of the phase function at
r � l∗s . Thus, the inverse model must account for the variations
of P(r/l∗s ) at small r/l∗s due to changes in the phase function.
One convenient approach to predict the changes in the phase
function is to quantify the difference between isotropic P(r/l∗s ),
where g = 0 and nonisotropic P(r/l∗s ). We have recently demon-
strated how this can be done by taking the difference between
g = 0.9 and g = 0 backscattering for two values of m.51 The
backscattering probability can be predicted according to:

Pg,m = Pg=0 + c1(g, m)P1� + c2(g, m)P2�

P1� = Pg=0.9,m=1.5 − Pg=0

P2� = Pg=0.9,m=1.01 − Pg=0

(16)
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where c1 and c2 are scaling coefficients that are functions of
g and m and the P� notation indicates the difference of two
probability distributions. This method results in a prediction of
P(r ) at all length-scales with less than 1% error for r < l∗s for
tissue-relevant values g. Alternatively, a similar approach can
be applied with the use of principle components:

Pg,m = Pg=0 +
n∑

i=1

ci (g, m)PCi , (17)

where ci are the coefficients that multiply the principle compo-
nents PCi , and a total of n components are used in the model.
We found that the n = 3 principle component also results in an
excellent prediction of P(r ) for the entire range of length scales
and with less than 0.5% error for r < l∗s and g ≥ 0.6.51 The peak
shape can then be calculated from P(r ) by first converting into
the two-dimensional reflectance distribution, p(r, ϕ), and then
applying the Fourier transform described by Eq. (1). The cal-
culation of the optical properties from a measured LEBS peak
would therefore be a process that minimizes the error between
the measured LEBS peak and the peak predicted by the model.

The relationship between P(r ) and the three optical proper-
ties l∗s , g, and m is unique. Therefore, in principle, it should be
possible to obtain optical properties by using one of the P(r )
predictive models described above to calculate the LEBS peak
[with Eq. (1)] and thereby fit optical properties such that the
observed angular dependence of the LEBS peak has minimal
error with the LEBS peak predicted by the model. However, in
cases where Lsc < l∗s , the relationship between the three optical
properties and the shape of the peak becomes nonunique, due
to a finite measurement uncertainty. Figure 6 shows three LEBS
peaks that are simulated for three different combinations of op-
tical properties and an Lsc of 25 μm. The shapes of the peaks are
indistinguishable, suggesting that there can only be two reliable
parameters when fitting the angular dependence of the peak: the
height, and width. The height of the peak can be fit by adjusting
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for calculating optical properties from an LEBS peak measurement.

l∗s , and the width of the peak can be fit by adjusting either g
or m. Fortunately, m can be independently obtained from the
spectral dependence based on the analysis described in Sec. 4.
The measurement of m can be obtained from the normalized
spectral slope according to Eq. (12). As described above, this
expression for m is accurate for the range 0.7 < m < 1.5. If the
resulting value of m is outside of this range, an iterative process
can be implemented by first estimating a value of m based on
the normalized spectral slope and then adjusting it after l∗s is
calculated based on the fit with the angular dependence of the
peak. In this case, m would be calculated by using the expression
in Eq. (15).

Another approach to obtain optical properties from an LEBS
peak is through the construction of a lookup table that relates
peak properties such as the LEBS width, enhancement, and
spectral slope to the optical properties of the scattering medium.
Lookup tables have the advantage of being computationally fast
because the steps involved in minimizing the error and perform-
ing other intermediate calculations, mainly the two-dimensional
Fourier transform, are performed ahead of time during the con-
struction of the table. There are three optical properties (l∗s , g,
and m) and three measured parameters [enhancement (E), width
(W ), and normalized spectral slope (Sn)] making the process
analogous to solving a system of three equations. An example
procedure for implementing a lookup table is described in Fig. 7.
Here, the problem is simplified because m can be independently
measured from Sn . Two lookup tables are therefore needed, in-
cluding one for Eand one for W , each being a function of l∗s , g,
and m. After m is measured from the spectral slope, each of the
tables would be interpolated into two-dimensional matrices that
correspond to the obtained value of m, as shown in Fig. 7(a) for
E and Fig. 7(b) for W. The enhancement factor table is then used
to calculate l∗s as a function of g. The values of W corresponding
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to the obtained values of l∗s and g are then obtained from the
width table. Finally, the measured value of the width is used
to obtain g from the W (g) dependence. The measured value of
g is then used to calculate l∗s from the dependence of l∗s as a
function of g obtained earlier. A block diagram of the procedure
is presented in Fig. 7(c).

6 Error Analysis of Inverse Models for Measuring
Optical Properties with LEBS

We evaluated the three methods presented in Sec. 5 for calcu-
lating optical properties from LEBS by employing the Monte
Carlo method for simulating the LEBS signal. A Monte Carlo
simulation was used to simulate P(r ), as described in Sec. 3.
The LEBS signal was then calculated with a Fourier trans-
form according to Eq. (1). The coherence length, Lsc, was
varied between 25 and 173 μm, and the anisotropy factor g
was varied between 0.2 and 0.95. l∗s and m were maintained at
1000 μm and 1.3, respectively. The chosen values of l∗s and m are
within a range of properties typically observed from tissue.40, 43

The simulated LEBS peaks were interpolated to an angular reso-
lution of approximately 0.0115 deg. This resolution corresponds
to the experimental system used for validation. Details on the
experimental setup were presented in Sec. 7. It was assumed
that m could be accurately measured from the spectral depen-
dence using the analysis presented in Sec. 4, and therefore the
error in the measurement of m was not evaluated. Figure 8(a)
shows the resulting error in the obtained value of l∗s using the
difference model of P(r ) for varying values of g and Lsc and
Fig. 8(b) shows the error in the obtained value of g. This model
results in a slight overestimation of g and underestimation of
l∗s . The principle component analysis (PCA) method results in a
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Fig. 9 Error analysis of lookup table methods for obtaining optical
properties with LEBS. (a) and (b) show the error in l∗s and g, respectively,
for the lookup table that utilizes the enhancement factor, spectral slope,
and full width at half maximum of the LEBS peak. The error is minimal
for L sc 	 l∗s and increases with increasing L sc. When the modified
definition of the LEBS width is used [WRI = ILEBS(0.5 deg)/ILEBS(0 deg)],
the error in l∗s and g [(c) and (d), respectively] improves and becomes
independent of L sc. The method that uses WRI is able to obtain precise
values of gand l∗s for the entire tested range.

more accurate prediction of P(r ) and therefore allows for more
accurate measurements of optical properties. The error in l∗s is
reduced to <3% [Fig. 8(c)] and accuracy of the measurement
of g is also improved [Fig. 8(d)]. The coefficients in both of
these predictive models were optimized for g ≥ 0.6 in order
to obtain optimal performance for tissue-relevant values of g
causing some sacrifice in the accuracy of the measurement for
small values of g. On the other hand, the measurement of l∗s is
relatively insensitive to the value of g and remains accurate even
for small values of g.

The iterative process of calculating the Fourier transform
in Eq. (1) for varying optical properties to minimize the er-
ror between the predicted and measured LEBS peak results in a
lengthy computation time for both the P� and PCA methods. By
comparison, a lookup table stores several relevant measurements
from the LEBS peak and is much faster for optical property cal-
culations after the table has been generated. We implemented
two variations of a lookup table algorithm. The first scheme
stored the enhancement factor (E) and LEBS peak width (W),
defined as the full width at half maximum, each being a func-
tion of l∗s , g, and m. Figure 9(a) shows the percentage error in
l∗s for varying values of g and Lsc obtained with this method.
The error is minimal for small values of Lsc and increases
up to a maximum of approximately 4% at the longest Lsc of
173 μm. Similarly, a high degree of accuracy is achieved in the
measurement of g, shown in Fig. 9(b), for small Lsc. This is be-
cause an increase in Lsc results in the peak width approaching the
behavior that is observed in CBS. In CBS the peak width is pro-
portional to λ/l∗s where the behavior is well described by the dif-
fusion approximation.32 In this regime, the peak width is insen-
sitive to scattering characteristics of the phase function such as
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Fig. 10 Illustration of procedure for removing artifacts in the baseline from the LEBS peak. The uncorrected measurement is shown in (a). In (b), a
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LEBS peak, obtained by dividing the raw measurement in (a) by the flat field in (b) and subtracting the baseline.

the anisotropy factor. Our second implementation of the lookup
table overcomes this limitation by using a modified definition
of the peak width. The second table uses a width measurement
which is defined as the LEBS intensity at 0.5 deg relative to the
enhancement factor (WRI = ILEBS(0.5 deg)/ILEBS(0 deg). This
definition of the peak width is more convenient to measure in an
in vivo probe configuration52 where a small number of fibers are
used to sample the angular backscattering signal. Furthermore, it
is known that the periphery of the enhanced backscattering peak
is sensitive to shorter path lengths and lower order scattering
events.50 Thus, the limitation of approaching diffusive scatter-
ing at longer coherence lengths can be overcome by adopting
this new definition of the peak width. Figures 9(c) and 9(d) show
the error in l∗s and g, respectively, obtained with the lookup table
method that utilizes WRI. There is virtually no difference in error
for varying Lsc and g.

7 Experimental Validation of Optical Property
Measurements

The experimental setup used to obtain LEBS measurements
has been extensively described in earlier work.17, 18, 51 In brief,
broadband continuous-wave light from a 450 W Xenon lamp
(Oriel Instruments) is collimated and spatially filtered with a
high power circular aperture (Lenox Laser) in a 4-f lens system.
The aperture and focal length of the collimating lens determine
the Lsc of the illumination beam. It was ensured that Lsc was sig-
nificantly smaller than the beam diameter such that the LEBS
peak properties were solely determined by the coherence func-
tion c(r) and the sample properties. The exact backscattered
light is reflected from a plate beam splitter, passes through a
liquid crystal tunable filter for wavelength selection, and im-
aged via a Fourier lens with a CCD camera. Five measurements
were obtained from the phantom with an Lsc of 173 μm and
at a wavelength of 680 nm. Unpolarized illumination was ob-
tained by removing the polarizer in the illumination path. An
image of the experimentally obtained peak is shown in Fig. 10.
Figure 10(a) shows the LEBS measurement relative to the aver-
age reflectance standard intensity. Although the LEBS peak is
clearly visible, there is unevenness in the baseline due to artifacts
in the CCD camera and the incident angle of the illumination
beam onto the sample. These experimental artifacts were mea-
sured by removing the pinhole from the 4-f system, resulting in

an Lsc of less than 10 μm, and using crossed polarizers between
the illumination and collection. The flat field measurement of
these isolated artifacts is shown in Fig. 10(b). The corrected
LEBS peak was then obtained by dividing by the flat field and
subtracting the baseline [Fig. 10(c)].

In order to validate the measurement of optical properties
with LEBS, we constructed a phantom with a known scat-
tering phase function. This was accomplished by combining
polystyrene microsphere suspensions of varying sizes. Mie scat-
tering theory was used to predict the phase function from each
individual particle size. The phase function of the mixture of
particles was predicted with a weighted average of the differ-
ential scattering cross sections of each of the constituent mi-
crospheres within the suspension. A mixture of 10% by weight
solutions of 0.20, 0.82, and 1.3 μm diameter polystyrene micro-
spheres (Thermo Scientific, Fremont, California) was combined
in relative volume proportions of 0.36:0.27:1, respectively. The
volume proportions were obtained by minimizing the square
error between the predicted phase function and the Whittle–
Matérn phase function for m = 1.3 (mass fractal dimension
Dmf = 2.6) and g = 0.9. The resulting phantom phase func-
tion had an anisotropy factor of 0.899 ± 0.002 (mean ± Std.
Dev.) after accounting for the variability in size according to
the manufacturer specifications. The suspension was then di-
luted with deionized water to the desired value of l∗s (668
± 33 μm). The expected range in l∗s is due to the tolerance
on the bead concentration that is provided by the manufacturer.
These scattering properties are in the range of typically reported
values for soft tissue. In principle, a large variety of phantoms
with controlled optical properties can be constructed by com-
bining microsphere suspensions in this manner. The validity of
the Born approximation for the constructed phantom was veri-
fied by applying Eq. (3) with the largest microsphere diameter
serving as an overestimate of the correlation length and the vari-
ance of the refractive index fluctuations being obtained from
the known volume fraction of polystyrene. The result is that the
value of �n2(klc)2 < 0.06 	 1 for the phantom, which justifies
the validity of the Born approximation.

Figure 11 shows the results from the microsphere phantom
described above. The phantom phase function is compared to the
desired phase function in Fig. 11(a). Although some oscillations
can be seen in the phantom phase function, the fit is excellent
over several orders of magnitude, including the forward and
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Fig. 11 Tissue phantom for measurement of optical properties. (a)
Shows a comparison of the target Whittle–Matérn phase function (solid
red line) and the fit obtained by combining microspheres of three dif-
ferent sizes (dashed blue line) for g = 0.9 and m = 1.3. (b) Shows the
resulting LEBS peak obtained from the experimental measurement of
the microsphere phantom. (c) and (d) Box plots of the g and l∗s values,
respectively, obtained from the lookup table with an assumed value of
1.3 for m. The horizontal red dashed lines represent the expected range
of values according to the manufacturer specifications. The horizon-
tal blue dotted lines represent the upper and lower 95% confidence
interval on the mean. The horizontal solid lines in the box plot repre-
sent successive quartiles, with the solid red line corresponding to the
median.

backward scattering directions. Figure 11(b) shows the average
measured LEBS peak compared to the Monte Carlo simulated
peak. We used the lookup table presented in Sec. 6 to calculate
the l∗s and g of the phantom from the measured value of E and
WRI. An l∗s of 687 ± 13 μm (mean ± 95% CI) and a g of
0.91 ± 0.04 (mean ± 95% CI) were obtained from the lookup
table. The confidence intervals for both l∗s and g include the
predicted values of these optical properties thus indicating an
accurate measurement. The obtained measurements of g and l∗s
are shown as box plots in Figs. 11(c) and 11(d), respectively.
The expected range according to the manufacturer specifications
and the obtained 95% confidence intervals are also included as
horizontal dashed and dotted lines.

Although the phase function obtained from a mixture of mi-
crospheres [Fig. 11(a)] is in agreement with the Whittle–Matérn
phase function for m = 1.3 and g = 0.9, it can be misleading to
assign the parameters lc and m from the Whittle–Matérn phase
function to the microsphere phantom without taking the wave-
length dependence into account. The values of lc and m can
only be assigned by ensuring an accurate fit to the wavelength-
dependent variations in the scattering cross section. For example,
this can be done by calculating μ∗

s as a function of λ and obtain-
ing m from Eq. (12) as well as fitting the spectral dependence of
the scattering phase function. In the presented results, the min-
imization was not done for a range of wavelengths, therefore,
we have limited the phantom measurements to l∗s and g for an
assumed value of m = 1.3.

8 Discussion and Conclusions
We have presented a theoretical framework for applying LEBS
to measure optical properties from tissue. The model involves

applying the Born approximation to the Whittle–Matérn cor-
relation function. The resulting two-parameter phase function
encompasses the often used Henyey–Greenstein phase func-
tion (m = 3/2) as well as the mass fractal scattering regime
(m < 3/2). The anisotropy coefficient g determines the average
cosine of the phase function while the parameter m can indepen-
dently control the shape of the phase function. The relationships
that link LEBS peak properties (e.g., E , W , and Sn) to the scat-
tering optical properties of the medium (e.g., l∗s , g, and m) are
determined by applying the Whittle–Matérn phase function in a
series of numerical LEBS experiments. E/Lsc is approximately
proportional to μ∗

s (Fig. 3), W/α primarily depends on g and
m, and only weakly depends on μ∗

s (Fig. 4), and Sn is a direct
measure of m (Fig. 5).

As shown in Sec. 4, m can be directly measured from
the spectral slope in most tissue-relevant cases according to
m = (Sn + 3)/2. This measurement is accurate for the approx-
imate range of 0.7 < m < 1.5 [Fig. 5(d)], which is a sub-
set of the mass-fractal regime (with the mass fractal dimen-
sion Dmf = 2m). In other words, the mass fractal dimension
can be measured from the LEBS spectral slope according to
Dmf = Sn + 3 for the range 1.4 < Dmf < 3. This result is ob-
tained by quantifying the value of the proportionality coefficient
CE between the enhancement factor and Lscμ

∗
s for varying val-

ues of klc and m. For klc < 1, CE is constant with a value
of approximately 0.2. For klc > 1, CE has a power law de-
pendence on klc, with the power depending on m and Lscμ

∗
s

[Fig. 5(a)]. For a given value of Lscμ
∗
s , the power on the

wavelength dependence is shown to exclusively depend on m
[Fig. 5(c)]. This dependence is well approximated as quadratic.
However, the range of 0.7 < m < 1.5 is also well modeled with
the linear 2m − 3 dependence [Fig. 5(d)]. The results presented
in Fig. 5 show that the spectral dependence relates directly to the
mass fractal dimension even for very short coherence lengths in
which the enhancement factor is no longer proportional to the re-
duced scattering coefficient. Furthermore, Fig. 5(b) shows that
the constants a, b, and c converge to zero for larger Lscμ

∗
s ,

meaning that the exponent S from Eq. (13) becomes 0 and the
enhancement is again proportional to λ2m−3. This indicates that
the spectral shape of the LEBS peak is not affected even for
longer coherence lengths where the proportionality coefficient
on the enhancement factor begins to decrease [Fig. 3(b)].

Three types of inverse models for calculating optical prop-
erties of a scattering medium are described in Sec. 5. The first
two models predict the shape of the backscattering distribution
at all length scales. Both of these models predict the deviations
from isotropic scattering by modeling the difference between
nonisotropic and isotropic backscattering distributions. The first
method (P� model) utilizes only two distributions that are cal-
culated as the difference between isotropic backscattering and
the backscattering from a chosen optical property. Two optical
properties are chosen for optimal accuracy in the tissue-relevant
range and can predict the backscattering distribution for any g
and m, according to Eq. (16). The second method captures the
difference between the backscattering distribution from a given
optical property and an isotropic medium by implementing a
principle component analysis. This results in a model that uses
slightly more stored data but can obtain better accuracy. The
third type of prediction model utilizes a lookup table for the
three measured parameters (W , E , and Sn). It is important to
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note that a good model for backscattering at small length scales
is not sufficient to be able to obtain optical properties from an
LEBS peak, despite the fact that Eq. (1) implies this. This is
illustrated in Fig. 6, which shows that different combinations
of l∗s , g, and m can result in LEBS peaks with nearly identical
shapes. The reason for this is because p(r ) is multiplied by c(r )
in Eq. (1). Therefore, short coherence lengths limit the range
of p(r ) that is accurately obtained thereby making the inverse
problem more difficult. There are only two effective indepen-
dent parameters in a given LEBS peak line shape: the width and
enhancement. This problem can be resolved by obtaining a third
independent parameter, Sn , from the spectral dependence of the
LEBS peak.

An error analysis for each of the described methods is pre-
sented in Sec. 6. The errors were calculated by obtaining LEBS
peaks from Monte Carlo data, downsampling to the resolution
of an existing LEBS instrument, and then obtaining the optical
properties with one of the described methods by treating l∗s and
g as unknowns. The LEBS peaks obtained from Monte Carlo
do not contain spectral information and therefore the value of
m was assumed to be known. In the experimental case, any er-
ror in calculating m from the spectral slope will propagate and
also contribute to the error in the measurement of g because
the LEBS peak width is sensitive to both m and g. Some error
would also propagate to the measurement of l∗s , but this would be
a minor influence because the LEBS enhancement weakly de-
pends on m and g. Out of the three models that were described,
the best performance is obtained with the lookup table for E ,
Sn , and WRI [Figs. 9(c) and 9(d)]. The lookup table for E , Sn ,
and W had excellent performance for short coherence lengths,
but the accuracy declined for longer spatial coherence lengths
[Figs. 9(a) and 9(b)]. This is due to the fact that there is a tran-
sition from LEBS to enhanced backscattering (EBS) as the co-
herence length increases. In EBS, the peak width is inversely
proportional to l∗s and there is no dependence of the width
on g or other properties of the phase function. This is why
the EBS measurement is well-approximated by the diffusion
approximation.32 Interestingly, the results presented in this work
suggest that it is still possible to measure properties of the phase
function from EBS measurements obtained with coherent illu-
mination by observing the periphery of the peak. Specifically,
WRI at longer Lsc contains the same information as W at shorter
values of Lsc, as seen from the results in Fig. 9. Two lookup ta-
bles are tested that use two different definitions of the width. The
other two presented approaches that utilize models of P(r ) for
predicting the LEBS peak had errors that did not strongly depend
on Lsc. This is because these models result in a prediction of the
entire LEBS peak line shape and include the periphery of the
peak. The error in these models is due to inaccuracies in fitting
the coefficients from Eq. (16) or Eq. (17), as well as limitations
due to the simplicity of the models. For example, the PCA-based
method is more complicated in that it utilizes an additional com-
ponent, but results in improved accuracy for measuring g and l∗s
(Fig. 8).

As an experimental example, we develop a scattering phan-
tom with a phase function that can closely mimic the Whittle–
Matérn phase function. The phantom is composed of a mixture
of microspheres of three sizes with a relative concentration that
minimizes the error between the resulting phase function and the
target Whittle–Matérn phase function [Fig. 11(a)]. The LEBS

peak is measured from the constructed phantom and compared
with the predicted Monte Carlo simulation [Fig. 11(b)]. The
lookup table for E , Sn , and WRI is used to measure the optical
properties. The phantom optical properties were estimated to be
within the range l∗s = 668 ± 33 μm and g = 0.899 ± 0.002,
according to the tolerances provided by the manufacturer. The
measured optical properties were l∗s = 687 ± 13 μm (mean
± 95% CI) and g = 0.91 ± 0.04 (mean ± 95% CI). The con-
fidence intervals of the measurements overlap with the ranges
estimated from the manufacturer specifications, suggesting an
accurate measurement of these properties. A measurement of m
was not obtained from the phantom because m and lc were not
utilized as fitting parameters in the minimization, as this would
require a fit of the spectral dependence of the Mie scattering
cross section and perhaps a larger number of sphere sizes in the
mixture.

It is important to point out that the presented work does
not treat any polarization effects. Unpolarized illumination
is described along with a scalar-wave model. The resulting
optical property measurement is an average over all polarization
orientations. It has previously been demonstrated that EBS has
the potential to measure properties of birefringent samples.53

The polarization-dependent characterization of tissue can
therefore potentially be assessed with LEBS given that the
model and experiment is modified to incorporate polarization
and orientation dependent features.

In summary, LEBS has several important advantages for mea-
suring optical properties over other existing techniques. LEBS
is a depth-selective method that allows for measurement of
backscattering at short penetration depths and has the poten-
tial to be implemented in vivo. LEBS can be used to measure
not only μ∗

s but also the shape of the phase function as character-
ized by g and m. Additionally, in weakly scattering media such
as soft tissue where the Born approximation can be applied, the
parameter m provides a measurement of the type of the refractive
index correlation function. The values of the optical properties
can be measured with a choice of the three presented inverse
models (Secs. 5 and 6). In Sec. 7, an experimental phantom
with known properties of the phase function was described and
l∗s and g measured from LEBS were shown to be in agreement
with predicted values.
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