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Fourier analysis is a well-
developed branch of math-
ematics with wide-ranging
applications in statistics, the
physical sciences, engineer-
ing, and economics. For many
readers of this journal, the
use of Fourier analysis is as
natural as algebra or trigonom-
etry. Over the years, many
textbooks have been written
on the use of the Fourier trans-
form in optics and imaging by
well-known authors. One may
ask, therefore, why this book?

The answer is that this
book provides the imaging

community with a single reference on the subject of Fourier meth-
ods that uses consistent notation, includes a wealth of supporting
material, and develops the subject within a consistent framework.
The author is a long-time faculty member at Rochester Institute of
Technology’s Center for Imaging Science, where he is an award-
winning teacher and researcher. This text is the result of many
years of teaching and research experience, and the results are
impressive.

Chapter 1 introduces the reader to the concepts of the “imag-
ing chain,” and what are termed the three basic tasks of imaging:
1. prediction of the image function, given the object function;
2. inference of the object function, given the image function; and
3. system analysis, or inference of the system function, given both
the object and image functions. The chapter concludes by briefly
discussing several types of imaging modalities, namely optical,
radiographic, and gamma ray, and provides specific examples of
applications of Fourier methods to imaging problems, such as
the diagnosis of the Hubble Space Telescope aberrations, and
computed tomographic radiography.

Chapters 2 through 5 of the book provide a compact review
of areas of mathematics needed to understand Fourier analysis
in both the continuous and discrete (spatially or temporally sam-
pled) domains. This begins with basic concepts such as linearity
and shift invariance, differences between discrete and continuous
functions, and symmetry properties of functions. The discussion
quickly moves through linear algebra, complex variables, and
eigenfunctions of continuous operators. The author not only pro-
vides basic principles and key results in these areas, but also
gives some advanced material that is needed for later chapters.
This serves as a refresher for readers already exposed to the
material, as well as a primer on the author’s notation. Less expe-
rienced readers may find these sections a bit dense; the material

here is often spread out over entire textbooks. Also, there are
somewhat fewer graphs and figures here, as compared to the
rest of the book.

Chapters 6 and 7 introduce the 1D and 2D “special functions”
that are commonly used in Fourier optics and imaging, such as
the rect, triangle, sinc, and Dirac delta functions. The pace of the
text slows a bit at this point, with graphs and images used fre-
quently. The author has included much material on the use of the
Dirac delta and comb (or sampling) functions, including some of
the trickier aspects of these, such as raising the delta to a power,
derivatives of the delta, and the delta with a functional argument.
Also discussed here are the application of Fourier methods to the
analysis of random variables and stochastic functions.

Chapters 8 through 11 provide the fundamentals of linear
systems theory, then introduce 1D and multidimensional Fourier
transforms. In particular, Chapter 8 defines and describes linear,
shift-invariant, and LSI operators in some detail, then proceeds
to convolution and correlation, including the definition of autocor-
relation and autocovariance for stochastic functions. Chapter 9
introduces the 1D Fourier transform, beginning with a general
discussion of integral transforms, integral inner products, and
projections. This leads to a consideration of even and odd sinu-
soids as the reference function in such integrals, and ultimately
to the introduction of the Hartley transform. Next, the complex ex-
ponential reference function is introduced, which naturally leads
to the Fourier transform. The chapter then covers all of the rel-
evant Fourier transform theorems, the Fourier transforms of the
1D special functions, and also the effects of selected nonlinear
operations on the transform. Many graphical examples are pro-
vided here. Chapter 10, relatively short by comparison, extends
the analysis to multidimensional transforms, although the discus-
sion is mostly directed towards 2D functions. Issues specific to
two dimensions are addressed, such as separable functions and
the mathematical results of rotation. The 1D graphs of Chapter 9
give way to numerous 2D grayscale images that illustrate the the-
orems. The case of 2D functions with circular symmetry is dealt
with separately in Chapter 11, which covers the Hankel transform
and its attendant theorems.

Chapter 12 is devoted to the Radon transform, which is of
great significance in medical imaging applications. The treatment
is more extensive than I have found in any other book of this kind.
It includes discussion of the projection slice (or central slice)
theorem, and many examples of the Radon and central-slice
transforms of special functions. I found that the short final section
of this chapter comparing the Fourier and Radon transforms of
images left me wanting to see more examples. However, the
extended treatment here ought to inspire readers less familiar
with the Radon transform to think about new applications for this
analysis.

Chapter 13 covers two methods of approximating Fourier
transforms, using the moment theorem and the method of sta-
tionary phase. These are valuable both in terms of numerical
analysis, as well as in gaining insight into transforms that do not
have a straightforward analytical solution. Also, the Central Limit
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Theorem, width metrics in the spatial and frequency domains,
and the Fourier uncertainty relation are discussed.

Chapters 14 through 15 provide a thorough discussion of sam-
pling, aliasing, and quantization effects, and the discrete Fourier
transform (DFT), with an introduction to the discrete cosine trans-
form that forms the basis for image compression standards. This
includes the Whittaker–Shannon sampling theorem, interpola-
tion in the space (or time) and frequency domain, and an explo-
ration of the fast Fourier transform (FFT) algorithm. The practical
details of DFT/FFT use are explored, which is valuable material
for users of canned FFT algorithms, which includes just about
everyone.

Chapters 16 through 18 comprise an extensive description of
filtering. In particular, Chapter 16 covers magnitude filtering in
both one and two dimensions. The various types of filtering oper-
ations are described in detail, including lowpass, highpass, band-
pass, and bandstop (also called band-reject) filtering. All of these
are illustrated with examples and graphics. The chapter ends
with a very brief introduction to wavelets, illustrating the roots
of wavelet decomposition in linear filtering theory. Chapter 17
describes phase or allpass filters, including constant, linear, and
quadratic filters. The latter are of great interest in optics and
radar. Also included are higher order phase filters and random
phase filters, which are important in analysis of turbid media.
The chapter concludes with the optical correlator and imaging of
phase-only objects. Chapter 18 investigates the general case of
magnitude-phase filters, with examples of simple operations such
as differentiation and integration. It also includes a discussion of
causality and the simple harmonic oscillator, which sheds light
on some of the more subtle features of linear systems theory.

Chapter 19 covers well-known applications of linear filters,
the first being deconvolution and inverse filtering. Analysis of
common imaging artifacts such as blur from a moving or rotat-
ing camera (uniform averaging) and noise is presented, lead-
ing into discussion of optimum estimators, the Wiener filter, and
matched filtering. The discussion in this chapter follows primarily
1D examples tied to analysis of 1D continuous functions. With
that background, Chapter 20 discusses linear filtering in dis-
crete (sampled) systems, which is more directly related to image
processing. Included in the discussion are averaging (lowpass)
and differencing (highpass) filters, the Laplacian and sharpening
operators, and approximate discrete reciprocal filters.

Chapters 21 and 22 are devoted to what would typically
be called physical optics, the former devoted to imaging in
monochromatic light (coherent optical systems) and the latter
devoted to incoherent optical systems. Given the perspective
of this text, this leads naturally to a consideration of the rel-
evant mathematical forms: Fresnel diffraction is described by
the Fresnel transform, and Franhoufer diffraction is described
by the Fourier transform. Along with the emphasis on applica-
tion of Fourier analysis and transforms, a good discussion of the
physics is included. There is good material here on the ray and
wave optics models, along with detailed descriptions of the in-
teraction of waves with phase objects, lenses, and knife edges.
In the latter chapter, there are discussions of coherence, ex-
tensions to polychromatic light, and of course the point-spread
function and modulation transfer function of incoherent optical
systems.

The book concludes with a chapter on holography, including
computer-generated holography, matched filtering, and synthetic
aperture radar.

While the list of references is good, I would have liked to
see more references embedded in the text in appropriate places.
Perhaps this could be considered for the second edition, which I
am confident will be produced. Overall, this is an excellent text,
appropriate for the graduate student approaching this material
for the first time, and for the seasoned professional looking for an
up-to-date reference.
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