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Abstract. Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces
two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera
without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging.
The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array
(FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The
pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware
processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of
130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile,
we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory
controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also
can be used to produce an application specific integrated circuit for LSI processing. C©2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3651772]
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1 Introduction
Laser speckle imaging (LSI) is a technique used to produce a
two-dimensional blood flow map in vivo without invasion and
scanning. Its high temporal and spatial resolution enables that it
is appropriate for the monitoring of the blood flow of cerebral
cortices,1–8 retina,9–11 and skin12, 13 in the research. Real-time
visualized LSI is also significant in the application of neuro-
surgery for monitoring the dynamic blood flow. However, it is
difficult to achieve a real-time visualized LSI due to the heavy
computation burden on the current personal computer platform.
Therefore, optimized processing algorithms were developed14, 15

and some devices with powerful computing capability were also
employed to build real-time LSI processing platforms. For in-
stances, graphics processing unit (GPU) for parallel computing
is employed for achieving a real-time blood flow visualization of
high-resolution analysis.16–18 Besides, a digital signal processor
(DSP) is also used to accelerate the processing of LSI.19

With the increasing development of field programmable gate
array’s (FPGA) high integration density and speed level, this
type of hardware is also introduced to perform high performance
computing such as numerical simulation, imaging processing,
etc. FPGA is an integrated circuit designed to be configured
by the customer or designer after manufacturing, which can
be used to implement any logical functions that an application
specific integrated circuit (ASIC) can perform. FPGAs have al-
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ready been used in processing of holographic,20–26 optical coher-
ent tomography,27, 28 fluorescence lifetime sensing,29, 30 Monte
Carlo simulation,31 etc. Different from the personal computer,
GPU and DSP which implement the algorithm by running corre-
sponding program codes including three standard stages: fetch-
ing instruction, translating, and performing, FPGA implements
an algorithm by the dedicated designed digital circuit integrated
in the FPGA chip. This type of dedicated circuit can be devel-
oped by employing hardware description language (HDL) such
as VHDL and Verilog HDL.

We have designed a dedicated digital circuit for the real-
time processing of laser speckle imaging in FPGA. This LSI
hardware processor features computing the data using hard-
ware circuit during the whole processing flow without needing
any program code. The pipeline processing scheme and parallel
hardware architecture are introduced into the design of this type
of LSI hardware processor to further improve the computing
performance. Compared with the GPU solution and DSP solu-
tion, this hardware-based LSI processor can achieve real-time
processing at very low clock frequency and power dissipation.
It is quite appropriate to be used to design a portable LSI sys-
tem with high performance and stability. To our knowledge, no
other group has ever reported this solution for LSI processing.
Moreover, we also present a system on chip (SOC) solution
for LSI processing by integrating the CCD camera controller,
memory controller, LSI hardware processor, and LCD display
controller into a single FPGA chip. This SOC solution has the
potential to be ported to the ASIC platform for producing a
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low-cost, but high performance, chip for the LSI processing
system.

2 Method
2.1 Algorithms for Processing of LSI
The processing of LSI can be divided into two steps. The first
step is computing the local spatial contrast and the second step
is converting the contrast to velocity value. The local spatial
contrast c is estimated as the ratio of standard deviation to the
mean intensity I of pixels within a small n×n sliding window (n
is the length of the square window quantified as pixel) defined
as32

C = σI

I
=

√∑N
i=1 (I−I)2

N−1

I
. (1)

In Eq. (1), σ I is the standard deviation of intensity, i is the
index of the pixels within the sliding window, and N is equal
to n×n or the total number of pixels within the sliding window.
Moreover, Eq. (1) can be replaced by another equivalent form
with sums as

C = σI

I
=

√
N

∑N
i=1 I 2

i −
(∑N

i=1 Ii

)2

N (N−1)∑N
i=1 Ii

N

. (2)

Because the mean velocity of blood flow is proportional to
the camera’s exposure time T divided by correlation time τ c, the
relationship between local spatial contrast and T/τ c is defined
as32

C =
√

[exp(−2x) − 1 + 2x]/(2x2), x = T/τc. (3)

According to Eq. (3), T/τ c cannot be resolved directly, so
the Newton iteration numerical method is usually employed.
However, the iteration time is uncertain, so this method is
quite time-consuming. Tom et al. proposed a “table” method
to resolve this problem.14 All the values of T/τ c are previously
stored in a table indexed by speckle contrast value with a spe-
cific interval. First, the program obtains the rough T/τ c value
with some statistical error according to the measured speckle
contrast’s closest value in the table. Then the Newton itera-
tion algorithm starts to find the more precise value based on
the table’s value. This method improves the convergence speed
greatly. Beside this, Cheng et al. proposed a simplified LSI
analysis method.11 When the camera’s exposure time is further
lager than the correlation time, T/τ c is considered to be equal to
1/C2. This method avoids the iteration and enhances the perfor-
mance greatly. Moreover, this simplified form is more hardware-
friendly and easier to be constructed by hardware circuit
in FPGA.

2.2 LSI Algorithm Implemented in FPGA and the
Design of the LSI Hardware Processor

In this study, the simplified speckle imaging equation 1/C2 is
used to estimate the relative velocity of blood flow. Equation (2)

can be converted to be the blood flow equation as

1

c2
= N − 1

N
×

(∑N
i=1 Ii

)2

N
∑N

i=1 I 2
i −

(∑N
i=1 Ii

)2 . (4)

LSI only presents the relative flow map, so getting rid of the
constant (N-1) / N of Eq. (4) has no effect on quantifying this
type of relative flow map. A more simplified relative velocity
value equation without the constant (N-1) / N is more hardware-
friendly in FPGA defined as

v =
(∑N

i=1 Ii

)2

N
∑N

i=1 I 2
i −

(∑N
i=1 Ii

)2 , (5)

where v stands for the new relative velocity value.
Our hardware circuit implemented for the dedicated LSI pro-

cessor is based on Eq. (5). In this design, the pipeline processing
scheme and parallel hardware architecture are employed to fur-
ther enhance the computing performance by enlarging the data
throughout. As illustrated in Fig. 1, the circuit of the LSI proces-
sor mainly consists of a 3-stage pipeline and 1 divider array. The
modules of stage 1 to stage 3 in the pipeline are corresponding
to calculate the numerator and denominator of Eq. (5) which are
output by the module of stage 3 in a pipeline before the divider
array. All the modules in the pipeline are running separately at
the same time. For example, when module (c) of stage 2 are
calculating the square value of the raw data accumulation out
from module (a) of stage 1, the module (a) is calculating the
new accumulation of pixels in the next adjacent sliding window.
When the size of the sliding window is 5×5, each module in the
pipeline performs a part task of a sliding window in five clock
cycles. That means for each 5 cycles a pair of numerator and
denominator of a sliding window will be output from the module
of stage 3 in the pipeline waiting for a dividing operation. The
divider unit of this LSI hardware processor is designed using
the scheme of the shift-and-subtraction method. So completing
a dividing operation costs more than five clock cycles. For in-
stance, when the raw data width is 12 bits in binary and the
relative velocity value is at the precision of 0.01 in decimal, one
dividing operation costs 45 clock cycles. Therefore, in order to
keep pace with the output speed for the numerator and denomi-
nator from the module of stage 3 in the pipeline, a divider array
containing 9 hardware dividers are integrated into the LSI pro-
cessor circuit. This parallel architecture consisting of multiple
hardware dividers makes sure that each pair of numerator and
denominator can be processed in time. For each five clock cy-
cles, a relative velocity value will be output from one divider of
the divider array. Besides, a gatherer module follows the divider
array that gathers the relative velocity values from the dividers
and outputs these values in chronological order.

The method of reading the pixels of raw image into the
pipeline is illustrated in Fig. 2. At the rising edge of each clock
cycle, a pixel value of a sliding window is read into the pipeline
from raw image memory. The reading order is one pixel after
one pixel in the vertical direction in a sliding window. We define
that the sliding window’s 5 pixels in the vertical direction make
up a vertical strip. The two adjacent sliding windows have the
same four vertical strips, so that only a new vertical strip needs
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Fig. 1 The circuit architecture of LSI hardware processor mainly consists of a 3-stage pipeline and a divider array. Module (a) and module (b) of
stage 1 in pipeline calculate the accumulation and the square multiplied with constant N of raw data within a sliding window separately. Module
(c) and module (d) of stage 2 in pipeline calculate the square of the data out from module (a) and the accumulation of the data out from module
(b) separately. Module (e) calculates the subtraction of the data out from module (c) and module (d). Besides, module (e) caches the accumulation
of module (c) waiting for outputting with the subtraction value at the same time as numerator and denominator of Eq. (5). Divider array contains
multiple divides for keeping pace with the output speed of module (e) in pipeline. Gatherer module gathers the relative velocity value out from
dividers in divider array and outputs these values in chronological order.

to be read into the pipeline when computing the new adjacent
is possible. Because module (a) and module (d) of the LSI
hardware processor’s circuit can cache the temporary results of
the strips from 2 to 5 of the last sliding window and these strips
are the first, the second, the third, and the fourth strip of the
new adjacent sliding window at the same time. This scheme
allows that computing a sliding window only needs to read

...

...

...
a b

Clock

Sliding window 1

Sliding window 2

Raw image

25 clock cycles

25 clock cycles

Fig. 2 The illustration describes the method of reading the raw data
into the pipeline of the LSI hardware processor. The size of sliding
window is 5×5. The small black rectangles stand for pixels of raw
image. The colored rectangles with a dashed line stand for two adjacent
sliding windows. Symbols a and b mark the center positions of sliding
window 1 and sliding window 2. Clock sequence diagrams are also
presented to tell how many cycles for reading each sliding widows’
pixels into the pipeline.

the fifth vertical strip of the current sliding window into the
pipeline, as the former four vertical strips are cached in the
circuit when computing the last sliding window. Of course, there
is no adjacent sliding window for the first sliding window in
each line of the raw image, so the first one must read all five
vertical strips while the following ones only need to read one
vertical strip. With this method, computing a raw image with
the resolution of M×N pixels needs 5×(M-4)×N + 55 clock
cycles when the size of the sliding window is 5×5, where M is
the number of rows of the raw image and N is the number of
columns of the raw image. The number 55 is the latency for the
last sliding window from having been read into the pipeline to
outputting the relative velocity value in the hardware divider of
the divider array.

2.3 SOC Solution for LSI System
Based on the LSI hardware processor described above, we fur-
ther designed a SOC solution for the LSI system by integrating
the CCD camera controller, memory controller, LSI hardware
processor, and LCD display controller in a single FPGA chip.
This SOC-based LSI system can achieve real-time data acquisi-
tion, processing, and display. The main architecture of this SOC
design is illustrated in Fig. 3.

2.3.1 CCD camera controller

The CCD camera controller controls the work mode of the CCD
camera and receives the image data captured by a CCD camera.
Currently, the CCD camera in this design is OB-1280 (OVED,
Shenzhen China) that only provides digital BT-656 video format
(25 frames/s) converted from PAL format by a video analog-to-
digital converter chip, so this controller module also needs to
decode the BT-656 format image to the raw image data. A frame
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CCD controller module

  Raw image saver
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Raw image reader
module

LSI processing unit
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LCD controller module

   FPGA chip

Raw image 
cache memory Vedio memory

 LCD

CCD camera

Laser

Expander

Sample

Fig. 3 The main architecture of the SOC solution for the LSI system. The direction of the arrow stands for the direction of the data that flows in the
main modules.

of a video image organized in BT656 format contains the pixel
data and some other data for a special mark. The pixel data
complies with the 4:2:2 encoding parameter using the YCbCr
color space. The marked data is used to locate the start position
of each line and tells the odd or even field of the video image.
As illustrated in Fig. 4, decoding the BT656 video to raw image
format is mainly extracting the Y component that is the gray
scale value of the video image. Besides, the camera controller
should also cooperate with the saver module to relocate the pixel
lines, for the pixel data values of adjacent lines are located in the
even and odd fields separately in the BT656 frame. The current
camera’s resolution is 752×582 pixels. The camera controller
module clips the original video frame to a sub-image with the
resolution of 640×480 pixels in order to display well in a LCD
with the same resolution employed in this SOC system. The raw
image composed of the Y component can be used to perform
LSI analysis. In future work, we will modify the function of
this CCD camera controller module and directly control a high
speed analog-to-digital converter chip to acquire image data

from a high frame rate CCD image sensor chip rather than a
commercial camera.

2.3.2 Reader module and the saver module

The memory controller consists of a saver module and a reader
module. The saver module caches the raw image data out from
a CCD controller module into the image memory and the reader
module reads the raw image data into the LSI processor. The
raw image cache memory is shared by the saver module and
the reader module. To enlarge the data throughout and simplify
the memory operating interface, the static random access mem-
ory (SRAM) chip is highly recommended. Of course, if the
FPGA chip has enough memory resource, using the memory in
the FPGA chip can further simplify the memory interface. In
our current design, we use an independent SRAM chip as raw
image cache, as the FPGA chip we use does not own a lot of
memory resource.

even field
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odd field
video data
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Fig. 4 Extracting the Y components (gray scale value) from BT656 video frame to make up a raw image that can be used to perform LSI processing.
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Controller FIFO
Reader module

LSI processing unit

Switcher module

Raw image cache memory
 ( SRAM chip )

FPGA chip

Saver module (1)

(2)

(3)

(4)
(5)

(6)

... ...

... ...

Fig. 5 The architecture for sharing the raw image cache memory by saver module and reader module. The red dashed line arrows stand for the
handshaking signal or control signal. The black solid line arrows stand for data signal. The direction of the arrow stands for the transferring direction
of the handshaking signal, control signal, and data. The red number in the bracket is used to mark the nearby handshaking signal or control signal.

The scheme of sharing the raw image cache memory is il-
lustrated in Fig. 5. The direction of the red dashed line arrow
stands for the transferring direction of handshaking signals or
control signals, while the direction of the black solid line arrow
stands for the transferring direction of data between modules.
The saver module consists of a first in, first out (FIFO) and
a small controller sub-module. Usually a FIFO is a small fast
memory with one writing operation port and one reading op-
eration port. It allows the data that comes in first to go away
first. This feature of the FIFO can be used for buffering data
flow between modules that runs at a different speed such as the
camera controller and the switcher module in Fig. 5. The camera
controller writes the raw image data to the FIFO continuously
through the writing port. The control signal (1) from the camera
controller module (not illustrated in Fig. 5) is used for control-
ling the writing operation of the FIFO. A controller sub-module
in the saver module is able to continuously monitor how much
data has been in the FIFO and controls the reading operation
module of FIFO through control signal (2). When more than
a line of pixel data of the raw image has been buffered in the
FIFO, the controller sub-module will start to transfer a line of
pixel data to the raw image cache memory through the switcher
module by controlling the reading operation port of the FIFO.
One issue that deserves to be mentioned is that the controller
sub-module must notify the switcher module to release the data
channel connecting the raw image cache memory and reader
module through signal (3) before starting to transfer the data
in the FIFO to the raw image cache memory. Of course, the
switcher module will notify the reader module and LSI process-
ing unit module to stop working and protect the current status
through signal (5) once it receives the notification of saver mod-
ule. The moment the data channel between the raw image cache
memory and reader module is released, the data channel be-
tween saver module and the raw image cache memory is built
at once. And a line of pixel data is transferred into the raw im-
age cache memory in a burst mode during a short time slice.

When transferring is finished, the switcher module disconnects
the data channel between saver module and the raw image cache
memory to rebuild the data channel between the reader module
and the raw image cache memory. And the switch module also
notifies that the reader module and LSI processing unit can work
again through control signal (5).

Another issue that must be noted is that not every moment can
be made use of by the reader module to read raw data into a LSI
processing unit when the data channel between saver module
and the raw image cache memory is disconnected, because the
reader module must wait until at least a complete valid sliding
window’s raw data has been already stored in the raw image
cache memory. After this, data are buffered in the raw image
cache, the switcher module notifies the reader module and LSI
processing unit module to start work. This design allows that
the part of the data of a frame that already comes into raw image
cache memory can be processed at once, while the subsequent
part of the data of this frame may be still buffered in the FIFO
or even has not been read into the LCD controller module yet.
In other words, during the process of acquiring a frame of raw
image, the LSI processing of the raw data part of this same frame
that comes into raw image cache memory early is performed
at the same time. Actually, when a frame of raw image is all
transferred into the raw image cache memory, the LSI processing
of this frame of raw image is also nearly completed with the
current frame rate of the CCD camera (25 frames/s). Because
the LSI processing is much faster than the raw image capturing,
the reader module and LSI hardware processing unit module
often have to stop to wait for the subsequent data due to the low
frame rate of this CCD camera.

2.3.3 LSI processing unit module and the LCD
controller module

The LSI processing unit module containing a LSI hardware pro-
cessor converts the raw data into the relative velocity value based
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Fig. 6 The architecture of operating the video memory by a LSI processing unit module and LCD controller module. The red dashed line arrows
stand for the handshaking signal or control signal. The black solid line arrows stand for the data signal. The direction of the arrow stands for the
transferring direction of the handshaking signal, control signal, and data. The red number in the bracket is used to mark the nearby handshaking
signal or control signal.

on the algorithm described in Sec. 2.2 of this paper. The main
architecture of the LSI processing unit module is illustrated in
Fig. 6. The control signal (1) is the same one as control signal (5)
in Fig. 5 for determining whether the LSI hardware processor
runs or stops. The raw data in the front end of the LSI hardware
processor comes from the reader module. The reader module
feeds the LSI hardware processor with the raw data with the
method illustrated in Fig. 2. Because the logic for transferring
data to video memory is much simpler than that of the saver
module (it does not need to do the work of converting the sepa-
rated odd field and even field video data into a regular raw image
as the saver module), we put it together with the LSI hardware
processor in the LSI processing unit module. The relative ve-
locity values from the LSI processor are normalized into color
index values before transferring to video memory for display.
So a normalizing logic sub-module is placed after the back end
of the LSI hardware processor. It is controlled by the back end
logic of the LSI hardware processor through signal (2). Each
color index value is transferred into FIFO through the writing
port controlled by the back-end logic of the normalizer module
through control signal (3). The controller sub-module of the LSI
processing unit module is always monitoring how much data has
been in the FIFO through signal (4). When more than a line of
pixels (color index value) is already in the FIFO, the controller
sub-module starts to apply data channel from the switcher mod-
ule through a handshake signal (5) to transfer the pixels to video
memory. However, the controller sub-module cannot always get

the data channel immediately, since the LCD controller module
may be transferring data at the same moment. In this condition,
the controller sub-module in the LSI processing unit module
must wait until the LCD controller releases the data channel. So
the depth of the FIFO in the LSI processing unit must be large
enough to avoid overflowing and losing data.

Different from the switcher module completely designed by
ourselves for severing saver module and reader module, the
switcher module connecting video memory to LSI hardware
processing unit module and LCD controller module is Altera
Avalon bus module.33 The interfaces of the LSI processing unit
module and LCD controller module for connecting the switcher
module must comply with the interface standard of the Avalon
bus. Actually, the LSI processing unit module and LCD con-
troller module act as master nodes in the Avalon bus, which can
launch data transfer actively. The direct memory access logic
circuit in the controller sub-modules of the two modules can
directly access the video memory through the Avalon bus. The
Avalon bus module acts as the arbitrator to allocate data channel
to video memory for the LSI processing unit module and LCD
controller module. The video memory is a synchronous dynamic
random access memory (SDRAM) chip and it cannot be con-
nected to the interface of an Avalon bus directly, so a SDRAM
controller module provided as intellectual property (IP) core
by Altera is used to bridge the SDRAM chip and the Avalon
bus. Signal (6) is used to control the SDRAM controller module
from the Avalon bus module and signal (7) is used to control
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the SDRAM chip from the SDRAM control module. Moreover,
a NIOS II soft CPU core must be added when using the Avalon
bus in the Altera Quartus II development (not illustrated in
Fig. 6). The soft core designed by HDL can be reconfigured to
be integrated in the FPGA chip with our designed logic circuits.
In the current design, this CPU nearly does nothing except for
very small initialization work of some modules when the sys-
tem starts, because the raw data acquiring, LSI processing, and
display are completely done by the hardware modules. Maybe
we can design more user-friendly interfaces using this CPU in
a future work.

The LCD controller module reads the blood flow image in
the video memory and displays it in a LCD. It mainly contains
a controller sub-module and a FIFO. The controller sub-module
mainly has two functions. One is monitoring the current quantity
of rest pixels in the FIFO through signal (9). When the quantity
of the pixels is lower than a specified threshold, the controller
sub-module in the LCD controller module starts to apply for
data channel from switcher module to read a new line of pixels
through signal (8). The other is reading pixel data out from FIFO
and displaying them in the LCD in a line-by-line scanning way.
Make sure that the refresh rate of the scanning is not lower than
60 Hz in order to avoid screen flicker. The detailed scanning
regulation can refer an open LCD controller IP core project.34

3 Result
We test the processing performance of our LSI hardware proces-
sor. In the Quartus II development environment and a low-cost
Cyclone II FPGA chip from Altera, the maximum work fre-
quency of the LSI hardware processor reaches about 130 MHz.
That means this type of hardware processor can process around
85 frames of raw image with resolution of 640×480 per second
when the size of the sliding window is 5×5. For another often-
used sliding window size 7×7, the processing performance will
be comprised to be around 60 frames/s for the raw image with
the same size of 640×480 pixels. If higher speed level FPGA

chips are used, such as the ones of the Stratix family from Altera,
more performance enhancement could be expected.

A more detailed performance benchmark list is presented in
Table 1. The performance of the CPU version is also listed as a
comparison. The program written in C ++ language running in
the CPU implements the same algorithm as the FPGA version
described in Sec. 2.2 of this paper. The C ++ program using
single float precision was developed in the Microsoft Visual
Studio 2005 in Windows XP operating system and the CPU is
Intel E7300 (dual core) running at the frequency of 2.67 GHz
(only one core is used). Considering that the maximum work
frequency of the LSI hardware processor varies in a different
speed level FPGA chip, the precise clock cycles of processing a
specific size raw image are presented, because the clock cycles
will not vary for different FPGA chips when the size of the
raw image is fixed, while the time consumption will varies in
different FPGA chips. Therefore, the number of clock cycles
is more important when evaluating the processing efficiency of
the LSI hardware processor. However, the time consumptions
are also presented in order to compare the performance with the
personal computer’s CPU. For a fixed size raw image, the higher
the maximum work frequency is, the less time consuming. For
example, the maximum work frequency of our LSI hardware
processor can be 130 MHz in an Altera Cyclone II FPGA chip
EP2C35F484C6 and 192 MHz in an Altera Stratix II FPGA
chip EP2S30F484C3. The time consumption values listed in the
table are computed in the case that the LSI hardware processor
running at the frequency of 130MHZ in a Cyclone II FPGA
chip (EP2C35F484C6) in current design. Sliding window sizes
of 5×5 and 7×7 are used to record the performance parameters
in Table 1.

We also compared the computing precision of LSI hardware
processor with that of the C ++ program using single float pre-
cision on a personal computer. Figure 7 presents the blood flow
maps of mouse cerebral cortex that are processed in two dif-
ferent platforms. The relative difference map is also presented.
It is demonstrated that the relative difference is roughly lower
than 0.001. This is because the relative velocity value out of the

Table 1 FPGA versus CPU processing time consumptions for various image sizes.

5×5 window size 7×7 window size

Image size FPGA FPGA CPU FPGA FPGA CPU
(pixels) clocks time/ms time/ms Speed-up clocks time/ms time/ms Speed-up

320×240 377655 2.9 7.7 2.65 524219 4.0 10.3 2.58

480×320 758455 5.8 15.6 2.69 1055099 8.1 20.8 2.57

640×480 1523255 11.7 31.5 2.69 2123579 16.3 42.1 2.58

800×600 2384055 18.3 49.3 2.69 3326459 25.6 66.2 2.59

1024×768 3911735 30.1 81.7 2.71 5462075 42.0 109.5 2.61

1280×1024 6528055 50.2 137.5 2.74 9121339 70.2 184.6 2.63

1392×1040 7210615 55.5 150.4 2.71 10075355 77.5 202.4 2.61

1600×1200 9568055 73.6 201.3 2.74 13372859 102.9 268.4 2.69
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Fig. 7 The LSI blood flow map of the mouse cerebral cortex processed in a different platform and comparison: (a) The LSI blood flow map processed
by a LSI hardware processor in FPGA; (b) the LSI blood flow map processed by a program written in C ++ running on a personal computer with
single precision; (c) the relative difference map in logarithm format between image (a) and image (b).

LSI hardware processor is at the precision of 0.01 in decimal.
Actually, higher precision can be realized in our LSI hardware
processor by adding a more logical resource to improve the com-
puting precision of the hardware divider. But this precision is
enough for practical use, as finally we usually normalize these
float-type velocity values into integer color index for displaying
in the monitor. One issue that needs to be noted is that the raw im-
age of this blood map is placed in the raw image cache memory
artificially rather than captured by the CCD camera equipped in
the SOC design. It is convenient to compare the precision with
personal computer’s CPU using the same raw image. The size of
this raw image is 640×480 pixels and the pixel’s data width is
12 bits. The sliding window size for processing this raw image
is 5×5.

A demonstration of real-time monitoring the rat’s cerebral
cortex blood flow is presented in Video 1 using the FPGA-
based LSI SOC system. A small piece of skull was removed
in the head of the rat to make a window to monitor. During
the whole process, the rat was in narcosis. The camera’s frame
rate is 25 frames/s with the resolution of 640×480 pixels and
the data width of raw image pixel is 8 bits. Each frame of the
blood flow map in the LCD screen comes from the result of
real-time processing a single frame raw image captured by the
CCD camera. So the display rate in the LCD screen is also
25 frames/s. Pseudocolor is used to show the big or small of the

Video 1 Single-frame excerpt from the video of real-time monitoring
of the cerebral cortex blood flow of a rat (AVI, 4.9 MB).
[URL: http://dx.doi.org/10.1117/1.3651772.1]

blood flow. The redder the area is, the bigger the blood flow is
in the corresponding area. The bluer the area is, the smaller the
blood flow is. In the video picture, we can see that: the cortex
areas with obvious blood vessels are reddest; the cortex areas
with unobvious blood capillary are interposed; the areas without
blood vessels are nearly blue. The whole video of the LCD
screen was recorded by a commercial entertainment camera.

4 Discussion
In the current years, several solutions for accelerating the pro-
cessing of LSI are reported.14, 16, 17, 19 The GPU solution is quite
popular. We mainly made some comparisons between our FPGA
hardware solution and the GPU solution17 of Owen et al. includ-
ing the easiness of system integration, processing speed, and
some other trade-offs.

Generally speaking, the GPU solution is easier to be inte-
grated into the whole system in contrast to the FPGA solution,
because the chip-level circuit and the board-level circuit have
already been designed by corresponding vendors. Besides, the
software for supporting the running environment is also pro-
vided by the GPU vendors. After installing the commercial GPU
board in the personal computer through PCI-E interface and cor-
responding supporting library files, the main work is focusing on
developing the specified application. Compared with the GPU
solution that the hardware is already prepared, the FPGA solu-
tion needs to do a lot of basic work. We must design the FPGA
circuit board ourselves by adding the CCD camera interface,
memory chips, LCD display interface, and some other input–
output interfaces around the FPGA chip. After the hardware
platform is built, the subsequent work is to develop the spec-
ified logic for LSI processing. Besides the main work of the
LSI hardware processor, some other logic must be developed
for assisting the LSI hardware processor including the camera
controller module, switcher module, etc. So the FPGA solution
is more troublesome in the perspective of the developers of LSI.

In the paper of Owen et al., they presented a performance
benchmark table in which the time consumptions of GPU-
based LSI algorithm and the speed-up in contrast to CPU ver-
sion are listed. Processing a raw image with a typical size
of 640×480 pixels takes 5.3 ms on a low-cost GPU (Nvidia
Geforce 8800GTS) when the sliding window size is 5×5. This
time includes transferring the raw image onto the GPU, exe-
cuting processing kernels, and transferring the processed image
back to main memory. The two transferring operations are nec-
essary for each frame on the GPU, so these time consumptions
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are also included in the whole time consumption. In the FPGA
platform, the camera controller module directly delivers the raw
image data into the raw image cache memory in which the LSI
processing unit module can directly access the raw data through
a reader module. The LSI processing and the raw image cap-
turing are nearly running in parallel. Moreover, the processed
relative velocity values are transferred to video memory directly.
Therefore, the time consumption of the FPGA-based LSI solu-
tion can nearly only include the processing time. Processing a
raw image with a typical size of 640×480 pixels takes 11.7 ms
in a Cyclone II FPGA chip we use when the sliding window size
is 5×5. Generally speaking, the GPU LSI solution can obtain
higher performance than FPGA solution due to the higher peak
flops.

Although the system integration is more difficult than that
of the GPU-based one and the performance is also lower, the
FPGA-based LSI solution also has a lot of superiority.

Firstly, it is easier to realize a real time on-line processing
than GPU when a high speed camera is used such as the one
with the speed of around 100 frames/s and the typical resolu-
tion of 640×480 pixels (the width of pixel value is 12 bits).
That requires transferring around 60 Mbytes/s to the personal
computer from the camera in the GPU solution. The transfer-
ring of such a large amount of data is very difficult to realize
by USB or Ethernet method. Even though a 1000-base Ethernet
is used whose theoretical maximum speed is 125 Mbytes/s, the
personal computer and the embedded computer inside the cam-
era can hardly reach or maintain the speed of 60 Mbytes/s due
to huge computing burden of running network protocol stack.
Therefore, although the GPU can process hundreds of raw im-
age per second, there is hardly a corresponding camera that can
transfer such a great amount of data to a personal computer. But
in the FPGA platform, the camera controller module’s logical
circuit can directly acquire raw image data from an image sen-
sor by controlling an AD chip which converts the analogy signal
of CCD image sensor to digital format. This data transmission
method is able to maintain a high speed frame speed such as
60 M bytes/s. If a better speed level FPGA chip than Cyclone II
one is used, it is able to realize a high speed real-time LSI pro-
cessing system with the data throughout of around 100 frames
640×480 raw image using the SOC solution described above.

Secondly, the FPGA LSI solution has the potential to expand
the number of LSI hardware processing units in order to further
improve the processing capability. To achieve this increased
solution, some extra logic circuits for scheduling these multiple
LSI hardware processing unit need to be added. Of course, a
FPGA chip that has adequate logic resource for this solution
should be selected. But there is little flexibility on hardware of
GPU, because the whole circuit architecture can no longer be
modified by the user after it is manufactured. Moreover, multiple
CCD cameras can be organized to work together in controlling a
single FPGA chip by further modifying the current solution due
to the reconfigurable future of FPGA. This solution will be very
useful when multiple separated areas are needed to be monitored
at the same time. Therefore, FPGA solution’s flexibility allows
us to design our dedicated hardware architecture.

Finally, the reason why FPGA LSI solutions performance
is lower than that of the GPU version is mainly because the
maximum work frequency is very low in contrast to the GPU’s
system frequency. Most FPGA generally runs at the frequency

of no more than 300 MHz, while GPU runs at the frequency of
around 1 GHz. Although the low work frequency leads to some
performance loss, it also brings low-power dissipation. Besides,
the whole size of the FPGA LSI system can be designed much
smaller than that of the GPU version. Therefore, the FPGA LSI
solution is quite appropriate to be used to design a compact
handheld LSI system with high performance and stability due
to the small size and low dissipation.

5 Conclusion
In this paper, we present a dedicated digital circuit for the real-
time processing of laser speckle imaging in FPGA and a SOC
solution-based LSI system that also has the potential to be ported
to ASIC for producing a low-cost but high performance LSI
processing integrated chip. Our next plan is to further improve
this LSI hardware processor’s performance by optimizing the
architecture and design a faster CCD camera module for the
SOC-based LSI system.
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