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ABSTRACT

When heated, living tissue exhibits random nonuniformities in temperature that are due to the discreteness of
vessel arrangement. Because of the strong temperature dependence of the thermal coagulation rate these
nonuniformities should substantially affect the necrosis growth induced by local heating. In the present work
we study the effect of vessel discreteness on the form of a necrosis domain when its growth is limited by heat
diffusion into the surrounding tissue. Namely, we analyze the characteristics of the necrosis boundary that
are due to vessel discreteness. In particular, we find the mean amplitude dG and the correlation length lG of
the necrosis boundary perturbations depending on the main tissue parameters. In addition, it is shown that
there are universal relations between the mean size R of the necrosis domain and the characteristics dG , lG of
the boundary perturbations, which are due to the fractal structure of the vascular network. © 1999 Society of
Photo-Optical Instrumentation Engineers. [S1083-3668(99)00702-9]

Keywords necrosis domain; thermal coagulation; vessel discreteness; random temperature nonuniformities;
random interface perturbations.
1 INTRODUCTION: TEMPERATURE
NONUNIFORMITIES DUE TO BLOOD
VESSEL DISCRETENESS

Blood flowing through the vascular network in liv-
ing tissue forms paths of fast heat transport and
under typical conditions it is blood flow that gov-
erns heat propagation on scales exceeding several
millimeters (for an introduction to this problem see,
e.g., Refs. 1 and 2). The relative volume of the vas-
cular network is rather small, so vessels directly
controlling heat transfer are separated by distances
much greater than their radii. Therefore, when
heated, living tissue inevitably has to exhibit spatial
nonuniformities dT(r,t) in the temperature.3 The
particular details of the vessel arrangement on
scales about several millimeters are practically un-
known and, moreover, alter in various tissues and
may be at different points of one tissue. So, on such
scales it is reasonable to treat the vessel architecton-
ics as random.4 In this case the resulting tempera-
ture nonuniformities are also regarded as random
and can be characterized by the mean amplitude s
and the correlation length l.

†Some results of this paper have been presented at the conference ‘‘Laser–
Tissue Interaction and Tissue Optics IV,’’ SPIE’s BiOS Europe’97.
Dr. Lubashevsky’s e-mail address is ialub@fpl.gpi.ru
Dr. Priezzhev’s e-mail address is avp@lbp.phys.msu.su
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Due to extremely strong dependence of the ther-
mal coagulation rate on temperature such nonuni-
formities should affect substantially the necrosis
growth under strong local heating induced, for ex-
ample, by laser light absorption. This effect is the
subject of the present paper where we analyze the
corresponding random perturbations of the necro-
sis form. Dealing with this problem we, in fact,
keep in mind the following physical model (Figure
1). Absorption of laser light delivered into a small
internal region of living tissue causes the tempera-
ture to attain such high values (about 70 °C) that
lead to immediate coagulation in this region. Heat
diffusion into the surrounding live tissue causes its
further thermal coagulation, giving rise to the
growth of the necrosis domain. In this case the tem-
perature distribution becomes substantially non-
uniform and for the tissue to coagulate at periph-
eral points heat diffusion should cause the
temperature to grow at these points (see also Ref.
5).

This problem has been briefly considered in our
previous paper6 where, however, we have used a
number of simplifying assumptions such as regard-
ing the temperature nonuniformities as fixed be-
forehand and ignoring the difference between the
thermal conductivities of damaged and undamaged
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tissue. In the present paper we analyze the given
problem in detail, basing it on a more precise ap-
proach. In order to make its key points clearer, let
us first briefly remind the main tissue characteris-
tics governing heat transfer (the mathematical de-
scription used here is developed in Ref. 7).

1.1 BACKGROUND: CHARACTERISTICS OF
HEAT TRANSFER IN LIVING TISSUE

For the typical values of the blood perfusion rate j
;0.3–0.7 min−1 (in organs such as stomach, intes-
tine, and spleen8) there is a certain minimal spatial
scale (in general, varying in space)

lv~r!;A k

crfj~r!Ln
(1.1)

on which the living tissue can be regarded as a ho-
mogeneous continuum. Here k, c , r are the thermal
conductivity, the heat capacity, and the density of
the tissue, respectively, the factor f,1 accounts for
the counter-current effect,9,10 and j(r) is the blood
perfusion rate averaged over the scale lv(r) in the
vicinity of the point r. The factor Ln is given by the
expression Ln5ln(l/a), where l/a is the mean ratio
of the individual length to radius of blood vessels
forming peripheral systems of blood circulation.
We point out that exactly the ratio 1/Ln plays the
role of small parameter in the theory of bioheat
transfer. So the vessel discreteness should lead to
visible effects because such a parameter cannot be
very small in magnitude. In particular, for the typi-
cal values of the ratio l/a;40,11 the thermal con-
ductivity k;731023 W/cm K, the heat capacity c
;3.5 J/g K, and the density r;1 g/cm3 of the tis-
sue. As well as setting the blood perfusion rate j
;0.3 min−1 and the factor f;0.5 we get lv;4 mm
and Ln'4.

The heat exchange between blood and the cellular
tissue is directly controlled by vessels of length lv .
The shorter vessels can only affect the heat transfer
on scales much smaller than lv , renormalizing the
thermal conductivity: k→keff . Due to the fractal

Fig. 1 The necrosis growth due to local thermal coagulation lim-
ited by heat diffusion.
J

structure of the vascular network the effective ther-
mal conductivity keff of the undamaged tissue can
be regarded as a constant exceeding the true ther-
mal conductivity k of the cellular tissue by a factor
of order unity:7 keff'(2 to 3)k . The latter estimate is
in reasonable agreement with the available experi-
mental data, at least for j&0.1 min−1 (see, e.g., Refs.
12 and 13). The veins whose lengths are larger than
lv form a joint vessel system playing the role of the
heat sink. In the given vessels heated blood flows
so fast that it has practically no time to come into
thermal equilibrium with the surrounding cellular
tissue. This effect is conventionally described by the
term cbrbfj(r)@T(r)2Ta# which specifies the rate of
heat dissipation through the large veins [here T(r)
and Ta are the local tissue temperature and the tem-
perature of blood in systemic arteries, and cb , rb
are the heat capacity and the density of blood] (see
also Refs. 1 and 10).

In the mean field approximation the microscopic
equations governing heat exchange between the
cellular tissue and blood flowing through indi-
vidual vessels are averaged over spatial scales of
order lv . In addition, the temperature nonunifor-
mity in the close vicinity of the large vessels (vein
and arteries) is ignored due to the small relative
volume of the corresponding neighborhood. In this
way we can get the following generalized bioheat
equation for the tissue temperature T̄(r,t) averaged
over the scale lv

7

cr
]T̄
]t

5¹~keff¹T̄ !2fcbrbj~ T̄2Ta!1q , (1.2)

where q(r,t) is the heat generation rate and the
constant‡ f;1/ALn. It should be noted that Eq. (1.2)
was first proposed in Ref. 10, where, however, the
quantities keff and f have been treated as phenom-
enological parameters. In particular, from Eq. (1.2)
we find that the field T̄(r,t) cannot exhibit substan-
tial variations on scales smaller than

lT~r!;A k

crj~r!f
;ALnlv~r!;10 mm. (1.3)

The latter numerical estimate has been obtained us-
ing the given values of the main tissue parameters.
Expression (1.3) contains the factor Ln formally
treated in the bioheat transfer theory as a large pa-
rameter, substantiating the validity of the bioheat
equation (1.2). In fact, in the mean field approxima-
tion we ignore the tissue temperature nonuniformi-
ties on scales less than lv which should be small in
comparison with the overheating (T̄2Ta) by virtue
of the formal inequality lv /lT;1/ALn!1. The
physical meaning of the latter inequality is the fact

‡We note that a similar formula for the factor f has been obtained
in Ref. 14 considering heat transfer in muscles.
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that the tissue domain of radius about lT contains a
large number of veins of length lv forming the sys-
tem of practically singular heat sinks.

Length lT also gives the characteristic depth of
the temperature penetration into the perfused tis-
sue due to heat diffusion as well as the mean size R

of the necrosis domain formed during the typical
course of local thermal treatment:15,16

R;lT . (1.4)

The latter fact, in particular, justifies the applica-
tion of the bioheat equation (1.2) to the description
of the necrosis growth in all the regions except for
the layer Lz of partially damaged tissue where ther-
mal coagulation is underway. Indeed, taking into
account the available experimental data17 the rate
v(T) of thermal coagulation can be approximated
by the expression*

v~T !5v0 expS T2T0

D D , (1.5)

where v05v(T0) at a certain fixed temperature T0
and D;3 to 5 °C is a constant (D.3.26 °C for pig
liver at T0565 °C). Therefore the thickness dz of the
layer Lz and the mean temperature gradient G near
it are related by the expression

dz;
D

G
;

D

~T02Ta!
lT . (1.6)

Here the value of G has been estimated as G;(T0

2Ta)/lT and the mean temperature T0 in the layer
Lz has been assumed to depend slowly on time and
to take values approximately equal to T0'65 °C,
which is justified for the typical conditions of the
thermal treatment.18–20 In addition, in obtaining
(1.6) we have taken into account that the tempera-
ture distribution in the vicinity of the necrosis do-
main is characterized by a single scale of the order
of its mean size R;lT .15,16 So from (1.3) and (1.6)
we get

dz

lv
;

DALn

~T02Ta!
;0.25, (1.7)

whence it follows that the layer Lz of partially dam-
aged tissue is not thick enough for the temperature
distribution in it to be described rigorously by the

*The given form of v(T) dependence which is chosen to sim-
plify the following mathematical manipulation practically coin-
cides with the the standard Arrhenius approximation:

v~T!}expS2 E
TD

in the neighborhood of the temperature T0 whose thickness is
much less than AT0D , where D5T0

2/E . This follows from the
identity:

E
T

5
E
T0

2
T2T0

D
1

~T2T0!
2

T0D

1

11
T2T0

T0

.
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bioheat equation (1.2) of the mean field theory.
Moreover, due to the fractal structure of the vascu-
lar network the amplitude s of the random tem-
perature nonuniformities caused by the vessel dis-
creteness can be estimated as7

s;
1
Ln

~ T̄2Ta!. (1.8)

Taking into account also an additional numerical
factor7 in the latter expression we find that s

'(10 to 20)%(T̄2Ta) and s;3 to 6°C for the typi-
cal value T̄;T0;65 °C of the temperature in the
layer Lz .18–20 So, the amplitude s of the random
temperature nonuniformities turns out to be of the
same order as or even greater than the parameter D
characterizing the power of the temperature depen-
dence of the thermal coagulation rate, s*D . There-
fore, the random temperature nonuniformities
should affect substantially thermal coagulation dis-
turbing inevitably the form of the layer Lz .

In order to describe the dynamics of thermal co-
agulation in the layer Lz of partially damaged tissue
and, thus, to complete the mathematical description
of the necrosis growth, we are to go beyond the
scope of the mean field theory. In other words, we
have to take directly into account the random tem-
perature nonuniformities in the vicinity of the layer
Lz .

According to the results to be obtained below the
amplitude dG of random perturbations of the layer
Lz , the correlation length lG of these perturbations
(Figure 3), and the correlation length l of the ran-
dom temperature nonuniformities meet the formal
inequalities:

dz!dG!lG;l;lv!lT;R, (1.9)

provided the values 1/Ln and D/(T02Ta) are
treated as small parameters. These conditions en-
able us, first, to ignore the thickness of the layer Lz ,
i.e., to regard it as an infinitely thin interface G of
the necrosis domain and, thus, to use the free
boundary model for local thermal coagulation.18,19

Second, we may consider the effect of the vessel
discreteness for the undamaged tissue only.

In general, the vessel discreteness affects both the
heat propagation through the tissue and the heat
dissipation, perturbing the effective thermal con-
ductivity keff as well as causing the rate of tempera-
ture dissipation fj to exhibit spatial nonuniformi-
ties. On scales of order lv the former effect,
however, is responsible mainly for the particular
details of the temperature distribution, whereas the
latter one governs the amplitude of the temperature
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nonuniformities.** The greater the characteristic
scale of the random temperature nonuniformities,
the stronger the corresponding perturbations of the
layer Lz . So we can confine our consideration to
spatial scales of order lv and describe the effect of
the vessel discreteness in terms of the random spa-
tial variations in the blood perfusion rate:

j~r,t !→j~r,t !1dj~r,t !, (1.10)

where, as before, the smooth field j(r,t) is the blood
perfusion rate averaged over scales about lv and
dj(r) is its random component, ^dj(r,t)&50, allow-
ing for the vessel discreteness on these scales. The
random field dj(r,t) obeys the blood conservation.
For uniformly heated undamaged living tissue the
latter condition can be written as

E dr g0~r!50,

where g0(r) is the correlation function

^dj~r,t !dj~r8,t !&5j2g0~r2r8!,

such that for x5r/lv we have g(x);1 for x&1 and
g(x)!1 for x@1. A typical form of the function
g0(x) is shown in Figure 2.

Therefore in order to describe the effect of the
vessel discreteness on the necrosis formation we
may use the following generalized bioheat equation
containing the random component of the blood per-
fusion rate:

** It should be noted that blood flow through the large arteries
can give rise to the fast heat transport over scales much greater
than lT . Under certain conditions it may appear that the effec-
tive thermal conductivity keff exceeds the thermal conductivity
of the cellular tissue by tenfold due to this effect. However,
such a fast heat transport cannot be described in terms of the
mean field theory and deserves an individual
consideration.21,22 Besides, on the average, its role is not too
essential because of the sufficiently small relative volume of
the large arteries. Therefore in the present analysis the given
effect is ignored. The same concerns the temperature nonuni-
formities caused by large arteries and veins.

Fig. 2 Typical form of the correlation function of the blood perfu-
sion rate nonuniformities caused by the vessel discreteness.
J

cr
]T
]t

5¹~keff¹T !2fcbrb~ j1dj !~T2Ta!1q ,

(1.11)

where T is the true tissue temperature. Equation
(1.11) actually forms the basis for the following
analysis.

The dynamics of the necrosis growth limited by
heat diffusion, namely, the time dependence of the
necrosis size R(t), is rather insensitive to the par-
ticular details of the temperature distribution inside
the layer Lz of partially damaged tissue.15,16,18–20 In
this case the necrosis growth is actually controlled
by the mean temperature T0 in the layer Lz . In par-
ticular, the validity of the mean field equation (1.2)
on scales about R justifies this statement. So under
such conditions the vessel discreteness should af-
fect mainly the form of the necrosis domain rather
than the time dependence R(t). The latter fact en-
ables us to confine our analysis to a certain small
neighborhood of the layer Lz .

2 DYNAMICS OF THERMAL COAGULATION
NEAR THE NECROSIS BOUNDARY

The temperature distribution in the necrosis do-
main as a whole is characterized practically by a
single spatial scale R;lT and by a single temporal
scale 1/(jf );(lT

2 cr)/k;t which approximately is
equal to the typical duration t of the corresponding
thermal treatment and is about several minutes.15,16

The necrosis boundary as a physical region of the
transition from the coagulated to undamaged tissue
is described by a number of additional spatial
scales. It is the thickness dz of the layer Lz of par-
tially damaged tissue, the mean amplitude dG of the
necrosis boundary perturbations due to the random
temperature nonuniformities, and the correlation
lengths lG;l;lv of these perturbations coinciding
with the correlation length l of the temperature
nonuniformities. These spatial scales correspond to
a number of temporal scales. In particular, it is the
time tr;(lv

2cr)/k describing development of the
random temperature nonuniformities and the time
tG;lv /q during which the necrosis boundary
passes the distance lv at the velocity q;R/t , i.e.,
the time characterizing the dynamics of the necrosis
boundary perturbations. By virtue of the inequality
lv!lT;R these temporal scales meet the condition

tr!tG!t . (2.1)

Let us consider a certain neighborhood Q of the
necrosis boundary G or, what is the same, of the
layer Lz of partially damaged tissue treated as an
infinitely thin interface (Figure 3). The thickness L
of the neighborhood Q is formally assumed to obey
the condition lv!L!lT;R. We study the dynamics
of the interface G on temporal scales corresponding
to its motion inside the neighborhood Q provided
the latter is fixed in space. In this case inequalities
251OURNAL OF BIOMEDICAL OPTICS d APRIL 1999 d VOL. 4 NO. 2
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(1.9) and (2.1) allow us, first, to adopt the quasista-
tionary approximation for the temperature distribu-
tion and, second, to use the free boundary
model18,19 for thermal coagulation. In the quasista-
tionary approximation we ignore the transient term
in Eq. (1.11). Besides, we take directly into account
only the terms ¹(keff¹T), fcbrbdj(T2Ta) for the un-
damaged tissue, and the term ¹(k¹T) for the ne-
crosis because the other terms of the bioheat equa-
tion are responsible for the spatial variations in the
tissue temperature on scales about lT@L. In addi-
tion, since the temperature variations in the neigh-
borhood Q are small in comparison with the over-
heating (T02Ta) we set (T2Ta)'(T02Ta). In
other words, we write for the undamaged tissue in
the neighborhood Q and for the necrosis, respec-
tively,

lT0
2 ¹2T5

dj
j0

~T02Ta!, (2.2)

¹2T50, (2.3)

where j0 is the mean rate of blood perfusion inside
the neighborhood Q and

lT05A keff

fcbrbj0
(2.4)

is actually the value of the scale lT near the necrosis
boundary. The form of the necrosis boundary G0

averaged in the neighborhood Q on scales about L
can be treated as a plane. So, due to heat conserva-
tion we can write for the averaged temperature gra-
dients ^¹T& far from the boundary G0 (uzu@dG) the
following relation:

^¹T&5H S 0,0,2
1
F

G D for z.0,

~0,0,2G ! for z,0.
(2.5)

Fig. 3 Form of the necrosis boundary.
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Here the coordinate system $x ,y ,z% is chosen as
shown in Figure 3, the factor F5keff /k is treated as
a constant of order unity, F*1, and the value G of
the temperature gradient near the necrosis bound-
ary in the damaged tissue is also assumed to be a
constant on scales about L and is estimated as

G;
Tmax2T0

R
, (2.6)

where Tmax is the temperature in the necrosis cen-
ter.

The free boundary model18,19 assumes tissue tem-
perature T to be continuous at the interface G and
the temperature gradient to have a jump caused by
the heat conservation, i.e.,

TG205TG105TG , (2.7)

¹nTuG205F¹nTuG10 , (2.8)

where the subscripts G20, G10 point out that the
corresponding quantities are taken at the interface
G on the necrosis and undamaged tissue sides, re-
spectively. Besides, this model relates the normal
velocity qn of the interface G at a certain point to
the local value TG of the tissue temperature by the
expression

qn>I0
D

G
v~TG!, (2.9)

where I0 is a constant of order unity. Whence tak-
ing into account also (1.5) we get

TG5T01D lnS qnG
I0v0D D . (2.10)

Due to inequalities (1.9) and (2.1) we deal with the
developed perturbations of the necrosis boundary G
moving practically like a solid interface and, thus,
in the case under consideration spatial and tempo-
ral variations in the velocity qn as well as temporal
variations in the gradient G can be ignored. Then
from expression (2.10) we obtain that the tempera-
ture TG at the interface G is actually a constant
value with which we will identify the previously
introduced characteristic temperature T0 in the
layer Lz :§

TG5T0. (2.11)

Equations (2.2), (2.3) and boundary conditions
(2.7), (2.8), (2.11) form the desired description of the
perturbed necrosis interface.

Besides, in order to complete this description we
have to specify the mean properties of the random
nonuniformities in the blood perfusion rate near
the necrosis interface G. The correlation function

§As shown in Ref. 6 the same conditions can also be found for-
mally using the distributed model.23,24
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g(r,r8) of these nonuniformities near the necrosis
interface G and in the bulk of the undamaged tissue
can differ in form. However, the particular details
of the function g(r,r8) are of little consequence,
which allows us to specify it in a way simplifying
the following mathematical manipulations. By vir-
tue of inequalities (1.9), namely, due to dG!lv , let
us construct the correlation function gG(r,r8) near
the necrosis interface G as is shown in Figure 4 us-
ing the correlation function g0(r2r8) of the living
tissue bulk (i.e., far from the necrosis region) and
the mirror images rmi , rmi8 of the points r, r8 with
respect to the unperturbed position G0 of the necro-
sis interface G. In other words, for the points near
the interface G we set ^dj(r,t)dj(r8,t)&
.(j0)2gG(r,r8), where

gG~r,r8!5g0~ ur2r8u/lv!1gmi
0 ~r,r8!, (2.12)

gmi
0 ~r,r8!5g0~ ur2rmi8 u/lv![g0~ urmi2r8u/lv!.

(2.13)

In the next section basing on the developed de-
scription we will analyze the particular properties
of the necrosis interface.

3 FORM OF THE NECROSIS INTERFACE

As we claimed in Sec. 1 it turns out that the ampli-
tude dG of the necrosis interface perturbations is
small in comparison with their correlation length
lG . Therefore we may analyze the above stated sys-
tem of equations treating the deviation of the inter-
face G from its mean position G0 [the function
zG(x ,y) in Figure 3] as small perturbations of the
plane geometry of the interface G. Then using the
description developed in the previous section and
the standard technique of solving such equations,25

we can show that the perturbation zG(x ,y) of the

Fig. 4 The point collection specifying the correlation function g(,8)
of the perfusion nonuniformities near the necrosis boundary (G0 is
its unperturbed position).
J

necrosis interface and the random nonuniformities
in the blood perfusion rate dj(x ,y ,z) are related by
the expression

zG~x ,y !52
F~T02Ta!

4plT0
2 j0G

E
0

1`

dz8E1`E
2`

dx8 dy8

3
dj~x8,y8,z8!

A~x2x8!21~y2y8!21~z8!2
. (3.1)

Expressions (2.12) and (3.1) give us the main re-
sults of the present analysis. In particular, after rou-
tine arithmetical manipulations we find that the

mean amplitude dG5
def

^zG
2 &1/2 of the necrosis bound-

ary perturbations is

dG5
F~T02Ta!

&LnG
Ag0~0 !;

1
Ln

R, (3.2)

where we have taken into account the estimate G
;(T02Ta)/R and g0(0);1, F;1. Besides, we see
that the correlation length lG of these perturbations
coincides with the correlation length of the perfu-
sion rate nonuniformities lv , so, by virtue of (1.3),
(1.4):

lG5lv;
1

ALn

R. (3.3)

Expression (3.3) gives us also the estimate of the
characteristic time tG describing the dynamics of
the necrosis boundary perturbations:

tG;
lv

q
;

lvt

R
;

1

ALn

t (3.4)

because the necrosis boundary perturbations are
governed mainly by the temperature nonuniformi-
ties of scales about lv .

Concluding the present section note that at the
beginning we have assumed the layer of partially
damaged tissue to be sufficiently thin in compari-
son with the amplitude dG of the necrosis boundary
perturbations. This assumption is basic in the
present analysis using the free boundary model, so
we now should justify it. From (1.6) and (3.2) we
find

dz

dG
5

&

FAg0~0 !

DLn

~T02Ta!
;0.5 (3.5)

for the typical values of the parameters D;3 °C,
T0;65 °C, Ta'37 °C, and Ln;4. This estimate
shows that in fact the ratio dz /dG can be treated as
a small parameter. In other words, the random per-
turbations of the necrosis boundary do sufficiently
exceed its physical thickness, i.e., the thickness of
the layer of partially damaged tissue. Besides, by
virtue of the inequality dG!R the fact that in the
253OURNAL OF BIOMEDICAL OPTICS d APRIL 1999 d VOL. 4 NO. 2
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present approximation we have obtained a specific
expression for the necrosis perturbations demon-
strates that the adopted free boundary model holds
and gives an adequate relation between the velocity
q of the necrosis interface and the coagulation tem-
perature T0. At the first approximation this relation
is not affected by the random temperature nonuni-
formities.

It also should be pointed out that the universal
form of relations (3.2)–(3.4) is due to the vascular
network being fractal in structure.7

In addition, to make the physical sense of the
main result (3.2) more clear let us obtain this esti-
mate in a simple qualitative way. At the first ap-
proximation we can state18 that at the necrosis
boundary G the temperature is a fixed constant T0

;65 °C. In this case the form of the necrosis do-
main perturbed by the random temperature non-
uniformities dT(r,t) is specified by the condition

@ T̄~r,t !1dT~r,t !#urPG5T0. (3.6)

In a neighborhood of the necrosis boundary G
whose size is much less than the mean necrosis ra-
dius R the spatial variations in the averaged tem-
perature T̄(r,t) can be approximated by a linear de-
pendence on the spatial coordinates r:

T̄~r,t !'T02G@r2R# (3.7)

provided the origin, r50, is placed at the necrosis
center. Then taking into account (1.8) and (3.7) we
find from (3.6) the mean amplitude of the necrosis
boundary perturbations,

dG;
s

G
;

1
Ln

lT;
1

Ln
R (3.8)

or, what is the same, the thickness of the layer in-
side which the random perturbations of the necro-
sis boundary are practically located (Figure 3).

4 CONCLUSION

In the present paper we have analyzed the effect of
the vascular network discreteness on the form of
the necrosis domain whose growth is due to ther-
mal coagulation limited by heat diffusion. This dis-
creteness manifests itself in temperature nonunifor-
mities treated as random.

In particular, we have shown that:

• The random perturbation of the necrosis
boundary caused by such temperature non-
uniformities exceeds remarkably in amplitude
the thickness dz of the layer of partially dam-
aged tissue where thermal coagulation is un-
der way.

• The mean amplitude dG of these perturba-
tions, the correlation length lG , and the char-
acteristic time tG of their dynamics are esti-
254 JOURNAL OF BIOMEDICAL OPTICS d APRIL 1999 d VOL. 4 NO. 2
mated as

dG;
1
Ln

R, lG;
1

ALn

R, tG;
1

ALn

t ,

where R is the mean size of the necrosis do-
main, t is a typical duration of the thermo-
therapy course, and the factor Ln'ln(l/a)
(l/a;40 is the characteristic ratio of the indi-
vidual length to radius of blood vessels form-
ing peripheral circulation systems).

• The practically universal form of the given ex-
pressions relating the physical parameters dG ,
lG , tG of the random perturbations of the ne-
crosis boundary to the mean necrosis size R

and a typical duration t of the thermotherapy
course is due to the vascular network being
fractal in structure.

• Because of the inequality dG!R the free
boundary model18,19 gives the adequate rela-
tion between the necrosis growth velocity q
and the coagulation temperature T0 although
it ignores the necrosis boundary perturbations
caused by the vessel discreteness as well as
considers the layer of partially damaged tissue
infinitely thin.

Therefore, in describing local thermal coagulation
with a mean field theory like the ‘‘distributed’’
model23,24 that does not directly deal with random
temperature nonuniformities, one has to regard the
layer of partially damaged tissue and the layer con-
taining the random perturbation of the necrosis
boundary as a single effective layer of partially
damaged tissue. The latter, however, increases the
thickness dz

eff of such an effective layer by several
times with respect to this value predicted by a
‘‘pure’’ mean field theory. Another possible way to
avoid this problem is to use the free boundary
model,18,19 treating these layers as an infinitely thin
interface by virtue of dG ,dz!R.
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