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Abstract. Multimode optical interferometers represent the most viable platforms for the successful
implementation of several quantum information schemes that take advantage of optical processing. Examples
range from quantum communication and sensing, to computation, including optical neural networks, optical
reservoir computing, or simulation of complex physical systems. The realization of such routines requires high
levels of control and tunability of the parameters that define the operations carried out by the device. This
requirement becomes particularly crucial in light of recent technological improvements in integrated
photonic technologies, which enable the implementation of progressively larger circuits embedding a
considerable amount of tunable parameters. We formulate efficient procedures for the characterization of
optical circuits in the presence of imperfections that typically occur in physical experiments, such as
unbalanced losses and phase instabilities in the input and output collection stages. The algorithm aims at
reconstructing the transfer matrix that represents the optical interferometer without making any strong
assumptions about its internal structure and encoding. We show the viability of this approach in an
experimentally relevant scenario, defined by a tunable integrated photonic circuit, and we demonstrate the
effectiveness and robustness of our method. Our findings can find application in a wide range of optical
setups, based on both bulk and integrated configurations.
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1 Introduction
Linear optical networks are fundamental elements in several
protocols for computation, communication, and sensing.
Recently, many schemes for computation have found their natu-
ral implementations through optical processing, such as neuro-
morphic and reservoir computing,1–4 optical neural networks,5,6

and optical simulation.7–9 Large-scale photonic platforms are
one of the most promising candidates to implement quantum
information and quantum computation protocols.10,11 Indeed,
they have been extensively employed for quantum walks
routines,12–14 quantum machine learning algorithms,15–17 and,
recently, for experiments that aim at demonstrating quantum
advantage with photons.18–20 All these protocols in classical and

quantum optics require complex interferometric structures com-
posed of numerous optical components. Integrated photonics is
one of the best candidates to realize such optical protocols in
compact devices, offering, in addition, the capability to recon-
figure the circuit operation.11,21 The latest examples of multi-
mode optical networks22,23 have shown a significant increase
in network complexity as well as in the number of control
parameters.

The mathematical tool to model any linear optical processing
in such experiments is the unitary matrix U, which describes the
relation between input/output complex amplitudes of the electro-
magnetic field. Several relevant aspects connected to optical
network programming have been identified. They range from
engineering the optical setup for implementation of a given U,
to the identification of universal architectures that can perform
any transformation.24,25 Here we focus on the characterization of*Address all correspondence to Fabio Sciarrino, fabio.sciarrino@uniroma1.it
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linear optical circuits, which requires a systematic methodology
to verify the operation of the optical circuit, or more generally, to
reconstruct the unitary matrix implemented by the network. This
task turns out to be a nontrivial one in certain scenarios. For
example, interferometers based on a bulk optic implementation
can be typically decomposed in elementary units that can be
addressed and characterized separately. On the contrary, this
procedure is typically not viable for integrated photonic circuits,
and the network needs to be analyzed as a single element.

Several techniques have been developed to achieve full char-
acterization of integrated photonic devices by exploiting differ-
ent degrees of knowledge of the network’s internal structure
and various measurement approaches with classical or quantum
light. These algorithms can be divided into two main groups.
The first one is called the black-box approach and exploits
only the information provided by the measurements, without
assumptions on the internal structure of the optical network. The
second one is the white-box approach, which exploits knowl-
edge of the optical network structure together with the informa-
tion obtained from a set of appropriately chosen measurements.
White-box approaches usually make use of an optimization
algorithm to estimate the parameters of the given architecture.26,27

It is clear that this family of reconstruction algorithms strongly
depends on the knowledge of the relation between the optical
component parameters and the matrix elements, and thus re-
quires accurate modeling of the system, including noise proc-
esses. In contrast, black-box approaches aim at characterizing
a multimode linear optical interferometer without using any
information about its structure. They are very useful when
the structure is inaccessible, untrusted, or too complex to be
modeled.23 A black box method for linear optical circuits was
proposed in Ref. 28 and subsequently refined in Ref. 29. The
authors presented an analytical algorithm to reconstruct the
elements of the unitary matrix U from quantum light measure-
ment, via single- and two-photon experiments. The algorithm is
advantageous since it permits retrieval of matrix U even in the
presence of losses and optical phase instabilities due to fiber
connections in the input and output stages. However, such a
method requires quantum light input states and is a slow pro-
cedure, and the accuracy is limited by noisy experimental data.
In fact, the result of this reconstruction method is typically
employed as a starting point for further numerical optimization
to improve the stability of the solution. An alternative method
exploits only classical field intensities measurements.30 The
moduli of the matrix elements are measured from the field inten-
sities distribution in the output modes, while the complex phases
are estimated by a measurement of the interference fringes be-
tween two coherent beams. The two procedures for the moduli
and the phases estimations are independent, and they can be
mapped directly onto the unitary matrix without the need to ap-
ply any further optimization algorithms.26,30 With this approach,
a crucial requirement for a correct phase measurement is to per-
form the phase scan in times much shorter than the typical time
scale of phase fluctuations of the system. In addition, it cannot
be used in the presence of mode-dependent losses in the collec-
tion stages. Other black-box algorithms based on coherent light
measurements always require high phase stability during the
scan in the input and output sections,31–33 thus making them not
viable for optical setups with in-fiber connections, which are
nevertheless typical for integrated photonic devices. The last
classes we mention are machine-learning algorithms,34,35 which
need large sets of data to learn the correct transformation. Very

recently, Kuzmin et al.36 simulated the application of a super-
vised-learning strategy for the calibration of a reconfigurable
interferometer and experienced an unfavorable scaling of the
training set size with the number of modes in the black-box
scenario.

In this work, we propose a new black-box approach that aims
at solving some open issues mentioned in the past algorithms.
The goal is to provide a methodology to identify separately
mode-dependent losses and matrix elements of U via coherent
light measurements. In particular, we first present two algo-
rithms to estimate the amount of loss unbalancing in the injec-
tion and collection stages of a linear optical interferometer
and consequently characterize the moduli of the elements of the
unitary matrix. Then we move to the problem of measuring the
phases of the unitary matrix elements. Previous algorithms28,29

exploited second-order quantum optical correlations, such as
the Hong–Ou–Mandel (HOM) effect37 or the first-order classical
correlations in Mach–Zehnder-like interferometric structures.30

Since there are mathematical analogies between classical and
quantum second-order correlations,38 we propose to replace
such quantities with the second-order correlations of classical
light in a Hanbury Brown and Twiss-like experiment.39 This
approach combines some advantages of both the previous
methods, i.e., the simplicity in the use of classical light30 and
the independence from losses and optical phase instabilities
due to the fibers, characteristic of the methods that employ
two-photon pairs as input states.28,29 Moreover, we show that
the proposed classical second-order measurements depend only
on the matrix phases and not on the moduli, as for the quantum
correlations. This allows for completely independent estima-
tions of the phases, input/output losses, and the moduli of the
unitary matrix. From an experimental point of view, this is an
important improvement that reduces the propagation of the
error along the characterization process. Thus this method can
be applied in a general scenario and can be effective for different
experimental platforms, ranging from bulk to integrated and
in-fiber optical setups.

2 Overview on Black-Box Linear Optical
Circuits Reconstruction

Any ideal linear optical interferometer can be represented by a
unitary matrix U, acting linearly on the annihilation (creation)
operators of the electromagnetic field in the input modes aj and
transforming to the annihilation (creation) operators in the out-
put modes bi,

bi ¼
X
j

Uijaj; (1)

where Uij are the elements of the unitary matrix. The same re-
lation holds for classical states of light, by replacing the oper-
ators ai and bi with the complex field Ei in Eq. (1). In other
words, the elements of the unitary matrix Uij completely char-
acterize the field amplitudes’ propagation through a multimode
optical network. In general, the set of optical modes i may
represent any degree of freedom of light, such as polarization,
path, time of arrival, frequency, angular, and transverse mo-
mentum.

Optical losses deviate the interferometer operation from the
unitarity. To take into account the losses, we consider biased
insertion losses at the input and at collection stages and balanced
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internal losses, which are known to commute with the unitary
matrix.40 This assumption is not the most general, since it
considers the optical transformation U without any internal
imbalances among the modes. Currently, most of the photonic
circuits are designed in such a way that losses are practically
unbiased along the evolution and can be factorized to one of
the ends of the interferometer.25 Then our model of losses
can find applications in many scenarios. We model losses as
shown in Fig. 1(a) with a set of beam splitters placed on the
input and output modes. We further consider the presence of
unknown (and possibly unstable) phase terms on these modes.
The device is thus described by a matrix T ¼ D1UD2, whereD1

and D2 are diagonal matrices that account for such losses and
additional phases. The matrix elements of the unitary part are
expressed as Uij ¼ τije

iϕij , where τij and ϕij are the matrix
moduli and phases, respectively. In what follows, we briefly an-
alyze the two most general algorithms in the literature to recon-
struct the matrix U. The first algorithm exploits quantum light,28

and the second one is based on coherent light measurements.30

If one employs measurements with Fock states at the input of
the interferometer and photon-number-resolving detection at
the output, the results will be insensitive to the (unstable) phase
terms at the input and at the output. This means that the matrixU
and all the matrices U0 in the form U0 ¼ F1UF2, where F1 and
F2 are unitary diagonal matrices, and are equivalent. Another
invariance property of these measurements carried out with
Fock states is that the outcomes do not change with respect
to the conjugate operation U0 ¼ U�. Given these equivalence
relations, it is not necessary to reconstruct the actual unitary ma-
trix implemented by the interferometer, but only a representative
element of its class of equivalence. This is commonly defined by

choosing a matrix with real-valued elements in the first row and
first column (ϕ0i ¼ 0 and ϕi0 ¼ 0) together with the condition
that the element U11 has positive phase (ϕ11 > 0). Laing and
O’Brien28 presented an algorithm to reconstruct the value of
moduli and phases of the representative unitary matrix elements
via single-photon intensity and two-photon measurements, the
latter via the visibility V of HOM interference.37 Labeling the
input modes of the two photons as h; k, and the output ones
as i; j, the visibility is defined as

Vhk
ij ¼ 1 − ðPhk

ij ÞI
ðPhk

ij ÞD

¼ −2τjkτihτikτjh
τ2jkτ

2
ih þ τ2ikτ

2
jh

cosðϕjk þ ϕih − ϕik − ϕjhÞ; (2)

where ðPhk
ij ÞI is the probability to find the two (indistinguish-

able) photons in output modes ði; jÞ when they are injected, re-
spectively, in input modes ðh; kÞ, whereas ðPhk

ij ÞD correspond to
the same quantity with distinguishable particles. Note that the
visibility V does not change in the presence of mode-dependent
losses in both preparation and measurement stages, and thus its
estimation gives direct access to the matrix elements. By meas-
uring these quantities, it is possible to define a system of equa-
tions and to retrieve an analytical solution to the problem, as
shown in Refs. 28 and 29. One of the main constraints of such
an approach is the requirement of measurement with quantum
light. Recently, a further method that exploits quantum light
probes, such as two-mode squeezed states, and single-photon
counting combined with heterodyne measurements, provided

0
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2
Tunable phase-shi�ers

(a) (b)

(c)

CW laser

In-fiber
beam-spli�er

Fig. 1 Reconstruction of multimode optical circuits. (a) Model of a multimode interferometer con-
sidered in this work. It is composed by the ideal optical circuit described by the unitary transfor-
mation U plus layers of mode-dependent losses at the input and at the output (represented by
beam splitters) and phase instabilities (represented by sparks). Output losses take into account
also possible differences in the detection efficiencies among the modes. (b) Scheme for the
measurement of second-order cross-correlations Chk

i j with coherent light emitted by a CW laser.
The latter is coupled in single-mode fiber and split into two beams by an in-fiber beam splitter.
The two beams enter the interferometer in modes h; k . The phase modulation φM performed
by a liquid crystal compensates for the fiber phase fluctuations φ ¼ φ1 − φ2 to satisfy the conditions
in Eq. (17). (c) The three-mode integrated chip employed to test the reconstruction algorithm.
It is composed of a sequence of two tritter structures. Each tritter comprises three beam splitters,
whose reflectivity is reported in this figure, and a phase-shift equal to π∕2. Between the two tritters,
there are three heaters fR1;R2;R3g that dynamically control the optical phases between the two
structures via the thermo-optic effect.
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further refinement for reconstructing the U matrix in the pres-
ence of internal unbalanced losses.41

The other method proposed in Ref. 30, based on classical
intensity measurements, requires phase stability within the mea-
surement time to estimate matrix phases, since these values are
extracted from first-order correlation functions. This means that
in such a measurement scheme, the equivalence between U and
U0 does not hold. Additionally, the correct estimation of matrix
element moduli, which in this approach is performed independ-
ently from the phase estimations, is spoiled by the presence of
output mode-dependent losses.

3 Algorithm for Reconstruction of Linear
Interferometers

In this section, we propose an alternative black-box methodol-
ogy based on coherent light probes. This approach permits the
estimation of matrix elements moduli and losses also in the pres-
ence of loss imbalance among the modes and retrieving quan-
tities having the same properties of V without requiring phase
stability at the inputs and outputs of the interferometer.

3.1 Reconstruction of Moduli and Losses

We start our investigation with the estimation of the matrix el-
ements moduli τij. The τ2ij coefficients represent the probability
of finding a single photon in output mode j given an input mode
i or, alternatively, the fraction of classical field intensity in the
mode j. This observation allows one to define a probability
matrix Pij ¼ τ2ij. The main task is to estimate such a matrix
when mode-dependent losses are present in the preparation
and collection stages. Let us define M as the matrix obtained
from single-mode intensity measurements, estimated experi-
mentally via single-photon input states or by injecting laser light
in a single mode. Following the model presented in Fig. 1(a), the
actual measured matrix M can be expressed as

M ¼ D1PD2; (3)

where D1 and D2 are the diagonal matrices that describe the
unbalanced losses in input and output modes. The task then re-
quires reconstructing the probability matrix P and the input and
output losses matrices D1 and D2 starting from the measured
matrixM. To this end, we now introduce below two approaches
that can be used to estimate D1 and D2 up to a multiplicative
factor and, consequently, matrix P under very few assumptions
on the measured matrix M.

3.1.1 Sinkhorn’s decomposition-based algorithm

A first approach to reconstruct matrices P, D1, and D2 is ob-
tained starting from the observation that the probability matrix
P is a doubly stochastic matrix, i.e., the matrix has nonnegative
entries and the sum of each row and each column is equal to 1.
It is thus possible to apply Sinkhorn’s theorem and the matrix
scaling algorithm on this system.42,43 Indeed, a matrix with
nonnegative elements such asM admits a Sinkhorn’s decompo-
sition if it is diagonally equivalent to a doubly stochastic matrix,
i.e., can be written in the form D1PD2, where D1 and D2 are
the diagonal matrices and P is a doubly stochastic matrix. This
decomposition exactly represents the solution to our problem
[see Eq. (3)]. Sinkhorn’s theorem and subsequent extensions42

guarantee that this solution exists and it is unique. The theorem
gives us also an important warning, since the algorithm is

sensitive to the position of the zero elements of the measured
matrix M. This means that an incorrect attribution of zero-
valued elements in M, due to experimental errors or limited
measurement sensitivity, could make the matrix impossible to
decompose with Sinkhorn’s theorem.

Finding Sinkhorn’s decomposition for a nonnegative matrix
M is a special case of the matrix scaling problem that has
applications in a large variety of fields. In our case, defining
X ¼ D−1

1 and Y ¼ D−1
2 , we can write P ¼ XMY and using

the property that P has to be doubly stochastic, we obtain the
following system of equations:
�

XMY~e ¼ ~e;
YMTX~e ¼ ~e;

(4)

where ~e is the vector with all the components equal to 1.
In the literature, different algorithms have been proposed to

solve Eq. (4). Here we present a specific choice among the
possible algorithms (see Ref. 44 for a review of the possible
approaches). The chosen algorithm allows the recovery of all
three matrices in Eq. (3). The idea is to rearrange Eq. (4) in terms
of vectors ~x and ~y, which are the diagonal elements of X and Y.
Formally, they can be expressed as ~x ¼ X~e and ~y ¼ Y~e. By de-
fining the inversion of a vector as the inversion component-by-
component, ~x−1 ¼ ðx−11 ; x−12 ;…; x−1N ÞT, we find that
�
~x ¼ ðM~yÞ−1;
~y ¼ ðMT~xÞ−1: (5)

At this point, we apply an iterative algorithm to solve the
system of Eq. (5) and retrieve the two vectors ~x and ~y and,
consequently, the two diagonal matrices X and Y. Then we
can recover the probability matrix P ¼ XMY and the two loss
matrices as D1 ¼ X−1 and D2 ¼ Y−1.

3.1.2 Variance-minimization-based algorithm

In the derivation of the previous algorithm to solve Eq. (3), we
have implicitly assumed to have measured the field intensity
distribution for any combination of outputs j for any input i.
In the following method, we define an alternative procedure that
can be applied when only a subset of the inputs is available,
while requiring the capability of reconfiguring the linear optical
network.

Let us then consider an interferometer, in which it is possible
to change the probability matrix P without affecting the input
and output losses D2 and D1 and to measure all the output con-
figurations only for a subset of input modes. We first consider
the scenario, in which the light source, a single photon, or a laser
beam, is injected only in mode i. In the absence of unbalanced
losses, the outcome ~M of such intensity measurements is pro-
portional to the vector ~P, (the i’th column of the matrix P) and
represents a discrete probability distribution that depends from a
set of parameters ~θ describing the optical circuit settings. By
taking into account the presence of unbalanced losses ~D (D1

in the general case), the components Mj of vector ~M are

Mjð~θÞ ¼ IPjð~θÞDj; (6)

where I is the intensity attenuated by the input loss. Since we are
injecting light in the same mode for all measurements, this fac-
tor can be included in ~D.
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The separation of the probability from the losses in Eq. (6)
can be done starting from the following observation. Let us de-
fine the quantity Sð~α; ~θÞ as the weighted sum of the components
of ~M,

Sð~α; ~θÞ ¼
X
j

αjMjð~θÞ: (7)

If the vector of the weights ~α is proportional to the element-
wise inverse of the losses vector ~D, the quantity S does not vary
with the control parameter ~θ. In fact, when ~α ¼ β ~D−1, where β is
a global factor, we have

Sðβ ~D−1; ~θÞ ¼ β
X
j

D−1
j Mjð~θÞ ¼ β

X
j

D−1
j DjPjð~θÞ ¼ β: (8)

In general, Sð~α; ~θÞ changes with the control parameters ~θ.
Then the idea is to find the weight vector ~α such that Sð~α; ~θÞ
is constant when the control parameters ~θ vary. This vector
can be obtained by minimizing the variance of Sð~α; ~θÞ with re-
spect to ~α. The variance ξ2ð~αÞ can be estimated on a sufficiently
large set of settings of the parameters f~θig as

ξ2ð~αÞ ¼
P

n−1
i¼0 Sð~α; ~θiÞ2

n
−
�Pn−1

i¼0 Sð~α; ~θiÞ
n

�2

; (9)

where n is the number of different settings f~θig, and conse-
quently represent the size of the measurement outcome vector

f ~Mð~θiÞg. This minimization is equivalent to a quadratic optimi-
zation problem. To solve such a task, let us callMij ¼ ½ ~Mð~θiÞ�j
the matrix in which each row contains the output intensities
distribution for a particular configuration of the chip; then we
define the following positive semidefinite matrix Q as

Qhk ¼
1

n

Xn−1
i¼0

MihMik − 1

n2
Xn−1
i¼0

Xn−1
j¼0

MihMjk: (10)

Then our problem can be rewritten, in terms of the matrix Q,
as

ξ2ð~αÞ ¼
X
i

X
j

Qijαiαj: (11)

The minimization of Eq. (11) has as a trivial solution ~α ¼ ~0
(the vector with all null components) and another one that is the
eigenvector of Q corresponding to a null eigenvalue. The latter
solution corresponds exactly to the element-wise inverse of the
losses vector ~α ¼ ~D−1. In the presence of noisy experimental
data, the solution is the eigenvector of Q corresponding to
the lowest eigenvalue. Alternatively, the nontrivial solution
can be found by an ordinary numerical minimization approach
of Eq. (11). This can be fulfilled by setting a normalization con-
straint ~N · ~α ¼ 1 for some normalization vector ~N, since losses
can be estimated with this procedure up to a multiplicative factor
common to all the modes.

The method can be generalized to the scenario, in which one
is interested in reconstructing a submatrix of P. Then it is pos-
sible to reconstruct even the relative losses between the different
measured input modes. Here we suppose a set of output vectors

f ~Migk for each input k ∈ K and compute the variance function
ξ2kð~αÞ and the associated matrixQðkÞ. At this point, we minimize
the sum of all variances with the same constraints of the pre-
vious derivation,

X
k∈K

ξ2kð~αÞ ¼
X
i

X
j

X
k∈K

QðkÞ
ij αiαj: (12)

After the minimization, it is possible to recover the input
losses from the value of the sum function associated with each
input as follows:

ð ~D2Þk
ð ~D2Þk0

¼
1
n

P
n−1
i¼0

P
j
αjM

ðkÞ
ij

1
m

P
m−1
i¼0

P
j
αjM

ðk0Þ
ij

: (13)

3.2 Reconstruction of the Internal Phases with
Classical Light

Here we propose a procedure to estimate the complex phases of
the matrix elements ϕij. The methods reported in Refs. 28 and
29 employ the visibility of the HOM effect described in Eq. (2)
for this task, by sending a two-photon input state whose indis-
tinguishability is tuned during the experiment. In this work,
we propose an analogous quantity that can be measured by
intensity cross-correlation at the output of the linear network
with classical light. The measurement scheme is presented in
Fig. 1(b). The laser source is split and sent into the network
in modes ðh; kÞ. The additional phases φ1 and φ2 account for
phase instabilities in the optical paths between the sources
and the interferometer. We can define the cross-correlation σhkij
between the output modes ði; jÞ when the two beams enter from
modes ðh; kÞ as

σhkij ¼ hðIi − hIiiÞðIj − hIjiÞi ¼ hIiIji − hIiihIji; (14)

where Ii and Ij are the field intensities in the corresponding out-
put modes, whereas h·i is the time average. We define also the
self-correlation σhkii of the intensity fluctuation as

σhkii ¼ hðIi − hIiiÞ2i ¼ hI2i i − hIii2: (15)

We make the hypotheses that (i) the external phase fluctua-
tions φ ¼ φ1 − φ2 have zero time average and (ii) the input laser
intensity is constant. After some calculations, reported in Sec. II
in the Supplementary Material, we can define the normalized
cross-correlation Chk

ij as

Chk
ij ¼ σhkijffiffiffiffiffiffiffiffiffiffiffiffiffi

σhkii σ
hk
jj

q ¼ cosðϕih − ϕik − ϕjh þ ϕjkÞ: (16)

Note that this quantity only depends on the phase of the ma-
trix elements. Similar to HOM visibility in two-photon experi-
ments, the set fChk

ij g does not depend on the input and output
losses. Additionally, and at variance with HOM visibility,
fChk

ij g does not depend also on the moduli fτi;jg of the matrix
elements, thus permitting an independent estimation of the
phases. The derivation of Eq. (16) is performed under a specific
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assumption on the external optical phase fluctuations at the
input. More specifically, we require that

heιφi ¼ 0 he2ιφi ¼ 0: (17)

In general, mechanical and thermal phase fluctuations do not
satisfy these conditions. These equations can be satisfied by
adding a phase modulator in one of the two input paths. In this
scenario, the external phase contribution can be expressed as
φ ¼ φM þ φT , where φM is the modulated phase and φT is
the one modified by thermal and mechanical noise. Since
the two contributions are uncorrelated, we can write heιφi ¼
heιφMiheιφT i. Controlling the phase modulation such that
heιφMi ¼ 0 and he2ιφMi ¼ 0, for example, by adding white noise
with appropriate amplitude or by a discrete set of phases, the
conditions of Eq. (17) can be satisfied.

3.3 Complete Algorithm

Given the methods defined above, we can summarize the com-
plete procedure to reconstruct the matrix U as follows:

1. Perform field intensity measurements in the output of
the circuit. Apply the Sinkhorn-based algorithm to retrieve the
complete set of moduli for the matrix elements (fτi;jg) or the
variance minimization approach to estimate a specific subset.

2. Perform cross-correlation measurements in pairs of the
output of the circuit. Solve the system of equations for the
set fChk

ij g to extract the complex phases of the unitary matrix.

Note that point 2 has some similarities to the procedure pro-
posed in Refs. 28 and 29 with HOM visibilities. In particular,
this approach could require a further minimization step on a
larger set of fChk

ij g with respect to the minimum ensemble
needed to solve the system. Nonetheless, it is worth noting that,
in our case, we do not require (i) the use of indistinguishable
single-photon states and (ii) the measurements of fChk

ij g give
us directly the information about the phases without requiring
the knowledge of the matrix moduli. In fact, in our algorithm,
points 1 and 2 are independent, as for the previous methods with
coherent probe light,30,33 but have the additional features of per-
mitting the estimation of losses. Furthermore, it can be applied
in any scenario with phase instabilities.

4 Experimental Verification in a
Reconfigurable Integrated Circuit

We tested the complete algorithm described in the previous
section in a three-mode reconfigurable optical circuit. The
waveguides of the device were fabricated in a glass sample
via the femtosecond laser-writing technique45 (see Sec. III in
the Supplementary Material for more details). The structure is
composed of a sequence of two tritters, a circuit that generalizes
the beam splitter over three modes46,47 [see also Fig. 1(c)].
Between the two tritters, the presence of three resistive heaters
permits the change of the unitary transformation performed by
the circuit via the thermo-optic effect. The measurements were
performed with a continuous-wave (CW) laser at the wavelength
of λ ¼ 785 nm. The laser is routed in different input modes via a
fiber switch connected to a fiber array that injects light into the
input port of the interferometer. The field intensity distribution
in the three output ports was recorded via a CCD camera.

Our first experimental test regards the two algorithms de-
scribed above, to retrieve the losses vectors and moduli of

the matrix elements. In Figs. 2(a) and 2(b), we report the results
for the application of Sinkhorn’s decomposition method. In
particular, in (a), we report the measured field intensity M for
a particular configuration of the chip, normalized to the column
total intensity. Here we inserted on-purpose additional losses by
placing an attenuation filter on the output mode 0, to test the
performances of the approach. In Fig. 2(b), we report the prob-
ability matrix P after the applications of the Sinkhorn algorithm.
We measured the moduli of a set of N different transformations
U, each of them in two loss conditions, namely, by inserting and
removing the attenuation filter in mode 0. Defining the fidelity

as F ¼ ð1∕3P2
i;j¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
PijP0

ij

q
Þ2, the average classical similarity

between the two reconstructed distributions in the two losses
configurations for a given U via the Sinkhorn method is
F ¼ 0.9999� 0.0001 (Fmin ¼ 0.9997). The average was esti-
mated on the set of the N pairs of matrices. This confirms that
the method works properly in different mode-dependent loss
configurations and retrieves, as expected, always the same
moduli jτi;jj2 associated with the transformation U.

We then move to test the second algorithm based on variance
minimization. In Fig. 2(c), we report the measured field inten-
sity in the three outputs of the interferometer for different dis-
sipated powers in one heater, thus corresponding to different
evolutions of U, when the signal is injected in input 0. We also
report the sum (red curve) of the three intensities for each tested
configuration for U. We observe that such a sum is not constant,
as one would expect if the output losses were balanced. In
Fig. 2(d), we report the same curves after applying the variance
minimization algorithm, showing that the application of the al-
gorithm makes the sum constant with respect to changes in the
internal transformation. We repeat the same procedure of the
previous paragraph by tuning the output mode-dependent losses,
showing the capability of retrieving the correct moduli values.
The average fidelity, among the same set ofN internal operations,
between the reconstructed distributions in the two different
conditions of losses after the application of the algorithm is F ¼
0.9996� 0.0002 (Fmin ¼ 0.9990). As a further confirmation, we
compared the distributions, corresponding to the same optical cir-
cuit settings, retrieved by the application of the two algorithms.
The mean fidelity between the reconstructed matrix with the two
methods is F ¼ 0.999� 0.001 (Fmin ¼ 0.992), thus confirming
the effectiveness of both algorithms.

Finally, we tested the measurement of the cross-correlations
defined in Eq. (16) for the phase reconstruction. Since the phase
fluctuations of the fibers do not fulfill the conditions of Eq. (17),
we placed a liquid crystal in one arm before the first input of
the photonic chip. For the phase modulation, we used a discrete
set of phases instead of a continuous one. In particular, we
employed the set f0,2π∕3,4π∕3g. After recording the temporal
fluctuations of the output field intensities, we calculated the
normalized cross-correlations for various configurations of
the interferometer (red dot in Fig. 3). These measurements are
compared with the predictions made by an independent charac-
terization of the device via a white-box algorithm, used as a
reference to test our approach. By this alternative method, which
exploits the structure of the two tritters, the moduli and the
phases of the matrix are retrieved directly from the field inten-
sity distributions of the previous paragraph. It follows that,
in this white-box approach used as a reference, the cosines of
the internal phases are the result of a numerical optimization
between the parameters of the optical circuit, which is designed

Hoch et al.: Characterization of multimode linear optical networks

Advanced Photonics Nexus 016007-6 Jan∕Feb 2023 • Vol. 2(1)

https://doi.org/10.1117/1.APN.2.1.016007.s01


according to the structure in Fig. 1(c) and the measurements of
the ~P distributions. The blue curve in Fig. 3 represents the pre-
diction of such an optimization. We observe that the direct mea-
surement of cross-correlation via the proposed approach with

classical light and the same quantities retrieved via the white-
box method are compatible with the experimental error, with
a normalized χ2 ¼ 1.09. As a final comparison, we compute
the fidelity between the second column of the matrix retrieved

(a) (b) (c)

Fig. 3 Cross-correlation measurements. We report the measurement of the normalized cross-
correlations Chk

ij for different pairs of outputs, entering from ðh; kÞ ¼ ð0,1Þ. In particular, we mea-
sure the pairs (a) (0,1), (b) (0, 2), and (c) (1, 2). We report the experimental correlations for different
configurations of the dissipated electrical power in the heater R1 as in red. The predictions
according to the results of a white-box fit that makes use of the structure of the interferometer
and the previous measurements of the matrix moduli as in blue. The two independent estimations
are in good agreement within one standard deviation of the experimental error.

(a) (b)

(c) (d)

(W)

M

(W)

Fig. 2 Losses and moduli estimation. We show the results of the Sinhkorn- and variance mini-
mization-based algorithms. First, we compare the matrix of the field intensities M (a) with the ma-
trix P after the application of the Sinkhorn’s algorithm (b). (c) We report the output intensity
distribution at the three output ports when the laser is injected in the first input for different values
of the electrical powers dissipated in the resistor R1. Red points correspond to the sum of the three
intensities in the outputs (blue, output port 0; orange, output port 1; and green, output port 2).
(d) We report the distribution ~P and the sum after the application of the variance minimization
algorithm. The error bars reported in (c) correspond to the precision of the field intensity measure-
ments performed by a power meter. They are propagated to estimate the error of the sum. The
error bars in (d) are the result of a Monte Carlo approach applied to the reconstruction algorithm.
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via our black-box algorithm (bb) Ubb
i1 and the column of the

white-box approach (wb) Uwb
i1 . We choose the second column

of the matrix, since it presents nontrivial phases, namely,
ϕi1 ≠ 0 for i > 0. Indeed, the first row and column are imposed
to be real vectors because of the equivalence between U and
U0 ¼ F1UF2 with F1 and F2 unitary diagonal matrices. The
fidelity defined here as F ¼ jP2

i¼0 U
bb
i1 ðUwb

i1 Þ�j2, i.e., the over-
lap between pure single-photon states described by the second
column of U, has been estimated for each configuration of the
dissipated power in R1 reported in Fig. 3. The average fidelity is
F ¼ 0.999� 0.001 (Fmin ¼ 0.994).

5 Discussion
In this work, we presented algorithms to characterize the oper-
ation of multimode linear optical circuits. In particular, we have
shown the possibility of reconstructing the moduli of the unitary
matrix element by field intensity measurements, in the presence
of unbalanced losses at the input and output ports. This is in
contrast to the previous black-box algorithms28,29 that can recon-
struct the moduli of the matrix only after phases measurements
via HOM visibility and by imposing the constraint to have a
unitary matrix. In addition, our procedure can provide directly
the differential losses among the waveguides at the input and
output. We also proposed a method to characterize the internal
matrix phases based on intensity correlations of coherent light
beams at the outputs of the linear network. These measurement
methods do not require knowledge of the matrix moduli and of
input/output losses. These approaches enable the possibility of
characterizing separately the moduli and the phases of the uni-
tary matrix implemented by the optical network with a reliable
and independent approach. Furthermore, all presented algo-
rithms are polynomial in the number of modes of the interfer-
ometer, both for the execution time and for the number of
measurements required, sharing the same scaling of previous
state-of-the-art algorithms. This property makes our algorithms
suitable for adaption to large-scale interferometers. An open
issue regards the inclusion of unbalanced internal losses in
the model. Some recent works have proposed some solutions
for taking into account such sources of noise in the U
reconstruction.41 We foresee as a future purpose of our work
to adopt the same strategy of independent estimations of moduli
and phases to detect the effects of such imperfections. We pro-
vided experimental proof of the effectiveness of the algorithm
by verifying its performance on a three-mode reconfigurable
integrated optical circuit. In this analysis, we compared the re-
sults with the predictions of an independent reconstruction that
exploits the knowledge of the internal structure of the circuit,
which may be in general unknown or too complex to model
when taking into account noise processes.

Our findings pave the way for the successful adoption of
such an effective black-box methodology to large-scale optical
networks, which nowadays are approaching a high number of
optical modes and components,19,22,23 with applications ranging
from quantum communication and sensing to quantum compu-
tation and simulation via photonic systems.
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