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Abstract. The ASTRO-H hard x-ray telescope (HXT) is designed to reflect hard x-rays with energies up to
80 keV. It will make use of thin-foil, multinested conical optics with depth-graded platinum/carbon (Pt/C) multi-
layers. We report on thermal stress tests of the HXT reflectors. The reflectors were fabricated on a heat-formed
aluminum substrate of thickness gauged at 200 μm of the alloy 5052. This was followed by an epoxy replication
on Pt/C-sputtered smooth Pyrex cylindrical mandrels to acquire the x-ray reflective surface. For the thermal tests,
the reflectors were maintained at three different temperatures: −5, 50, and 60°C, respectively, for a week. We
found that the surface of the reflectors were significantly changed at temperatures of 60°C or higher. The change
appears as wrinkles with a typical scale length of a few tens of microns. No changes on the surface were
observed from the −5 and 50°C samples. There was also no change in the x-ray reflectivity for these two temper-
atures. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.1.3.034001]
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1 Introduction
The ASTRO-H1 hard x-ray telescope (HXT) has conical-foil
mirrors with depth-graded multilayer reflecting surfaces that
provide reflectivity over a 5 to 80 keVenergy range.2 The effec-
tive area of the HXT is maximized for a long focal length of
12 m giving an effective area of ∼350 cm2 at 30 keV for the
two HXTs. A depth-graded multilayer mirror reflects x rays not
only by total external reflection, but also by Bragg reflection.
In order to obtain high reflectivity up to 80 keV, the HXTs
have a stack of multilayer reflectors with different sets of peri-
odic length and number of layer pairs with a platinum/carbon
(Pt/C) coating.

The reflector has a bilayer structure with a ∼0.2-μm-thick
depth-graded multilayer, a ∼20-μm-thick epoxy, and a 200-μm-
thick aluminum substrate. Wrinkle formation in such bilayers
resulting from compressive stresses due to a heat load is a
well-known problem (e.g., Ref. 3). The wrinkles also degrade
the performance of the x-ray reflection so that it is critical to
know the upper and lower temperature boundaries for which

the wrinkles do not form. We, therefore, performed thermal
stress tests of the depth-graded Pt/C reflectors used by the
ASTRO-H HXT. Such replicated thin-foil reflectors are planned
for many future missions.4–9 A record of the storage temperature
is, therefore, useful in order to quickly examine the validity of
a given thermal environment of such satellite systems.

We prepared samples by randomly choosing two reflectors
for flight use. The depth-graded Pt/C multilayer was sputtered
onto the glass mandrel, which was then sprayed with epoxy
(EPOTEK 301-2) and was transferred onto the aluminum sub-
strate (A5052). The group ID of the sets of periodic length and
number of layer pairs is six.2 Details of the reflector production
can be found in Ref. 2.

2 Experiments
For the stress tests, the prepared samples were placed into
a constant-temperature oven and annealed for a period of
time. The samples were then removed one at a time to examine
for temporal changes of the surface structure using four
different methods. The methods we used are summarized in
Table 1. All measurements were made under room temperature
environment.
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The reflector originally had a height of 20 cm and a radius
of 150 mm. Because this is too large to be measured with the
atomic force microscope (AFM), a microscope, and an interfer-
ometer, one reflector was cut into squares measuring 20 mm
by 20 mm. From these, six pieces were chosen randomly and
affixed to a brass sheet (Fig. 1). A 20 mm by 20 mm square
sample was used for three measurements: AFM, scanning white
light interferometry, and microscope.

A different, un-cut reflector was used for the evaluation of
the x-ray reflectivity.

3 Measurements of the Surface “Waviness”

3.1 Temperatures of 60°C or Higher

Surface waviness with a scale length of>1 μm is measured with
a scanning white light interferometer and microscope. The scan-
ning white light interferometer used is the NewView200 (Zygo
Co.), while the microscope is an option mode of the nano-search
microscope (Olympus Co.). Both machines are located at Chubu
University.

We found that the samples exposed to temperatures of 60°C
or higher showed wrinkles. An example taken with the micro-
scope is shown in Fig. 2. The scale length of the wrinkles is
∼20 μm, to which both the microscope and the scanning white
light interferometer are sensitive.

The ∼20-μm scale wavelength corresponds to the thickness
of the epoxy layer (20 μm), so that the wrinkles can be inter-
preted as being caused by compressive stress in the Pt/C multi-
layer during a heat load. The scale length of the wrinkles may
be limited by the thickness of the epoxy layer.

It is also notable that the cure temperature of the epoxy used
in the reflector is 50°C.2 The glass transition temperature of the
epoxy is 65°C or higher (EPOTEK 301-2 Technical Data Sheet).
The 60°C temperature at which we detected the wrinkles is
higher than the cure temperature and lower than the glass tran-
sition temperature. The appearance of the wrinkles at 60°C may
also depend on the properties of the epoxy.

3.2 Temperatures Between −5 and 50°C

In order to identify the temperature range where there is no
damage by a heat load, we made the assumption that the lower
and upper temperature boundaries where the performance is

Table 1 Summary of the methods used.

Method Machine name Sample Sensitive wavelength

X-ray reflectivity ISAS 4 m x-ray beamline Full foil ≤0.1 mm

Atomic force microscope Nano-search microscope 20 mm × 20 mm ∼20 nm to ∼5 μm

Scanning white light Interferometry NewView200 20 mm × 20 mm ∼1 to 250 μm

Microscope Nano-search microscope 20 mm × 20 mm A few micrometers to ∼1 mm

Table 2 Root mean square (r.m.s.) of the NewView200
measurements.

r.m.s. (nm)

No heat load 0.46� 0.10

After 50°C load 0.43� 0.12

After −5°C load 0.51� 0.14

Fig. 1 Picture of the 20 mm × 20 mm sample of the platinum/carbon
supermirror reflector.

Fig. 2 Picture taken with the microscope after the exposure at 60°C.

Fig. 3 History of the head load of −5 and 50°C for the reflector
samples.
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unaffected are −5 and 50°C. We then tested to see whether or not
the assumption is valid.

Figure 3 shows a history of the reflector samples. We mea-
sured the surface at room temperature and placed the samples
at 50°C in a constant-temperature oven in the atmosphere and
annealed for five days. We then made the measurements and
placed them at −5°C in vacuum for five days. We then repeated
the measurements in the atmosphere.

Figure 4 shows an example of a three-dimensional image
taken with the interferometer NewView200. We measured six
pieces of the 20 mm × 20 mm sample and three local spots
per sample. The root mean square (r.m.s.) of the image height
of the 18 datasets was obtained. The average of the r.m.s. is also

listed in Table 2. The results showed that the surface is not sig-
nificantly changed after heat loads of 50 and −5 °C.

4 Roughness Measurements
Small-scale angstrom-level waviness (roughness) with a scale
length of ∼0.1 μm was measured using two methods for the
samples taken at 50 and −5°C. One method was x-ray reflec-
tivity measurements: The x-ray reflectivity depends on the
roughness of the reflector’s surface, where the sensitivity of the
x-ray reflectivity to surface roughness is typically a few ang-
stroms. We thus measured the x-ray reflectivity of the reflectors
at the ISAS 4 m x-ray beam facility, using a collimated x-ray
beam as narrow as 0.05 mm and at a distance of ∼4 m from
the x-ray generator (RIGAKU RU-200). The incident energy is
fixed at 8.05 keV (Cu-Kα). A proportional counter was used as
the detector. The results of the reflectivity are shown in Fig. 5.
The x-ray reflectivity of the three samples at the different tem-
perature loads are consistent with each other.

The second roughness measurement was made with the AFM
in the dynamic force microscopy mode. We used the nano-
search microscope provided by Olympus Co. The roughness
was 3 Å (r.m.s.) from the surface of the samples that had been
maintained at 50 and −5°C. This confirmed that there was no
significant change in the roughness for any sample.

5 Summary
A thermal stress test was made for the reflector of the ASTRO-H
HXT. The reflector has a bilayer structure with a ∼0.2-μm-thick
Pt/C depth-graded multilayer, a ∼20-μm-thick epoxy, and
a 200-μm-thick aluminum substrate. The epoxy is EPOTEK
301-2 and is cured at 50°C.

Wrinkles with a typical scale length of a few tens of microns
were observed at the surface after it had been exposed to a 60°C
temperature environment. On the other hand, no significant
changes were seen for the reflectors exposed to temperatures
of −5 and 50°C.
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Fig. 4 An example of the three-dimensional surface profile taken with the interferometer NewView200
after the 50°C load.
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Fig. 5 X-ray reflectivity at 8.0 keV. Black, red, and blue correspond to
the data taken before the thermal stress (circle), after the 50 °C expe-
rience (triangle), and after −5°C (square).
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