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Abstract. An explanation for the origin of asymmetry along the preferential axis of the point spread function
(PSF) of an AO system is developed. When phase errors from high-altitude turbulence scintillate due to Fresnel
propagation, wavefront amplitude errors may be spatially offset from residual phase errors. These correlated
errors appear as asymmetry in the image plane under the Fraunhofer condition. In an analytic model with
an open-loop AO system, the strength of the asymmetry is calculated for a single mode of phase aberration,
which generalizes to two dimensions under a Fourier decomposition of the complex illumination. Other param-
eters included are the spatial offset of the AO correction, which is the wind velocity in the frozen flow regime
multiplied by the effective AO time delay and propagation distance or altitude of the turbulent layer. In this model,
the asymmetry is strongest when the wind is slow and nearest to the coronagraphic mask when the turbulent
layer is far away, such as when the telescope is pointing low toward the horizon. A great emphasis is made about
the fact that the brighter asymmetric lobe of the PSF points in the opposite direction as the wind, which is con-
sistent analytically with the clarification that the image plane electric field distribution is actually the inverse
Fourier transform of the aperture plane. Validation of this understanding is made with observations taken from
the Gemini Planet Imager, as well as being reproducible in end-to-end AO simulations.© The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.JATIS.5.4.049003]
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1 Introduction
The advancement of adaptive optics (AO) as a technology has
enabled significant progress in astrophysics. Notably, the
Gemini Planet Imager (GPI) is one such instrument,1 where fast
and precise correction is pivotal to optimize instrument perfor-
mance. The results so far have been spectacular. With detections
of multiple planetary mass companions around various stars, as
well as strong nondetection limits around many more, one can
constrain planetary population distributions.2 Astrometric mea-
surements of multibody systems probe dynamical constraints on
planetary masses and system lifetimes3 and provide a spectacu-
lar view of Kepler’s laws in action. Spectral measurements of
individual giant planets constrain evolutionary and atmospheric
models4 of these objects, paving the way toward characterization
of extrasolar terrestrial planets.

For this generation of instruments and the next, understand-
ing the point spread function (PSF) of AO instruments on giant
telescopes will be important for the development of algorithms
optimized in the search for planets.5,6 The analysis in this paper
expands on our previous work,7 which demonstrated the origin
of azimuthal asymmetry in the PSF as a consequence of the time
lag error, to explore asymmetry along the preferential axis intro-
duced by scintillation. This effect has been demonstrated previ-
ously by Cantalloube et al.8 We will expand on their discussion
using a more general method of analyzing the structure of the
AO-corrected PSF analytically, as well as validating our conclu-
sions with observations and atmospheric datasets. More specifi-
cally, our formalism demonstrates that the asymmetry grows
linearly only for small spatial frequencies, and at higher spatial
frequencies becomes nonlinear. We include solutions for the
zeros of the log of the asymmetry metric, which are image loca-
tions with an observable return to symmetry.

The analysis in this paper is presented as a trident—theory,
simulations, and observations. The first section derives the
method of angular spectrum Fresnel propagation from the time-
independent wave equation. This technique allows us to analyti-
cally calculate the PSF formed from a single mode of phase
aberration that is both scintillated and time-lag corrected. The
PSF for this single mode is computed to second order in a
Taylor expansion, which is well matched when compared to
a numerical solution involving the discrete Fourier transform.
In the second section, these methods are extended broadly to
waves propagating through an atmospheric model with
Kolmogorov turbulence in the frozen flow regime, which repro-
duces the behavior in a moderately accurate simulation of an
entire telescope employing AO. The third section demonstrates
the effects from our analytic model are observable in real data
taken from the Gemini Planet Imager. We then explore correla-
tions in the observations when combined with a meteorological
dataset containing the real wind velocities and directions in the
atmosphere during the observations. Finally, this paper con-
cludes with a brief discussion about the importance of this effect
in the context of improving AO systems performance from
design to postprocessing.

2 Theoretical Scintillation Analysis

2.1 Angular Spectrum Fresnel Propagation

To evaluate the effects of Fresnel propagation and scintillation,
we derive the method of the angular spectrum. For an arbitrary
complex illumination U of the electric field, we can consider
its decomposition into its angular spectrum Ũ given by the

two-dimensional inverse Fourier transform in the plane ðx; yÞ
at some constant z:

EQ-TARGET;temp:intralink-;e001;326;730Uðx; y; zÞ ¼
ZZþ∞

−∞

Ũðkx; ky; zÞeiðkxxþkyyÞdkx dky: (1)

Direct application of the Helmholtz equation:

EQ-TARGET;temp:intralink-;e002;326;662ð∇2 þ k2ÞUðx; y; zÞ ¼ 0 (2)

to this decomposition will allow us to derive a formula for the
propagation through free space of an arbitrary illumination. For

a wave propagating with wave vector ~k ¼ kxx̂þ kyŷþ kzẑ,

implying k2 ¼ j~kj2 ¼ k2x þ k2y þ k2z , we find that propagation
along the z axis is constrained by the second-order ordinary dif-
ferential equation:

EQ-TARGET;temp:intralink-;e003;326;557

d2

dz2
ŨðzÞ þ k2zŨðzÞ ¼ 0; (3)

where we have implicitly included the dependence of Ũ on the
particular mode ðkx; kyÞ. This differential equation permits
solutions of the form:

EQ-TARGET;temp:intralink-;e004;326;479ŨðzÞ ¼ Ũðz ¼ 0Þe�ikzz; (4)

where the � represents a wave traveling in the positive or neg-
ative z direction. For a mode with kx, ky, and the magnitude of
the wave vector constrained by jkj ¼ 2π∕λ, where λ is the wave-
length of the propagating light (assumed monochromatic), this
means we can find the angular spectrum at some later plane z
from the angular spectrum at the origin z ¼ 0 by simply multi-
plying by the free-space propagation transfer function HðzÞ,
which takes on the form:

EQ-TARGET;temp:intralink-;e005;326;358Hðkx; ky; zÞ ¼ exp

�
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2π

λ

�
2

− ðk2x þ k2yÞ
s

z

�
: (5)

Making the substitution kx;y ¼ 2πfx;y to represent the true
linear wavenumber as in Goodman9 recovers this expression for
the free-space propagation transfer function:

EQ-TARGET;temp:intralink-;e006;326;274Hðfx; fy; zÞ ¼ exp

�
�i

2π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2ðf2x þ f2yÞ

q
z

�
: (6)

This allows us to consider the propagation of light through
free space as a linear spatial filter applied to each Fourier mode
of the complex illumination independently.

2.2 Single-Mode Analysis

Now that we have described how free-space propagation affects
the complex illumination of the electric field in the Fresnel
regime, we will explore an analytic derivation of how this results
in an asymmetric PSF for a single mode of phase aberration in
one dimension.

When the inverse of the spatial frequency of the mode is
much longer than the wavelength of the propagating light (or
λ2f2 ≪ 1), a binomial expansion of the free-space propagation
transfer function:
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EQ-TARGET;temp:intralink-;e007;63;752HðzÞ ≈ e−iπλf
2z (7)

allows us to perform the analysis up to a constant phase term.
In the example of a single mode of sinusoidal phase aberration
only (no amplitude errors), with period p ¼ 1∕f, and a phase
variation amplitude α, the complex illumination can be written
U ¼ Aeiϕ with

EQ-TARGET;temp:intralink-;e008;63;673A ¼ 1; (8)

EQ-TARGET;temp:intralink-;e009;63;631ϕ ¼ α sinð2πx∕pÞ: (9)

It can be shown10 that for small phase errors (α ≪ 1) the illu-
mination vector at propagation distance z takes the form
UðzÞ ¼ AðzÞeiϕðzÞ, where the phase and amplitude have appro-
priately been “mixed” due to the scintillation effects:

EQ-TARGET;temp:intralink-;e010;63;576AðzÞ ¼ 1þ α sinð2πz∕zTÞ sinð2πx∕pÞ; (10)

EQ-TARGET;temp:intralink-;e011;63;534ϕðzÞ ¼ α cosð2πz∕zTÞ sinð2πx∕pÞ: (11)

Here zT is the Talbot length:

EQ-TARGET;temp:intralink-;e012;63;513zT ¼ λ

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2f2

p ≈
2

λf2
: (12)

With the assumption that an ideal AO system corrects phase
aberrations after a short delay t due to the servo-lag error, our
AO-corrected phase will be the difference between two propa-
gated modes, one shifted along the direction of the wind with the
coordinate transform x → x − vt, if the wind velocity v points
along the positive x axis, and the other the initially measured
phase:

EQ-TARGET;temp:intralink-;e013;63;390ϕAO ¼ ϕzðx − vtÞ − ϕzðxÞ; (13)

EQ-TARGET;temp:intralink-;e014;326;752

ϕAO ¼ α cosð2πz∕zTÞ
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosð2πvt∕pÞ

p
× sin

�
2πx∕pþ arctan

�
− sinð2πvt∕pÞ
cosð2πvt∕pÞ − 1

��
: (14)

To simplify this expression, we will use the substitutions:

EQ-TARGET;temp:intralink-;e015;326;687A ¼ α sinð2πz∕zTÞ; (15)

EQ-TARGET;temp:intralink-;e016;326;645P ¼ α cosð2πz∕zTÞ
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosð2πvt∕pÞ

p
; (16)

EQ-TARGET;temp:intralink-;e017;326;622Δ ¼ −
p
2π

arctan

�
− sinð2πvt∕pÞ
cosð2πvt∕pÞ − 1

�
; (17)

where A represents the term that modulates the amplitude, P is
the term that modulates the phase, andΔ is a term that represents
a phase shift between the amplitude term and the phase term.
With these substitutions, the expressions for our AO-corrected
amplitude and phase become

EQ-TARGET;temp:intralink-;e018;326;543AAO ¼ 1þA sin½2πðx − vtÞ∕p�; (18)

EQ-TARGET;temp:intralink-;e019;326;501ϕAO ¼ P sin½2πðx − ΔÞ∕p�: (19)

An example of a single mode of AO-corrected illumination
and its corresponding electric field distribution in the image
plane is demonstrated in Fig. 1. For this figure, the principal
observation is how the delayed AO correction and scintillation
produce residual errors which are spatially offset, and how the
corresponding speckles in the image plane are asymmetric.

2.3 Open-Loop Model Validation

To validate the assumption that an open-loop AO model can
accurately reproduce the behavior of a true closed-loop AO sys-
tem, the frequency responses of both open-loop and closed-loop
AO systems were modeled. Building on the analysis done for
GPI’s AO system (see Sec. 4.D of Ref. 1 for a detailed treat-
ment), the standard AO component models and control param-
eters were used to generate error transfer functions (ETFs).

Fig. 1 An example of a single mode of AO-corrected complex illumination and corresponding asymmet-
ric speckles in the PSF. Here α ¼ :01 rad, z ¼ 10 km, p ¼ 1 m, v ¼ 10 m∕s, and t ¼ 3.2 ms. The AO-
corrected complex illumination shows small aberrations in both amplitude and phase from the Talbot
mixing, with a spatial phase offset due to the delayed correction from the servo lag. The corresponding
asymmetry is highlighted with red dots in the image plane, which is really the inverse Fourier transform,
taken in the Fraunhofer diffraction limit. The large central speckle is due to the constant amplitude, on the
left subtracted off from the displayed amplitude so that the small errors are more visible.
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The GPI AO ETF is shown in red in Fig. 2. The system has a
read-compute delay of 1.4 ms and a maximum controller gain of
0.3. An equivalent open-loop model, black curve in this figure,
was fit by adjusting the effective delay such the measurement is
applied 3.2 ms after it was taken. As shown in this figure, these
two models agree very well in terms of both magnitude and
phase response in the range of 2 to 200 Hz. Given a maximum
spatial frequency in the AO-corrected dark hole of 2.78 m−1,
these valid temporal frequencies in our model correspond to
wind velocities in the range 8 to 72 m∕s. These velocities
encompass the range of possible wind velocities we might see
naturally occurring in the jet stream, which typically ranges
from 10 to 60 m∕s. The open-loop model disagrees at the lowest
temporal frequencies, which corresponds to static errors in the
system. This discrepancy can be addressed by slightly scaling
the phase measurement, e.g.,

EQ-TARGET;temp:intralink-;e020;63;263ϕAOðtÞ ¼ ϕðtÞ − 0.997ϕðt − τÞ; (20)

where τ is the delay time. The open-loop model does not agree at
higher temporal frequencies, most obviously when temporal fre-
quency is the inverse of τ. This is when an ideal open-loop AO
system coincidentally achieves perfect correction of the translat-
ing Fourier mode, which is not physically realizable. This region
is beyond our wind speeds of interest, so the open-loop approxi-
mation is suitable for our investigation.

2.4 Fraunhofer Diffraction Limit

According to Hecht,11 the relationship between the aperture and
image planes taken in the far-field limit or the Fraunhofer dif-
fraction limit is simply the Fourier transform, and their deriva-
tion results in the expression:

EQ-TARGET;temp:intralink-;e021;326;752Eðkx; kyÞ ¼
ZZþ∞

−∞

Aðx; yÞ exp½iðkxxþ kyyÞ�dx dy: (21)

However, Goodman9 also claimed that the relationship
between the two is the Fourier transform, yet they obtain the
expression:
EQ-TARGET;temp:intralink-;e022;326;671

Uðx; yÞ ¼ eikzeik∕2zðx2þy2Þ

iλz

ZZ
∞

−∞
Uðξ; ηÞ

× exp

�
−i

2π

λz
ðxξþ yηÞ

�
dξ dη: (22)

Comparing the two different expressions, it is not immediately
obvious that they are nearly identical. However, after identifying
the electric field E and U, identifying the geometric relationship
between the coordinates in the aperture ðx; yÞ → ðξ; ηÞ and in
the image plane ðkx; kyÞ → ð2πxλz ; 2πyλz Þ, and ignoring the phase
prefactors (which do not affect the final intensity), the two
answers are comparable with the exception of the sign in the
exponent.

Since the choice of defining which Fourier transform is the
forward and which is the inverse is arbitrary, both authors
choose opposite sign conventions to arrive at the same conclu-
sion that the relationship is the forward transform. However, the
physical relationship between the two planes should not have
this sign ambiguity. This difference is traceable to an assumption
at the beginning of the derivations, where the choice of the direc-
tion of phasor rotation in a spherically converging or diverging
wave e�iðkr−ωtÞ∕r is used as a Green’s function to solve the
Huygens–Fresnel diffraction integral.

In practice, the difference between the forward and inverse
transforms is essentially a coordinate transform from x → −x
and y → −y, and so the orientation of the PSF is flipped along
both axes. For most cases, where the PSF is symmetric, this does
not matter. However, for our purposes, properly orienting the
PSF is critical and so taking note of this fact is important.
Later, we will show that in order to remain consistent with obser-
vations, the Fraunhofer diffraction limit should use the inverse
transform, with a positive sign in the exponent, which results in
the stronger asymmetric lobe of the PSF on the opposite side as
the wind.

2.5 Taylor Expansion of the Single-Mode PSF

Although it may be possible to calculate the AO-corrected elec-
tric field distribution in the image plane by taking the inverse
Fourier transform of the AO-corrected aperture illumination
by expanding it as an infinite series of Bessel functions, it is
not clear that this expression can be easily squared to get the
intensity distribution due to an infinite amount of cross terms.
Instead we will follow the conventions of Sivaramakrishnan
et al.12 and Perrin et al.13 to arrive at the intensity. However, both
Sivaramakrishan et al. and Perrin et al. assume that the image
plane PSF is the Fourier transform of the aperture plane and not
the inverse. For all of their results, this fact does not matter but
for ours we must be cautious, and remember to apply the appro-
priate coordinate transform to recover the proper result. For
small ϕ, the intensity distribution or PSF ¼ jF ½u�j2 can be
expanded in a Taylor series:

Fig. 2 Bode plot for comparing the transfer function of various open-
and closed-loop AO models. By adding an integrating factor to the
open-loop model, it becomes possible to recreate the performance
of a closed loop system on static errors, although these are outside
of the temporal frequency domain we care about, which is approxi-
mately from 2 to 200 Hz. In this range, the standard open-loop model
performs roughly as well as the integrator in mimicking the closed loop
model, although the behavior diverges when the inverse of the tem-
poral frequency becomes equal to the time delay.
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EQ-TARGET;temp:intralink-;e023;63;752PSF ≈ PSF0 þ PSF1 þ PSF2;halo þ PSF2;strehl; (23)

whose first few terms are

EQ-TARGET;temp:intralink-;e024;63;708PSF0 ¼ aa�; (24)

EQ-TARGET;temp:intralink-;e025;63;676PSF1 ¼ 2 Im½aða�⋆Φ�Þ�; (25)

EQ-TARGET;temp:intralink-;e026;63;655PSF2;halo ¼ ða⋆ΦÞða�⋆Φ�Þ; (26)

EQ-TARGET;temp:intralink-;e027;63;634PSF2;strehl ¼−
1

2
½aða�⋆Φ�⋆Φ�Þþa�ða⋆Φ⋆ΦÞ�: (27)

Here, the case change is used as shorthand for the Fourier
transform, so a ¼ FðAÞ and Φ ¼ FðϕÞ. Additionally, ⋆ is the
convolution operation and � is the complex conjugate. For our
AO-corrected illumination, these can be calculated as follows:

EQ-TARGET;temp:intralink-;e028;63;569aAO ¼ δðfÞ þ A
2i

δðf − 1∕pÞe−i2πp vt − A
2i

δðf þ 1∕pÞei2πp vt;
(28)

EQ-TARGET;temp:intralink-;e029;63;503ΦAO ¼ P
2i

δðf − 1∕pÞe−i2πpΔ −
P
2i

δðf þ 1∕pÞei2πpΔ; (29)

where δ is the Dirac delta distribution. It is worthwhile to note
that here we implicitly are using the entire real line in the Fourier
transform, which can be interpreted as using an infinitely large
telescope, or as a telescope with an idealized perfect corona-
graph. This leads to a PSF with terms:

EQ-TARGET;temp:intralink-;e030;63;428PSF0 ¼ δðfÞ þA2

4
½δðf − 1∕pÞ þ δðf þ 1∕pÞ�; (30)

EQ-TARGET;temp:intralink-;e031;63;374

PSF1 ¼
−AP
2

sin

�
2π

p
ðvt−ΔÞ

��
δðf − 1∕pÞ− δðfþ 1∕pÞ

�
;

(31)
EQ-TARGET;temp:intralink-;e032;63;334

PSF2;halo ¼
P2

4
½δðf þ 1∕pÞ þ δðf − 1∕pÞ�

þA2P2

16

�
2

�
1þ cos

�
4π

p
ðvt − ΔÞ

��
δðfÞ

þ δðf þ 2∕pÞ þ δðf − 2∕pÞ
�
; (32)

EQ-TARGET;temp:intralink-;e033;63;243

PSF2;strehl ¼
−P2

2
δðfÞ −A2P2

32

�
4þ 2 cos

�
4π

p
ðvt − ΔÞ

��
× ½δðf − 1∕pÞ þ δðf þ 1∕pÞ�: (33)

Indeed, the even order terms are symmetric and the first odd
order term PSF1 is responsible for the observed asymmetry. We
will examine the ratio of the amplitude for the speckles on either
side of the image, and to do so evaluate the PSF at the location
appropriate f ¼ �1∕p:

EQ-TARGET;temp:intralink-;e034;63;147PSF0ðf ¼ −1∕pÞ ¼ PSF0ðf ¼ 1∕pÞ ¼ A2

4
; (34)

EQ-TARGET;temp:intralink-;e035;63;93

−PSF1ðf ¼ −1∕pÞ ¼ PSF1ðf ¼ 1∕pÞ

¼ −AP
2

sin

�
2π

p
ðvt − ΔÞ

�
; (35)

EQ-TARGET;temp:intralink-;e036;326;741

PSF2ðf¼−1∕pÞ ¼ PSF2ðf¼ 1∕pÞ ¼ P2

4

−
A2P2

32

�
4þ 2 cos

�
4π

p
ðvt−ΔÞ

��
: (36)

Our metric for the ratio of the right to left speckle asymmetry
is the Taylor expansion sum of the PSF terms evaluated at these
appropriate locations:

EQ-TARGET;temp:intralink-;e037;326;657χ ¼ PSFðf ¼ 1∕pÞ
PSFðf ¼ −1∕pÞ ; (37)

which is a function of propagation distance z, mode period p,
and velocity times delay vt. A comparison of the asymmetry
metric for both the numerical single-mode scintillation using the
discrete Fourier transform and our analytic second-order Taylor
expansion is given in Fig. 3.

Highlighting a few observations from this plot: first, we
note that for wind layers at z ¼ 10 km, the first zero crossing
is not until roughly 1 arcsec in the image, and so for most of the
relevant observations, the strongest asymmetry will be on the
side opposite to the direction of the wind, though for higher
spatial frequencies corresponding to the edges of the PSF in the
image plane, this will not always be true. Second, the strength of
the asymmetry is greater for slower wind velocities in this region
of interest. Third, it is worthwhile to note that our Taylor expan-
sion generally gets the behavior of the asymmetry analytically
correct, although differs from the numerical solution due to the
absence of higher order terms in the expansion.

Fig. 3 The log of the speckle asymmetry ratio as a function of PSF
location for parameters α ¼ :01 rad, t ¼ 3.2 ms, and z ¼ 10 km. The
solid (or thin) lines represents the second-order Taylor expansion and
the dashed (or thick) lines represent the numerical solution found
using the discrete Fourier Transform. The x axis is a proxy for mode
length, transformed in PSF location when imaged in H-band at
λ ¼ 1.6 μm. The zeros corresponding to the particular mode lengths
p for which the propagation distance z is an integer multiple of zT ∕4
are plotted in black stars (or squares). For these, PSF1 ¼ 0 because
either A ∼ sinð2πz∕zT Þ ¼ 0 or P ∼ cosð2πz∕zT Þ ¼ 0, resulting in a
symmetric PSF. Although there are additional zeros when the velocity
times time delay is comparable to the mode length, visible in both the
30 and 50 m∕s case, though their analytic solution is more compli-
cated [set 2π

p ðΔ − vtÞ ¼ π∕2þ nπ, n ∈ Z].
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3 Atmospheric Turbulence Scintillation
Simulation

The response of an ideal open-loop AO system to frozen flow
Kolmogorov turbulence was developed in simulations using the
method of the angular spectrum free-space propagation and
Fourier decomposition. These simulations can place many
layers of turbulence at arbitrary altitudes, and we explore the
effects of single and multiple layers. Readers interested in the
precise details of these simulations are referred to Sec. 6, which
discusses our techniques at greater length. However, here, we
will discuss the results of these simulations in the context of the
previous analysis.

To start, the effect of scintillation in the halo of an AO PSF is
most clearly seen for the case of a single layer of Kolmogorov
turbulence, which is plotted in Fig. 4 for three characteristic
wind velocities. The single-layer simulation uses a turbulent
layer altitude of z ¼ 10 km, which roughly corresponds to the
altitude of the jet stream. The layer altitude equals the propaga-
tion distance of the light when the telescope is pointed at zenith;
however, for low elevation pointing, the propagation distance
and therefore strength of the scintillation, will grow larger.

The jet stream is the strongest layer of turbulence which
has enough relevant altitude to scintillate significantly [recall
the strength of the scintillation amplitude errors grow like
sinð2πz∕zTÞ].

The wind in the single-layer example is propagating directly
to the right, along the positive x axis. For the multilayer case, the
wind velocity for the jet stream is generally pointing toward
2 o’clock (Fig. 5). As a consequence, we can see that the
brighter asymmetric lobe of the PSF is on the opposite side
of wind direction. To remain consistent with observations, it
is necessary that the image plane is the inverse Fourier transform
of the aperture plane in the Fraunhofer limit. Looking at just the
single layer, it is apparent that the scintillation dominates for
slower wind velocities. This scintillation halo would be close
to the true PSF if the atmosphere was actually only a single layer
of turbulence. Examining the edges of the PSF, one can identify
the region where the asymmetry metric log χ ¼ 0 that was
described analytically, noticeable here as dark bands.

The halos for the single-layer case do not match real obser-
vations well. However, when we run this simulation with many
wind layers, each with unique velocities pulled from an instance

Fig. 4 For a single layer of atmospheric turbulence at z ¼ 10 km, the scintillation halo at low wind veloc-
ities is highly apparent and still noticeable at rapid velocities. Each image has its own unique colorbar, so
that the variation in the halo shape is visible, although from looking at the magnitude of the halo intensity,
it is clear that slower wind velocities are corrected better in the metric of total scattered light.

Fig. 5 For simulations with many wind layers, here L ¼ 18 is the number of layers used, the effect of the
scintillation asymmetry is significantly less apparent, although at low wind velocities where the asym-
metry is strongest, it is still visible. This is likely due to interference from the other wind layers causing
the delicate spatial offset in the illumination to become washed out when combined with the finite sam-
pling resolution of our simulation, and for real observations, the detector.

Journal of Astronomical Telescopes, Instruments, and Systems 049003-6 Oct–Dec 2019 • Vol. 5(4)

Madurowicz et al.: Asymmetries in adaptive optics point spread functions



of the NOAA GFS to mimic real observing conditions, the
extreme scintillation halo washes out. This is likely an interfer-
ence between multiple independent Kolmogorov layers masking
the delicate spatial offset for a single mode needed to create the
asymmetry demonstrated earlier. Although at a quick glance the
PSF does not appear to vary with the scaled wind velocities cited
in their titles, upon closer inspection the asymmetry remains,
and is most obvious for the slowest wind velocity. For most
observations, with jet stream velocities upward of 50 m∕s, there
are no apparent deviations from the symmetry of the butterfly
shaped halo that is often seen. But in the rare cases when the
high-altitude winds are very slow, around 10 m∕s, the scintilla-
tion becomes stronger and introduces a noticeable asymmetry in
the PSF along the axis of the wind propagation.

4 Observational Correlations
The previously discussed asymmetry for AO PSFs is observable
in real data taken from observations using the Gemini Planet
Imager. Over the course of a few years of observations, over
20,000 images were taken in H-band as a part of the GPI
Exoplanet Survey. We exercise selection cuts to find a sample
of PSFs exhibiting this characteristic asymmetry using the fol-
lowing methods.

The first metric is the fractional standard deviation (FSD) in
an annulus 30 to 70 pixels wide centered around the star’s loca-
tion. We first select images with FSD greater than one standard
deviation above the mean. This selects for images where the rel-
atively fast jet stream turbulence was dominant, producing PSFs
with the characteristic butterfly shaped halo. Then we construct
an angular profile of the image by integrating along the radial

axis. This allows us to fit for the preferential wind direction
modulo 180 deg. These techniques follow exactly from our pre-
vious work,7 yet in this work, we expand by defining the asym-
metry metric χ between the two lobes of the PSF. χ is defined
as the ratio of the summed intensities in the half-annulus
perpendicular to the axis of wind propagation. This asymmetry
metric is used to break the 180-deg symmetry of the wind axis to
find the true asymmetric butterfly vector in the image plane. In
addition, our metric χ is folded around 1 by inversion such that
the half-annulus with greater intensity is always in the numer-
ator, meaning χ always takes on values greater than 1, and larger
values correspond to greater asymmetry. Note that this χ is not
identical to the χ described earlier for the one-dimensional case,
although both are intensity ratios, this one lives in two dimen-
sions. A large sample of PSFs selected in this manner as dis-
played in Fig. 6.

These asymmetric butterfly vectors are projected from the
image plane onto the surface of the Earth, for comparison with
meteorological wind data. Readers interested in the trigonomet-
ric problem of relating the two are referenced to our techniques
in Sec. 7. The directions and velocities of the wind for various
layers in the Earth’s atmosphere are taken from the NOAA
Global Forecast System,14 archives of which are available to the
public. The distribution of wind directions for the jet stream and
the distribution of directions for the asymmetric butterfly vector
projected on the ground are displayed in Fig. 7 for a concise
comparison. It is apparent that the jet stream predominately
points East in accordance with its origin due to the rotation
of the Earth. As a consequence, the resulting asymmetric butter-
fly vector points entirely toward the West. This observation

Fig. 6 A selection of images taken with the Gemini Planet Imager, ordered by decreasing asymmetry
metric χ. Each image is the most strongly asymmetric image taken from each set of observations of a
single target, such that there are no duplicates, which shows that this effect is often recurring and not
limited to single cases. In addition, each image has been rotated and flipped such that north is up and
east is to the left. The angular size of each GPI image is 2.8” × 2.8” arc sec. In each image, the direction
of the strong asymmetry is plotted with a red arrow, and the corresponding direction in degrees azimuth
projected onto the ground is printed in the corner of each image, alongside the ratio of the asymmetry
metric χ. Glancing over the entire dataset, it is readily apparent that the strong asymmetry direction is
predominately pointing into the west.
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confirms our prior analysis regarding the strength of the asym-
metry being opposed to the direction of the wind.

To further verify this correlation between the jet stream and
the asymmetric butterfly, we take our sample of data where
χ ≥ 1.2, which is where the asymmetry begins to be noticeable
to the eye, and match the time of observation to time of the wind
data for the approximate location of Cerro Pachon, Chile, where
the Gemini South Telescope takes it observations from, and plot
the resulting correlations for the various directions of the wind
layers in Fig. 11. For most of the wind layers in the NOAAGFS,
there is little to no correlation between the direction of the asym-
metric butterfly and the direction of the wind, with the exception
of the wind layers around 100 to 300 hPa, which roughly cor-
responds to altitudes of 10 to 15 km, which is the approximate
altitude of the jet stream. The strength of these correlations, as
measured by the Pearson R coefficient, and the slopes of the best
fit lines are plotted for a concise summary in Fig. 8. The rise of
the correlations well beyond the limits imposed by a null
hypothesis bootstrap show that these strong correlations are not
spurious and a very real phenomenon.

To further explore our observations of the asymmetry, we
plot χ versus the velocity of the jet stream and the elevation
of the telescope pointing for our subset of observations which
have been temporally matched to the wind data in Fig. 9. Both
plots have reasonable correlation strength with R coefficient
around negative one half, and both of these correlations have
an intuitive sense. Our analysis showed that the asymmetry
should be strong for slower wind velocities, and this is indeed
verified through the first plot. The second has contributions from
two different effects. When the telescope is pointing toward
zenith (elevation ¼ 90 deg), the turbulent wind layers in the jet
stream are as close to the telescope as possible along the line of
sight. As a consequence, the propagation distance z will be

smaller relative to the Talbot length zT in comparison to when
the telescope is pointed lower toward the horizon. A lower
elevation value corresponds to the telescope effectively pushing
the layer for a given altitude to a further propagation distance,
giving the light more time to scintillate. This pushes the relevant
mode lengths for the asymmetry closer to the center of the
image, see Fig. 12 for a remake of Fig. 3 with z ¼ 25 km.
In addition, a low telescope elevation also has the effect of
changing the apparent wind velocity over the aperture. A tele-
scope pointing away from zenith can only observe relatively
slower wind velocities than one pointing directly up as long
as the winds are parallel to the surface of the Earth. These two
effects work together to build the strong correlation between
telescope elevation and asymmetry.

5 Discussion
High-contrast imaging systems, with large actuator counts, are
often limited by time lag errors. In particular, when observing
bright stars, they are the dominant source of scattered light
within the “dark hole” region.15 Under mid-latitude Chilean
conditions, the velocity of the jet stream is often the dominant
source of these errors, even if its contribution to the total r0 is
moderate. This implies that different observatory sites with
slower winds may have a comparative advantage, as well as the
merits in scheduling observations around poor atmospheric con-
ditions. In our previous work,7 we demonstrate that the jet
stream is highly correlated with these errors, in a very large sam-
ple of observations.

Scintillation has previously been identified as a performance
limiting factor in high-contrast imaging,16 and here we have
demonstrated the severity of this effect, visible in the form of
PSF asymmetry. This has implications for both current and
future AO systems, especially but not exclusively those designed
for high-contrast imaging. Many analyses often assume that
various sources of scattered light are uncorrelated16 for simplic-
ity. In this paper, we show that correlations between scintillation
amplitude errors and time lag phase errors exist and can domi-
nate during ideal conditions. If one simply tries to minimize the

Fig. 7 Angular histogram of the asymmetric butterfly vector’s projec-
tion onto the ground for our sample in degrees from azimuth alongside
the direction of the jet stream. The asymmetric butterfly nearly always
points west while the jet stream is nearly always points east, which is
only possible if the image plane electric field distribution is the inverse
Fourier transform of the aperture plane. These distributions are not
temporally matched but are rather the entire subset observations with
strong asymmetry and the entire distribution of jet stream wind direc-
tions over the course of the survey. For temporally matched correla-
tions, see Figs. 8 and 11.

Fig. 8 Distilling the information from the scatter plots in Fig. 11 into
their slopes and Pearson R coefficient as a function of altitude from
the GFS. The model contains layers all the way to sea level despite
the observatory being around 3 km up because of the uniform grid
spacing. The strong correlations are visible for the altitudes relevant
to the jet stream in both the slope of the best fit line and the R coef-
ficient. These correlations are much greater than the 2 to 4 sigma
chances concerning the null hypothesis, generated from bootstrap
sampling at random, shown as the shaded regions and solid lines for
the slope and the R coefficient, respectively.
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time lag error alone, without additionally compensating ampli-
tude errors, the asymmetry will become larger as the effective
wind velocity is decreased. This effect is worst when consider-
ing the asymmetry in low-order modes, which correspond to
small separations in the final images, the region where planets
or protoplanetary disks are most likely to be found. Although
it is still optimal to have as-fast-as-possible correction in the
metric of total scattered light in the halo, as computers get
faster and algorithms are optimized the asymmetry will begin
to play a larger role relative to other errors in the final PSF
formed in AO images, leading many to explore possible routes
for correction.

Scintillation errors are uncorrectable for an AO system oper-
ating in single-DM phase-conjugation mode, even if it is infi-
nitely fast (see Fig. 13). This in turn will set a performance
floor for such systems, and the asymmetry detected here pro-
vides a first measurement of the level in which those effects
begin to dominate. One could address this with a system that
corrects amplitude errors as well, using the Talbot or scintilla-
tion mixing effect to one’s own advantage. Having two deform-
able mirrors at two unique conjugate planes in the optical system
enables some phase introduced by one DM to transform into
amplitude, allowing one to correct amplitude errors from
scintillation. This concept has been proposed for space-based
coronagraphs17 to correct static amplitude errors, and laboratory
testing is underway.18 Similar designs have been expressed for
improvements in laser communications.19,20 But we are particu-
larly interested in the future of high-contrast imaging, particu-
larly in the era of ELTs. Such a system could also correct static
amplitude errors in an ELT, such as reflectivity variations
between segments which have been recoated at different
times.21,22 Driving such a system would require knowledge of
both the phase and amplitude of the science wavefront. Space-
based coronagraphic instruments can achieve this using the sci-
ence camera and making several measurements while modulat-
ing the speckle field with the DM.23,24 Another similar focal
plane wavefront sensing approach was recently proposed on
ground-based telescopes,25 which could also correct for
amplitude aberrations from scintillation. Conventional Shack–
Hartmann wavefront sensors measure some intensity informa-
tion but this is complicated by spots in each subaperture moving
out the active pixels of the detector, so it is impractical to

separate phase and amplitude. Other methods to estimate the
amplitude errors could utilize fast interferometric focal-plane
sensing,26 or something as simple as adding a high-speed direct
pupil-imaging channel to a traditional AO wavefront sensor.

The scintillation halo observed in AO PSFs is a challenge
for effective postprocessing of datasets. Many algorithms are
designed to subtract a static speckle field with respect to the
detector plane whose origin is from optical phase errors from
imperfections, misalignment, noncommon-path errors (NCPE),
and other systematic sources. Since these speckles have a unique
spectral dependence, moving to farther separations at longer
wavelengths, instruments imaging with an integral field spectro-
graph can measure that spectral dependence and remove those
aberrations. However, since the scintillation halo intensity is
driven by the effectiveness of the AO system, the halo appears
fainter at longer wavelengths. Because the halo originates from a
spectrum of turbulent modes which decide their final image
plane location, the halo does not scale in image location with
wavelength, unlike the static speckles best removed with SDI.27

In addition, the scintillation halo is fixed with respect to the
direction of the high-altitude winds, and it does not track with
the rotation of the instrumental errors or the parallactic rotation
of the astrophysical signal in an observing strategy such as
ADI.28

Various different postprocessing algorithms29,30 often use a
high-pass filter (HPF) to attempt to eliminate the diffuse back-
ground halo, and this is effective for regions of the image at large
separations. However, near the coronagraphic mask, the scintil-
lation can have very sharp features, demonstrated analytically as
regions where log χ ¼ 0, and observable in simulations as dark
regions perpendicular to the axis of the wind direction. When an
HPF that preserves the features of a planet is applied to this halo,
residuals which vary on spatial scales comparable to the planet
are not removed. Often, a quadrupolar residual artifact near the
coronagraphic mask if left which is large compared to the
speckle residuals in the smooth halo at large separations.
These residuals contribute significant noise to planetary detec-
tion attempts at the nearest separations, where the likelihood of
detection is highest from their population distributions.2 In addi-
tion, imaging extended objects such as debris disks cannot uti-
lize an HPF in postprocessing, implying a limit to sensitivity
even at wide separations for diffuse unpolarized structure.

Fig. 9 Asymmetry strength χ when compared to the velocity of the jet stream and the telescope elevation
for our sample. Both exhibit strong correlations which corroborate our analytic understanding of the origin
of the asymmetry. Slower jet stream velocities directly cause stronger asymmetry, while decreased tele-
scope elevation has two effects. One to decrease the apparent wind velocity and the other to push the
turbulent layers father away, giving more distance to scintillate.
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Various methods of subtracting the scintillation halo have
been suggested. One could take an empirical approach, using
a PCA style analysis to model the shape of the halo over an
averaged population of observations. Acknowledging this effect
is unique and must be treated independently with this sort of
approach can be effective at improving the final SNR in your
detection algorithm.2 Another approach may be to model the
PSF end-to-end with complete simulations of the instrument and
atmosphere, although this approach is significantly limited by
the extent to which your simulated instrument can account for
all real sources of error. Not only do errors arise from instrumen-
tal effects like DM fitting and NCPE, but also the non-
Kolmogorov deviations in the turbulent spectrum from environ-
mental effects,31 as well as the finite temporal resolution of
available atmospheric information. Another path may attempt
to estimate the PSF using a reconstruction from measured
AO telemetry. However, with current WFS measurements, esti-
mating the amplitude error from scintillation is rather difficult,
as current instruments are not designed to measure wavefront
amplitude. It is likely that the optimal approach to handling
these errors is at the instrument level itself, as discussed previ-
ously, with a method to measure and correct the wavefront
amplitude in real time. As high-contrast imaging strives for
higher and higher performance levels, identification, measure-
ment, estimation, and mitigation of scintillation errors will
become increasingly important.

6 Appendix A: Propagation through the
Atmosphere

Tartarski32 has shown that the fluctuations in the optical index of
refraction in three dimensions for a Kolmogorov turbulence
spectrum follow the form:

EQ-TARGET;temp:intralink-;e038;63;398ΦNðκ; zÞ ¼ 0.033C2
NðzÞκ−11∕3; (38)

where C2
N is the index of refraction structure constant and κ ¼

2π∕l is the spatial wave vector for an eddy of size l. Here, we use
the standard Kolmogorov power spectrum, which is fractally
self-similar at all length scales, although it is in principle simple
to extend this model to a Von-Karman spectrum by attenuating
the power above and below the outer and inner scales. From the
square root of the power spectrum, we can find the fluctuations
from the inverse Fourier transform according to Johansson
and Gavel33 with
EQ-TARGET;temp:intralink-;e039;63;266

δNð~x; zÞ ¼ Re

�
F−1

h
ξð~κ; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦNðκ; zÞ

p i�
; (39)

where δN are the fluctuations of the index of refraction from
unity in parts per million, ξ is a zero-mean unit-variance com-
plex hermitian Gaussian noise process, and F−1 is the unnor-
malized inverse discrete Fourier transform given by

EQ-TARGET;temp:intralink-;e040;63;177ηab ¼ F−1ðη̃pqÞ ¼
XP−1
p¼0

XQ−1

q¼0

η̃pq exp

�
2πi

�
pa
P

þ qb
Q

��
;

(40)

for a discrete array of size P ×Q with P;Q ∈ N. The discrete
indices p; a ∈ 0;1; : : : ; P − 1 and q; b ∈ 0;1; : : : ; Q − 1 exist in
Fourier and configuration space, respectively. The correspond-
ing forward Fourier transform simply includes negation in the

exponent, and we have to pay careful attention the normalization
factor used by a routine such as np.fft.fft2, which includes a nor-
malization of 1

PQ on the inverse transform, but no normalization
on the forward transform by default.

The optical path length of a wavefront traversing a turbulent
layer in the atmosphere from zenith can be found to first order
by integrating the index of refraction over the thickness of the
layer, and the accumulated phase is simply the wave vector of
the ray k ¼ 2π∕λ times the optical path length:

EQ-TARGET;temp:intralink-;e041;326;651ϕið~xÞ ¼ k
Z

ziþΔzi

zi

nð~x; zÞdz ¼ knð~x; zÞΔzi: (41)

Here ~x ¼ ðx; yÞ is the coordinate system in the aperture at z ¼ 0,
Δzi is the range of altitudes relevant to the turbulent layer at
altitude zi, and the baseline index of refraction of the atmosphere
can be approximated34 with

EQ-TARGET;temp:intralink-;e042;326;562N ≡ ðn − 1Þ106 ≈ 77.6
ρ

T
; (42)

where ρ and T are the pressure (in millibars or equivalently hPa)
and temperature (in Kelvin) of the atmosphere for a particular
altitude. To obtain a model for the index of refraction as a func-
tion of altitude, one can model the pressure as a decaying expo-
nential with a scale height given by the local surface gravity g,
the mean molecular mass M of the atmosphere, the ideal gas
constant R, and an assumed isothermal uniform temperature
of the surface T with

EQ-TARGET;temp:intralink-;e043;326;435ρðzÞ ¼ ρ0e
−Mgz
RT ; (43)

where ρ0 is the atmospheric pressure at sea level. An atmospheric
temperature profile as a function from altitude can be determined
empirically, or the values given in the GFS can be used, but
small fluctuations in T hardly affect the end value of the index
of refraction, compared to the pressure, which dominates.

For nonzenith observations, an additional term of sec ζ
where ζ is the zenith angle should be included in the integral in
Eq. (41) to account for additional atmospheric depth. When the
accumulated phase on the aperture is very large, we can subtract
off the average phase, which is equivalent to removing the piston
term from a Zernike polynomial.35

In order to account for scintillation, each turbulent layer must
be propagated according to the angular spectrum rule derived at
the beginning of this paper. In order to make this simulation
numerically tractable, the propagation through the turbulent
phase screen is discretized into two steps, one where the phase
is first accumulated according to the entire thickness of the layer
at the start, and then second where the wave free-space propa-
gates the entire distance of the layer. For an infinite number of
layers, this assumption should recover the true propagation and
indeed we are in a regime where the layer thickness is relatively
small compared to the total propagation distance. A shorthand
summary rule for the angular spectrum propagation is that the
complex illumination at propagation distance z is related to the
complex illumination at the origin with

EQ-TARGET;temp:intralink-;e044;326;126uðzÞ ¼ F−1fHðzÞF ½u�g; (44)

whereH is the free-space propagation transfer function which is
implicitly also a function of the particular modes k being propa-
gated. With the complex illumination given at the aperture by
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the previous description, we invoke the Taylor frozen-flow
hypothesis, which requires that the timescale for turbulence
is much greater than the time delay with which the AO system
will respond. For our simulation, this means that the fluctuations
in the field of view simply propagate by translations due to the
wind velocity, which can be expressed by

EQ-TARGET;temp:intralink-;e045;63;686δN½~xþ ~vðzÞτ; t0 þ τ� ¼ δNð~x; t0Þ; (45)

where ~vðzÞ is the wind velocity at altitude z, which is assumed to
lie only in the plane at altitude with no vertical component, t0 is
a particular instant in time, and τ is the total time delay for the
AO system to respond to a measurement from the wavefront
sensor. We also assume a perfect noiseless wavefront sensor and
deformable mirror with only a time lag or servo-lag error for an
ideal open-loop AO simulation. The expression for the compen-
sated phase in the aperture is a new complex illumination with
the amplitude errors from the current timestep and the phase
given by two subtracted phases, one from the current timestep
and one from the previous, which is our AO correction:

EQ-TARGET;temp:intralink-;e046;63;534ϕAO ¼ ϕð~x; t0Þ − ϕð~x; t0 − τÞ; (46)

where we implicitly have included the contributions from L tur-
bulent layers at various altitudes z with a flat interpolation
scheme for the structure constant. From the compensated phase
on the aperture, we can obtain the final image’s intensity dis-
tribution with an inverse Fourier transform by assuming the tele-
scope focus operates in a Fraunhofer diffraction limit, so that
electric field distribution in the image plane is the inverse
Fourier transform of the aperture function:11

EQ-TARGET;temp:intralink-;e047;63;414Iðα; βÞ ¼ hjF−1ðAUAOÞj2i: (47)

Here α and β are the coordinates in the image plane, UAO is
our AO corrected complex illumination which includes ampli-
tude errors from scintillation,A is the aperture function with the
Blackman window apodization,36 parameterized radially from
the center with r2 ¼ x2 þ y2:
EQ-TARGET;temp:intralink-;e048;63;327

AðrÞ ¼ 1 − γ
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−
1

2
cos
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2πðr −D∕2Þ
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2
cos

�
2πðr −D∕2Þ

D

�
; (48)

with an aperture diameter of D ¼ 8 m, a falloff of γ ¼ :16, and
the brackets denote time average over the whole length of the
simulation. The Blackman apodization simulates a crude
coronagraph and dampens the high-order airy rings, whose final
intensity in the image plane can swamp the effect of the scin-
tillation halo.

7 Appendix B: Relationship between the Sky
and the Ground

The back of the telescope (BT) plane is the simplest way to
imagine the relationship between an image on the sky and its
orientation relative to the ground. Suppose you have a DSLR
on a tripod, or a multimillion-dollar telescope with an Alt-Az
tracking system. Either way, your imaging device is pointed
at the celestial sphere along the line of sight vector:

EQ-TARGET;temp:intralink-;e049;63;86r̂ ¼ 	
cosðelÞ cosðazÞ;− cosðelÞ sinðazÞ; sinðelÞ
; (49)

where we have assumed the convention of the positive x axis
pointing north, and the positive y axis pointing west. This con-
veniently sets up the positive z axis to point toward zenith, as it
should. azimuth is measured from north opening toward the
east, and elevation is measured from the horizon upward.
See Fig. 10 for an illustration. It is worth noting that the val-
idity of this analogy, as well as is necessary to implement angu-
lar differential imaging, a postprocessing technique for
combining multiple exposures while the target star moves
through the zenith that GPI operates in a fixed parallactic ori-
entation, with the instrument derotator disabled, so that GPI
is fixed with respect to the telescope orientation, which is
uncommon.

With such conventions laid out, it becomes easy to identify
the location of the image plane on the sky, as it must be
perpendicular to the line of sight. Since there are infinitely many
such planes, we will use the convention

EQ-TARGET;temp:intralink-;e050;326;399â ¼ 	
− sinðazÞ;− cosðazÞ; 0
; (50)

EQ-TARGET;temp:intralink-;e051;326;349b̂ ¼ h− sinðelÞ cosðazÞ; sinðelÞ sinðazÞ; cosðelÞi: (51)

So that one can think of â as pointing in the direction of

increasing azimuth and b̂ pointing toward increasing elevation.

It is left to the reader to show that â · b̂ ¼ 0, and that â × r̂ ¼ b̂
to verify the orthogonality of these unit vectors as a coordinate
system.

With this elaborate set up, it becomes easy to convert vectors
in the image plane into vectors in full three-dimensional space,
and then project them onto the ground plane. Suppose we have a
wind vector which appears in the image plane rotated ψ from â
counterclockwise. Such a wind vector is

EQ-TARGET;temp:intralink-;e052;326;219ŵ ¼ cosðψÞâþ sinðψÞb̂: (52)

However, we would instead like to know ŵðx̂; ŷ; ẑÞ. By alge-

braically substituting in our coordinate vectors â and b̂ formulas
in x, y, z space, we can arrive at an expression for the wind vec-
tor in x, y, z space in terms of ψ , az, and el. This is

EQ-TARGET;temp:intralink-;e053;326;132

ŵ ¼ 	
− cosðψÞ sinðazÞ − sinðψÞ sinðelÞ cosðazÞ;

− cosðψÞ cosðazÞ þ sinðψÞ sinðelÞ sinðazÞ;
sinðψÞ cosðelÞ
: (53)

Fig. 10 Diagram of coordinates used to orient images on the sky
demonstrating the relationship between the ground plane and the
BT plane.
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With this done, we can easily project the vector onto the
ground plane by simply removing the z component. If we need
to find the direction of this wind vector as an azimuth, we can
use the following trick:

EQ-TARGET;temp:intralink-;e054;63;138azimuth ¼
�
360 deg− arctan 2

�
wy

wx

��
%360 deg; (54)

where wx, wy, are the x and y components of the wind vector,
respectively, % is the modulo operator, and it is often

convenient to use a smart operator like arctan2 to get the quad-
rant correct.

However, images in the GPIES are not simply oriented as in
the BT plane, but rather can be arbitrarily arranged due to the com-
plexities of postprocessing. Fortunately for us, the orientation of
each of the image has been previously calculated in celestial coor-
dinates. These are represented as a CD matrix, which describe
how x and y in pixels for the image correspond to right ascension
and declination. Using the local sidereal time of the image during
the exposure, it is possible to convert coordinates in right ascen-
sion and declination to coordinates in azimuth and elevation, using

Fig. 11 Correlations between the directions of the strong asymmetry of the image PSF and the wind
direction for various wind layers in the NOAA GFS. Most wind layers do not exhibit significant correlation,
with the exception of the layers around 100 to 250 hPa, which are the pressures corresponding the jet
stream, at around 10 to 15 km of altitude.
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EQ-TARGET;temp:intralink-;e055;63;164

azimuth

¼
�
arctan2

�
cosðδÞsinðhÞ

sinðϕ0ÞcosðδÞcosðhÞ−cosðϕ0ÞsinðδÞ
��

%360;

(55)

EQ-TARGET;temp:intralink-;e056;63;83elevation ¼ arcsin½sinðϕ0Þ sinðδÞ þ cosðϕ0Þ cosðδÞ cosðhÞ�;
(56)

where h ¼ θL − α is the hour angle, θL is the local sidereal time in
radians, ϕ0 is the local latitude, α is right ascension, δ is declina-
tion, and here we use the convention that azimuth starts at north
and opens to the east. The modulo is there to handle overflow and
the azimuth and elevation are the coordinates on the sky. Once
these are calculated, we can orient images relative to the BT plane
because â points toward increasing azimuth and b̂ points toward
increasing elevation.
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