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Abstract. Future large space telescopes will be equipped with adaptive optics (AO) to over-
come wavefront aberrations and achieve high contrast for imaging faint astronomical objects,
such as Earth-like exoplanets and debris disks. In contrast to AO that is widely used in ground
telescopes, space-based AO systems will use focal plane wavefront sensing to measure the wave-
front aberrations. Focal plane wavefront sensing is a class of techniques that reconstructs the
light field based on multiple focal plane images distorted by deformable mirror (DM) probing
perturbations. We report an efficient focal plane wavefront sensing approach for space-based AO
that optimizes the DM probing perturbation and thus also the integration time for each image.
Simulation of the AO system equipped with a vortex coronagraph has demonstrated that
our approach enables efficient information acquisition and significantly reduces the time needed
for achieving high contrast in space. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.6.1.019001]
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1 Introduction

One of the major goals for the next-generation large space telescopes1–3 is to directly image faint
Earth-like planets. This requires that the telescope be equipped with a coronagraph4–8 for
suppressing starlight and adaptive optics (AO) for correcting wavefront aberrations (see Fig. 1).
In ground-based telescopes,9,10 AO typically works by first measuring the wavefront aberrations
using a wavefront sensor11 and then compensating for the aberrations using devices such as
deformable mirrors (DMs).12 However, this conventional approach is not suitable for space
missions where a higher contrast (below 10−9 rather than the 10−6 typical of ground telescopes)
is required because a separate wavefront sensor introduces noncommon-path errors. Instead,
focal plane wavefront sensing13 must be used in space-based AO to retrieve the aberrated light
field. This is done via small probing commands to the DMs, causing the light field to vary
slightly, allowing it to be estimated by observing the corresponding focal plane intensity changes
and solving a phase-retrieval optimization problem.

Currently, the benchmark method for focal plane wavefront sensing is pairwise DM probing
followed by a batch process estimation.14,15 This approach constructs a linear observation of the
light field using pairs of opposite DM probing commands and then formulates the wavefront
sensing as a least-squares problem. Building on that architecture, several improved wavefront
sensing approaches have also been proposed, such as the Kalman filter (KF) method,16 which
combines information from previous AO control steps, and the extended Kalman filter
(EKF),17,18 which enables simultaneous incoherent source estimation. These improvements
focus only on the formulation of the statistical estimation problem, not the DM probing and
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image acquisition process itself. However, in space-based AO, the latter is equally important.
Unlike similar phase retrieval problems in other fields, such as quantitative phase imaging,19

wavefront sensing in space-based AO does not provide any science results in and of itself; the
retrieved light field is only used for wavefront correction. Nevertheless, the ultimate objective is
to observe the faint incoherent astronomical objects hidden below the residual light from these
coherent wavefront aberrations. Reducing the time spent on wavefront sensing and image
acquisition significantly increases the available time for science observations.

In this paper, we propose an improvement to the stochastic modeling of a space-based AO
system and accordingly introduce efficient wavefront sensing policies, where optimal DM prob-
ing commands and camera exposure times are used. Simulation results using a vortex corona-
graph system6 show that our approach achieves almost the same accuracy of the field estimation
with fewer images and much shorter exposures, thus significantly reducing the time spent on
wavefront correction.

2 Space-Based AO

AO in a space telescope is used to correct the wavefront aberrations in the telescope optics and
the coronagraph instrument. Figure 1 shows a representative space telescope system equipped
with both AO and a coronagraph. A coronagraph4–8 is a type of optical device designed for
imaging faint companions around a star. In a coronagraph instrument, a series of amplitude and
phase masks work together to block out the on-axis starlight but transmit the off-axis light
sources, ultimately creating a high-contrast observation region, or so-called dark hole, in the
image plane. However, the coronagraph is sensitive to complex wavefront aberrations (both
amplitude and phase errors) in the optical system. When the wavefront is aberrated by the
lens/mirror surface roughness, misalignments, and thermal effects, the focal plane observations
are contaminated with bright speckles and the contrast in the dark hole is significantly degraded.
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Fig. 1 A space telescope system equipped with AO and a high-contrast vortex coronagraph.
The AO corrects the complex wavefront aberrations (only phase aberrations are shown here)
using DMs (only one mirror is shown here for simplicity, however, typically more than two
DMs are used in a real AO system) and the coronagraph suppresses the starlight using a series
of masks, including (a) pupil plane mask (a binary mask, fully transmissive, or fully opaque),
(b) a focal plane vortex mask6 (a pure phase mask, its phase shown in the figure), and (c) a
Lyot stop (a binary mask). After several AO control steps, a high-contrast annular observation
region appears in the image.
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In that case, DMs in the AO system are needed to restore the designed high contrast. The DM’s
surface can be controlled by applying various voltages to the DM actuators.12 As mentioned in
Sec. 1, DMs first apply probing commands to sense the light field then apply control commands
to compensate for the wavefront aberrations. This process is iterated, between the sensing and
control, to dig a final dark hole. In this section, we describe the current space-based AO process,
including system modeling and the wavefront sensing control (WFSC) policies.

2.1 System Modeling

The light propagation through the coronagraph can be modeled as a linear operation. Figure 1
shows a space-based AO system equipped with a vortex coronagraph,6 which consists of a binary
(fully transmissive or fully opaque) pupil plane mask, a focal plane vector vortex coronagraph
(a pure phase mask that introduces an azimuthal phase ramp), and a binary Lyot stop mask. It
defines a general architecture of a coronagraph instrument; however, the pupil plane masks can
also be replaced by apodizers, and the focal plane mask can also be replaced by amplitude masks
in other types of coronagraphs.4–8 With the coronagraph’s pupil mask, focal plane mask, and the
Lyot stop, denoted as MP, MF, and ML, respectively, the relationship between the pupil plane
field, Ep, and focal plane field, Ef, is

EQ-TARGET;temp:intralink-;e001;116;519

Ef ¼ CfEpg ¼ FfML · F−1fMF · FfMP · Epggg
¼ FfMLg � ½MF · ðFfMPg � FfEpgÞ�; (1)

where F and F−1 represent the two-dimensional (2-D) Fourier transform and inverse Fourier
transform, respectively, and C is the composite linear coronagraph operator. To keep the repre-
sentation clean, here we neglect a constant coefficient related to the light wavelength λ.

DMs introduce phase perturbations to the incident light field. Assuming the incident light
field with complex wavefront aberrations is given by Eab, the corrected pupil wavefront
downstream of the AO is

EQ-TARGET;temp:intralink-;e002;116;397Ep ¼ Eab exp

�
i
4πϕ

λ

�
; (2)

where ϕ is the surface height of the DM, λ is the light wavelength, and the constant is 4 instead of
2 because the change in the optical path length is twice the mirror displacement. The DM surface
height is a 2-D function of the actuators’ voltage commands, ϕ ¼ ϕðuÞ. It can be approximated
as a linear superposition of each actuator’s influence on the mirror surface20

EQ-TARGET;temp:intralink-;e003;116;304ϕðuÞ ¼
XNact

q¼1

uqfq; (3)

where Nact is the number of actuators on the DMs, uq is the voltage command to the q’th actua-
tor, and fq is its unit voltage response on the DM surface. The DM surface varies over time when
the AO control loop is running. After k wavefront sensing and control steps, the accumulated
DM surface height becomes

EQ-TARGET;temp:intralink-;e004;116;202ϕk ¼
Xk
t¼1

Δϕt ¼
Xk
t¼1

XNact

q¼1

Δuq;tfq ¼ ϕk−1 þ ϕðΔukÞ; (4)

where Δϕt and Δuq;t are the surface change and incremental voltage command at time step t,
respectively, and Δuk is collection of all the actuators’ voltage changes at step k.

Combining the Fourier optics modeling of the AO and the coronagraph [Eqs. (1)–(3)], the
focal plane field after k control steps is
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EQ-TARGET;temp:intralink-;e005;116;735Ef;k ¼ CfEp;kg ¼ C
�
Eab exp

�
i
4πϕk

λ

��
¼ C

�
Ep;k−1 exp

�
i
4πϕðΔukÞ

λ

��
: (5)

Assuming the DM surface change is very small in each sensing and control step, Eq. (5)
can be linearized using a Taylor expansion. The space-based AO with coronagraph can thus
be mathematically described as a linear time-varying system

EQ-TARGET;temp:intralink-;e006;116;663Ef;k ≈ CfEp;k−1g þ C
�
Ep;k−1i

4πϕðΔukÞ
λ

�
¼ Ef;k−1 þ Gk−1Δuk; (6)

where Gk−1 is a linear projection modeling the DM’s influence on the focal plane light field,
which is also known as a Jacobian matrix after Ef;k and Δuk are discretized and vectorized.

The observations of the focal plane light field are the camera images perturbed by the DM
probing commands. Letting the DM probing command beΔupk , the corresponding camera image
is

EQ-TARGET;temp:intralink-;e007;116;558Ipf;k ¼ jEf;k þ GkΔu
p
k j2 þ Iin;k; (7)

where Iin;k is the incoherent signal not influenced by the DMs, such as the exoplanet light,
and j · j2 represents the elementwise square of the amplitude of a complex vector/matrix.
Equations (6) and (7) together describe a state space model (SSM) of the AO system. Only
monochromatic light is considered in the above optical modeling. However, it is straightforward
to extend the above mathematical equation to the broadband case by defining each wavelength’s
SSM independently and then concatenating the state vectors of different wavelengths to formu-
late a broadband SSM.21

2.2 Wavefront Sensing and Control Policies

Wavefront control typically minimizes the total energy in the focal plane observation regions
(dark holes) for the DM voltage commands according to Eq. (6). This control policy is usually
referred to as electric field conjugation14,22 and can be formulated as a regularized quadratic
programming problem

EQ-TARGET;temp:intralink-;e008;116;354Δu⋆k ¼ arg min
Δuk

kEf;k−1 þ Gk−1Δukk22 þ αkkΔukk22; (8)

where k · k2 is the L-2 norm of a vector/matrix, Ef;k−1 is the discretized focal plane electric field
in the dark holes, Δu⋆k is the optimal DM control command, and αk is a Tikhonov regularizer.
The Tikhonov regularizer is introduced to avoid unreasonably large commands exceeding the
operation limit, since the equation of the electric field is an underdetermined system (the number
of actuators is smaller than the number of pixels in the search region).

Wavefront sensing solves the dual problem of estimating the focal plane light field. As men-
tioned in Sec. 1, the current benchmark wavefront sensing approach is the pairwise DM probing
and least-squares estimation.14,15 According to the observation model in Eq. (7), differencing the
perturbed images from opposite DM probing commands, �Δupk , constructs a linear observation
of the electric field

EQ-TARGET;temp:intralink-;e009;116;195Ip;�f;k ¼ jEf;k � pkj2 þ Iin;k ΔIpf;k ¼ Ip;þf;k − Ip;−f;k ¼ 4Rfp†

k ∘ Ef;kg; (9)

where † represents the complex conjugate, ∘ represents the Hadamard product, and pk ¼ GkΔu
p
k

is the focal plane electric field perturbation introduced by the probing commands. The estimation
problem based on the linear observation can be thus formulated as a least-squares problem

EQ-TARGET;temp:intralink-;e010;116;123Êf;k ¼ arg min
Ef;k

XNp

j¼1

kΔIp;jf;k − 4Rfpj†
k ∘ Ef;kgk22; (10)
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where Êf;k is the estimated focal plane light field, Np is the number of pairs of opposite DM

probing commands applied, j is the index of the pairwise probing commands, fpj
kg are the

perturbations generated by fΔup;jk g, and fΔIp;jf;kg are the corresponding camera measurements.
By visualizing the pairwise probing observation in a complex plane, as shown in Fig. 2, we

can see that the difference images measure the projections of the complex electric field on the
perturbation directions. At least two pairs of probes are needed to estimate the field; the probing
directions should be as different as possible. In addition, the probes should modulate the whole
observation area, otherwise the difference between the positive and negative images at some
pixels would be too small to be used for regression. To satisfy the above requirements, currently
the most popular DM probing policy is to generate 2-D sinc waves on the DM surface21

EQ-TARGET;temp:intralink-;e011;116;475Δϕp;j
k ¼ ϕðΔup;jk Þ ¼ βk sincðaxÞsincðbyÞ cosðcxþ ψ jÞ or βk sincðaxÞsincðbyÞ cosðcyþ ψ jÞ;

(11)

where ðx; yÞ are the coordinates in the pupil plane and βk, a, b, c, and ψ j are constants. The
Fourier transform of the above DM surface shape (assuming the first equation) is

EQ-TARGET;temp:intralink-;e012;116;404

FfΔϕp;j
k g ¼ 1

2
βk expðiψ jÞrectðax 0; by 0Þ � δðx 0 − cÞ

þ 1

2
βk expð−iψ jÞrectðax 0; by 0Þ � δðx 0 þ cÞ; (12)

which produces two symmetric uniform rectangles with opposite phase diversities in the Fourier
domain. According to Eq. (1), the coronagraph operator is similar to the Fourier transform except
for some extra kernel convolutions, so the focal plane perturbations created by the sinc probes
should still have a relatively uniform and symmetric structure [see Fig. 3 and case (a) in Sec. 4].
The phase (or the direction in the complex plane) of each probe can be adjusted by changing the
shift term ψ j. Typically, a set of probing phases that uniformly cover the range of ½0; π� are
selected. The amplitude of the sinc waves βk is computed based on the mean probing contrast,
that is, the probe amplitude in units of contrast, Cp

k ¼ P jpkj2∕Npix, where Npix is the number of
pixels in the observation regions. A widely used heuristic law for determining the probing
contrast23 is

EQ-TARGET;temp:intralink-;e013;116;215Cp
k ¼ min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−5 × Ck

q
; 10−4

�
; (13)

where Ck ¼
P jEf;kj2∕Npix is the mean contrast of the original observation region. By using

Eq. (13), the probe contrast is neither too large nor too small, which gives a relatively accurate
measurement of the original focal plane electric field.

Two more advanced wavefront sensing approaches are the KF and the (iterated) EKF. The
KF16 incorporates the state transition information and solves a weighted least-squares problem
for the electric field estimation

Fig. 2 A graphical interpretation of pairwise probes and difference images.
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EQ-TARGET;temp:intralink-;e014;116;421Êf;k ¼ arg min
Ef;k

XNp

j¼1

kΔIp;jf;k − 4Rfpj†
k ∘ Ef;kgk2Rk

þ kEf;k − Ef;k−1 − Gk−1Δukk2Pk
; (14)

where k · kRk
and k · kPk

are the matrix weighted norms that balance the importance of the
information from current observations and state transitions. The matrix weights Rk and Pk are
computed based on the level of process noises and observation noises of the system. The
EKF17,18 directly solves a phase-retrieval-like nonconvex inverse problem

EQ-TARGET;temp:intralink-;e015;116;330

Êf;k; Îin;k ¼ arg min
Ef;k;Iin;k

XNp

j¼1

kIp;jf;k − jEf;k þ pj
kj2 − Iin;kk2Rk

þ kEf;k − Ef;k−1 − Gk−1Δukk2Pk
þ kIin;k − Iin;k−1k2P 0

k
; (15)

where Np is now the number of DM probing commands instead of pairs of probing commands.
These two approaches improve the formulation of the statistical estimation problem by better
utilizing the information acquired. However, the DM probing and image acquisition policies stay
the same as in the benchmark case.

3 Optimal Probing Policy and Efficient Camera Integration Time

Based on the space-based AO framework described in Sec. 2, we now present our approach for
optimizing the DM probing policies and camera integration times. We mainly consider the case
of pairwise probing and estimation.

3.1 Stochastic Model of System Noises

The state-space model introduced in Sec. 2.1 is a stochastic process with additive process noise,
wk, in the state transition equation and observation noise, nk, in the state observation equation

Fig. 3 Focal plane perturbations at the first control step caused by the empirical sinc waves with
optimal amplitudes. ðξ; ηÞ are the focal plane coordinates and λ∕D is the unit of the field of view,
where λ is the star light wavelength and D is the telescope aperture size. The first two columns
and the third column, respectively, display the probes’ contrasts in log scale, fjp1

k j2; · · · ; jp4
k j2g,

and the angle differences, fj∠p1
k − ∠p2

k j; j∠p3
k − ∠p4

k jg.
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EQ-TARGET;temp:intralink-;e016;116;735Ef;k ¼ Ef;k−1 þGk−1Δuk þ wk; Ipf;k ¼ jEf;k þ pkj2 þ Iin;k þ nk: (16)

Although not explained in detail in Sec. 2.2, the weighting matrices Rk, Pk, and P 0
k in the

KF and the EKF depend on the statistics of these model noises.
Based on the experimental observations, we found that the process noises could be modeled

as zero-mean Gaussian

EQ-TARGET;temp:intralink-;e017;116;662½Rfwkg;Ifwkg� ∼N ð0; σ2kIÞ; (17)

where I is the identity matrix and the variance is approximately proportional to the summation of
a constant and the electric field change multiplied by another constant

EQ-TARGET;temp:intralink-;e018;116;606σ2k ¼ q0 þ q1jΔEf;kj2 ¼ q0 þ q1jGk−1Δukj2: (18)

The observation equation and observation noise can thus be distributed using Eq. (18)

EQ-TARGET;temp:intralink-;e019;116;560

Ipf;k ¼ jEf;k þ pk þ wp
k j2 þ Iin;k þ ndk

¼ jEf;k þ pkj2 þ Iin;k þ ndk þ 2jðEf;k þ pkÞ† ∘ wp
k j þ jwp

k j2; (19)

where wp
k is the DM probing noise and ndk is the detector noise. The observation noise can be

modeled as a nonzero mean Gaussian

EQ-TARGET;temp:intralink-;e020;116;485

nk ¼ ndk þ 2jðEf;k þ pkÞ† ∘ wp
k j þ jwp

k j2 ∼N ðμk; ν2kIÞ; μk ¼ 2ðq0 þ q1jpkj2Þ;

ν2k ¼ r0 þ r1

PðjEf;k þ pkj2 þ Iin;kÞ
Npix

þ
P

4jEf;k þ pkj2
Npix

ðq0 þ q1jpkj2Þ; (20)

of which the covariance consists of three parts: the first term from the camera readout noise is a
fixed constant, the second term from the Poisson noise is proportional to the image intensity, and
the third term from DM probing has a similar formula to Eq. (18). The readout noise and Poisson
noise terms are related to the camera integration time, t, via

EQ-TARGET;temp:intralink-;e021;116;374r0 ¼
n2r

ðflux · tÞ2 ¼
r0
t2
; r1 ¼

1

flux · t
¼ r1

t
; (21)

where the flux (proportional to the brightness of the planet’s host star) is the number of photons
hitting the detector in unit time at the center pixel of the starlight point spread function, nr is the
camera’s readout standard deviation, and r0 and r1 are the normalized noise coefficients. The
covariance of the pairwise probing observation is thus

EQ-TARGET;temp:intralink-;e022;116;280ν2k;pair ¼ ν2k;þ þ ν2k;− ¼ 2r0 þ 2ðr1 þ 4q0ÞðCk þ Cp
k þ Cin

k Þ þ 8q1C
p
k ðCk þ Cp

k Þ; (22)

where Ck ¼
P jEf;kj2∕Npix and Cp

k ¼ P jpkj2∕Npix are the mean coherent contrast and mean
probing contrast defined in Sec. 2.2, respectively, and Cin

k ¼ P
Iin;k∕Npix is the mean incoherent

contrast.

3.2 Optimal Probing Contrast

The optimal probing contrast should minimize the covariances of the observation noises.
According to Fig. 2, the projection measurement of the electric field is zk ¼ ΔIpf;k∕ð4jpkjÞ,
so the corresponding observation noise variance is

EQ-TARGET;temp:intralink-;e023;116;132VarðzkÞ ¼
ν2k;pair
16jpkj2

¼ r0 þ ðr1 þ 4q0ÞðCk þ Cin
k Þ

8Cp
k

þ q1C
p
k

2
þ r1

8
þ q0 þ q1Ck

2
: (23)

Sun, Kasdin, and Vanderbei: Efficient wavefront sensing for space-based adaptive optics

J. Astron. Telesc. Instrum. Syst. 019001-7 Jan–Mar 2020 • Vol. 6(1)



According to the inequality of arithmetric and geometric means (AM-GM inequality)24

EQ-TARGET;temp:intralink-;e024;116;723VarðzkÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1½r0 þ ðr1 þ 4q0ÞðCk þ Cin

k Þ�
p

2
þ r1

8
þ q0 þ q1Ck

2
;

with equality if and only if Cp
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
4q1

þ r1 þ 4q0
4q1

Cin
k þ r1 þ 4q0

4q1
Ck

s
:

(24)

We now have a theoretical solution for the optimal probing contrast. When the camera read-
out noise is very small (r0 → 0) and the incoherent contrast is small (Cin

k → 0), this theoretical
solution is similar to the heuristic law in Eq. (13), where the mean probing contrast is propor-
tional to the square root of the mean coherent field contrast. However, our optimal law has a
clearer physical meaning and varies for different systems, depending on the DMs, the corona-
graph, and the detectors used.

3.3 Optimal Probing Shape

With n pairs of probes and difference images, fpj
k;ΔI

p;j
f;kg, j ¼ 1; · · · ; Np, we can write the

overdetermined linear observation equation of the electric field

EQ-TARGET;temp:intralink-;e025;116;505

z̃k ¼

2
6664

z1k

..

.

z
Np

k

3
7775 ¼

2
6664

ΔIp;1f;k∕ð4jp1
kjÞ

..

.

ΔIp;Np

f;k ∕ð4jpNp

k jÞ

3
7775 ¼

2
664

cosðθk;1Þ sinðθk;1Þ
..
. ..

.

cosðθk;Np
Þ sinðθk;Np

Þ

3
775
�
RfEf;kg
IfEf;kg

�
¼ΔHkxk; (25)

where θk;j ¼ arctan 2ðRfpj
kg;Ifpj

kgÞ defines the orientation of the complex probe perturba-

tion, pj
k. The estimated mean and covariance of the electric field are

EQ-TARGET;temp:intralink-;e026;116;400

x̂k ¼ ðHT
kHkÞ−1HT

k z̃k;Covðx̂kÞ ¼ ðHT
kHkÞ−1HT

k

2
6664
Varðz1kÞ

. .
.

VarðzNp

k Þ

3
7775H−T

k ðHT
kHkÞ−1;

(26)

where Covðx̂kÞ, consisting of Hk and fVarðzjkÞg, are functions of fΔup;jk g and optical model
parameters (Jacobian matrix, Gk, and noise coefficients, q0, q1, r0, r1, defined in Sec. 3.1).
The optimal probe shape can thus be computed by minimizing the log determinant of this covari-
ance matrix with respect to the DM probing voltage commands

EQ-TARGET;temp:intralink-;e027;116;259fΔup;jk g ¼ arg min
fΔup;jk g

log jCovðx̂kÞj þ PðfΔup;jk gÞ; (27)

wherePð·Þ is a user-chosen regularizer that prevents ill-posed solutions. One useful choice of the
regularizer is a Tikhonov regularization of the DM probing voltage commands. This policy is
typically called variance-minimizing25 in active learning and optimal experiment design.

When we have only two pairs of probing commands, the log determinant of the estimation
covariance can be simplified to an easily interpreted equation

EQ-TARGET;temp:intralink-;e028;116;157 log jCovðx̂kÞj ¼ log Varðz1kÞ þ log Varðz2kÞ − 2 log j sinðθk;2 − θk;1Þj: (28)

Minimizing the first two terms makes the DM probing commands satisfy the optimal probing
contrast criterion in Sec. 3.2, while minimizing the third term makes the complex perturbations
as perpendicular as possible to each other.
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3.4 Efficient Camera Integration Time

Assuming the optimal probing policy is applied, we can now determine the best camera
integration time by analyzing the signal-to-noise-ratio (SNR). The SNR of the camera image
is defined as

EQ-TARGET;temp:intralink-;e029;116;680

1
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¼ VarðzkÞ
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; (29)

where γ¼ΔCkt. The SNR is maximized when γ → þ∞, i.e., the camera integration time becomes
infinitely large. However, the last term in the square root and the last term of the equation are not
influenced by the integration time, so the marginal benefit becomes very small when the inte-
gration time exceeds a certain threshold.

Based on this observation, we can define an adaptive camera exposure policy,
tk ¼ maxðγ∕Ck; tminÞ, which results in shorter integration times when the contrast is low but
longer integration times for high contrast. We set a minimum integration time, tmin, to avoid
too short an integration time, which would result in abnormal detector effects and too large
a probing contrast that exceeds the DM linear operation regime. This policy results in a sim-
plification of Eq. (29)

EQ-TARGET;temp:intralink-;e030;116;434
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2Ck
; (30)

when Ck ≫ Cin
k . Given any SNR, we can solve for the camera integration time according to

the above equation.

4 Numerical Experiments

4.1 Simulation Setup

In this section, we show the results of a simulation of a space-based AO system to demonstrate
our optimal probing and camera exposure policies. The layout of the system is almost identical to
Fig. 1 except for an additional DM. A simple vortex coronagraph is used, consisting of a circular
pupil aperture, a charge six vortex phase mask, and a Lyot stop. Two DMs with 34 × 34 actuators
are used in the AO system, with the first placed at the conjugate plane of the coronagraph pupil
plane. The image plane observation region (dark hole) is an annular area extending from
3 − 9λ∕D, where λ ¼ 635 nm is the wavelength of the starlight and D ¼ 1 cm is the diameter
of the coronagraph pupil mask. Both amplitude and phase wavefront aberrations are introduced
in our simulation. In the wavefront sensing and control loop, both DMs are used to correct the
wavefront aberrations, but only the first one is used for probing the dark hole field. The system
parameters defined in Sec. 3 are listed in Table 1. These parameters could either be easily

Table 1 AO system parameters in the numerical simulations.

Flux nr q0 q1 r 0 r̄ 1

2 × 109 12 10−14 0.05 3.6 × 10−17 5 × 10−10
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measured (such as the flux and the detector statistics, nr) or be computed using system iden-
tification algorithms26,27 (such as the process noise parameters q0 and q1).

We explore five wavefront sensing approaches: (a) sinc wave probes [Eq. (11)] and the heu-
ristic probing contrast [Eq. (13)], (b) sinc probes with optimal probing contrast [Eq. (24)],
(c) optimized probes initialized with sinc waves [Eq. (27)], (d) optimized probes randomly ini-
tialized, and (e) the probing policy in (c) with adaptive camera integration times [Eq. (30)]. The
camera integration time for each image in the first four cases is fixed at 1 s. We choose that
number so that the WFSC reaches the desired high contrast (around 5 × 10−10) for the simulated
flux. In space, the flux is very low, so the camera exposure times in a real space mission would be
much longer. Our simulations only reflect the relative time needed for different approaches.
Although the DM probing and camera exposure policies are different, an identical least-squares
estimator [Eq. (10)] is applied for all cases.

4.2 Results

Since the annular dark hole setup is used in our simulation, cases (a) and (b) need to at least apply
four pairs of sinc waves for probing. Only two pairs of sinc probes are not enough. As shown in
Fig. 3, either the pixels located on the x-axis or on the y-axis are not well modulated by two pairs
of sinc probes (probe intensity is too low), so we have to switch the probing axis to fully cover
the dark hole regions. Typically, the first and the second pairs perturb two symmetric regions on
the left and the right, and the third and the fourth pairs perturb two regions on the top and the
bottom. The phase shifts between the first two pairs and the second two pairs are both 90 deg,
which results in almost orthogonal electric field perturbations in the focal plane. As indicated in
Fig. 4, where we show the changes of image contrast over time in wavefront control, even though
both cases use sinc probing profiles, case (b) with optimal amplitudes uses a much shorter time
(fewer images) than the benchmark case (a). The optimal probing contrast law guides us to
collect images with smaller observation noises.

With the DM probing shapes optimized in cases (c) and (d), two-pairs-of-probe sensing
becomes possible, which further reduces the time and number of images needed for WFSC
to achieve a high contrast. The probe shape optimization problem in Eq. (27) is solved using
an Adam optimizer.28 The initialization highly influences the final solutions since it is a non-
convex program. As can be seen in Fig. 4, case (c) with a sinc wave initialization performs better.
It slightly modifies the sinc probe shapes and introduces electric field perturbations to the pre-
viously unmodulated axial regions. As indicated by Fig. 5, the probe contrasts of the axial pixels
now increase from below 10−9 to above 10−7, and the probe angle differences become almost
90 deg. However, with a random initialization, the focal plane perturbation is not always uniform
(see Fig. 6) because the solution becomes easily stuck at a local minimum. Although it performs
well at the beginning, case (d) does not beat case (b) in the later stage.

0 50 100 150
10–10

10–8

10–6

10–4 a) benchmark sinc
b) opt amp sinc
c) opt shape sinc init
d) opt shape rand init
e) adaptive time SNR 1

Fig. 4 WFSC simulation contrast curves with different DM probing and camera exposure policies,
(a) benchmark case using sinc wave probes and the heuristic probing contrast, (b) sinc probes
with optimal amplitude, (c) optimized probes initialized with sinc waves, (d) optimized probes
randomly initialized, and (e) adaptive camera exposure with probing policy in (c).
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Case (e), the adaptive exposure policy, is simulated using the same probing policy as in case
(c), but with the adaptive integration time. The adaptive exposure policy significantly reduces the
WFSC time while still reaching a high contrast, as shown in Fig. 4, because short camera
integration times are sufficient for the wavefront sensing at low contrast. In the figure, it appears
that the adaptive camera exposure policy levels out at 3 × 10−10 and converges to the fixed
exposure case after 100 s. However, this is not true and is purely because of the long camera
exposure time at high contrast. In Fig. 7, we show a log–log contrast-versus-time graph from
the adaptive camera exposure policies defined at four different SNRs. As can be seen, the con-
trast is still going down after a 100 s (can reach below 10−10), and the logarithm of the final
contrast is inversely proportional to the logarithm of the WFSC control time used. In contrast, the

Fig. 6 Focal plane perturbations at the first control step caused by the optimized probe shapes
with random initialization. The first two columns and the third column, respectively, display the
probes’ contrasts in log scale, fjp1

k j2; jp2
k j2g, and the angle differences, fj∠p1

k − ∠p2
k jg.

10–1 100 101 102 103

10–10

10–8

10–6

adaptive time SNR 1/2
adaptive time SNR 1
adaptive time SNR 3
adaptive time SNR 10

Fig. 7 WFSC contrast curves with optimal probing shapes and adaptive camera exposure policies
defined at different SNRs, 1∕2, 1, 3, and 10.

Fig. 5 Focal plane perturbations at the first control step caused by the optimized probe shapes
with sinc wave initialization. The first two columns and the third column, respectively, display the
probes’ contrasts in log scale, fjp1

k j2; jp2
k j2g, and the angle differences, fj∠p1

k − ∠p2
k jg.
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WFSC contrast curves using fixed integration times do get stuck, because the collected
high contrast probing images have very low SNRs. Typically, reducing the SNR speeds up the
wavefront correction. However, when the SNR is below 1, such as in the case of SNR ¼ 1∕2,
WFSC is a little slower at the beginning because the estimation is not very robust. Even worse,
when the SNR reaches below 1∕2 (not shown), the WFSC no longer works. That also explains
why the fixed integration time policy get stuck after reaching a high contrast due to low-SNR
images. Therefore, the adaptive camera exposure policy defined at SNR ¼ 1 is the best
choice.

5 Conclusion and Future Work

In this paper, we have proposed a stochastic model of a space-based AO system and developed
optimal DM probing policies and adaptive camera exposure policies based on that. Our approach
enables efficient wavefront sensing, so the AO system can reach a high contrast within a much
shorter time. We demonstrated the approach by simulating a telescope system with a vortex
coronagraph.

Future work includes the validation of these methods in experiment. We also want to explore
the applications of our efficient wavefront sensing algorithms in correcting noncommon-path
errors in ground-based telescopes. In addition, we also plan to investigate the optimal probing
and camera exposure policies for nonlinear wavefront sensing algorithms, such as the EKF
in Eq. (15).
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