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Abstract. On August 22, 2019, the Origins Space Telescope (OST) Study Team delivered the
OST Mission Concept Study Report and the OST Technology Development Plan to NASA
Headquarters. A key component of this study report includes the technology roadmap for detec-
tor readout and how new radio frequency-system-on-chip (RFSoC)-based technology would be
used to advance the far-infrared polarimeter instrument concept for a spaceflight mission. We
present our current results as they pertain to the implementation of algorithms, hardware, and
architecture for instrument signal processing of this proposed observatory using RFSoC tech-
nology. We also present a small case study, comparing a more conventional readout system with
one based on the RFSoC and show a trade of system complexity versus technology readiness
level. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
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1 Introduction

The Origins Space Telescope (OST) is one of four large astrophysics mission concepts under
consideration for the National Research Council’s 2020 Astronomy Astrophysics Decadal
Survey1 (Fig. 1). The far-infrared imager and polarimeter (FIP), one of three baseline science
instruments proposed on this observatory, will perform broadband imaging from 50 to 500 μm.2

To accomplish this, the FIP camera will utilize an image sensor based on arrays of thousands of
densely packed microwave frequency-division multiplexed superconducting detectors. The
detectors will be composed of transition-edge sensors (TESs) or microwave kinetic inductance
detectors (MKIDs). Both MKID and TES arrays are read out similarly, using nearly identical
signal processing electronics and methodologies. A key component technology upon which
the FIP readout electronics is currently based is a relatively new processor known as the radio
frequency system-on-chip (RFSoC), invented by Xilinx.3 This paper discusses the readout elec-
tronics architecture and signal processing flow of the FIP instrument and how the RFSoC plays
an important role in its development, from hardware electronics and scientific signal processing
perspectives. In addition, this paper presents a trade of technology-readiness-level (TRL) versus
power for the FIP readout electronics and presents a TRL-6 path for the flight instrument that can
be achieved relatively quickly.
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1.1 FIP Image Sensor Signal Flow

The FIP imaging system will feature a new kind of image sensor comprised of arrays of MKIDs
or microwave superconducting quantum interference device (SQUID) multiplexed TES resona-
tor elements (pixels). Arrays of the latter type of sensor are the current baseline for the instru-
ment,1 employing 7957 pixels to be exact. Currently, four groups of ∼2000 pixels each are
output from the image sensor as RF signals that are amplified by high electron-mobility tran-
sistor-based amplifiers. Each signal is 4 GHz in bandwidth and will be located from 4 to 8 GHz
in RF frequency. The image sensor also requires detector bias signals, fluxramp modulation
signals, and feedback signals to operate. The flow of input and output signals to and from the
detector is shown in Fig. 2. The task of the FIP readout electronics subsystem is to acquire
and process all four image sensor output signals and generate the feedback, bias, and fluxramp
signals required for operation. If MKIDs are used in lieu of TES detectors, then the fluxramp
modulation signals are not required.

Fig. 1 Artist conception of the OST.

Fig. 2 Detector input and output signals for the FIP instrument. All detector pixels are arranged in
four groups of ∼2000 each that are passed on to a HEMT amplifier. The signals occupy a 4 GHz
bandwidth centered at 6-GHz RF. The detector array also requires a RF comb signal for feedback,
as well as fluxramp modulation (only if TES detectors are used) and detector bias signals.
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1.2 MKID Signal Processing

MKIDs are a type of cryogenic superconducting photon detector first developed at the California
Institute of Technology and NASA Jet Propulsion Laboratory in 20034 (Fig. 3). These devices
are used for high-sensitivity astronomical detection of electromagnetic frequencies ranging from
the far-infrared to x-rays. Impinging photons incident on a strip of superconducting material
break Cooper pairs and create excess quasiparticles. The kinetic inductance of the superconduct-
ing strip varies inversely with the density of Cooper pairs, and thus the kinetic inductance
increases upon photon absorption. This inductance is combined with a capacitor to form a micro-
wave resonator modeled as an equivalent LC tank circuit, with a resonant frequency that varies
with the absorption of photons (Fig. 4). An imaging array is formed by connecting many thou-
sands of resonators in parallel along a common transmission line. Since each resonator can be
designed to have its own unique starting resonant frequency and corresponding bandwidth, the
resonator is said to be frequency-division multiplexed as a result (Fig. 5). Therefore, resonator
array readout is accomplished by tracking each resonator frequency response in the transmission
line and mapping amplitude, phase, and frequency variation to the amount of kinetic inductance
present and, hence, the properties of the incident photon.

The prevailing technique for array readout digitally synthesizes a comb signal, feeds it to
the array, and reads back the resulting signal for processing.5 The comb signal consists of
a linear combination of sinusoidal tones that are individually set to the corresponding initial

Fig. 3 MKID device, highlighting the lithographically etched resonator arrays along a single
feedline.

Fig. 4 When an incident photon interacts with the MKID device, the resonator frequency and
phase responses are shifted. Measuring this shift is the job of the readout system, and the astro-
physical image pixel to be read out is embedded in this shift information.

Bradley et al.: On the advancements of digital signal processing hardware. . .

J. Astron. Telesc. Instrum. Syst. 011018-3 Jan–Mar 2021 • Vol. 7(1)



frequencies of each detector in the array. As kinetic inductance occurs as a result of incident
photons, each sinusoid in the comb signal is modified by its corresponding detector. The result-
ant output signal is fed back to the electronics system, where its spectrum is estimated, and the
modification of each sinusoidal element in the feedback comb signal is computed. Embedded in
the output spectra of the instrument is the astrophysical image to be synthesized via ground
processing.

1.3 TES Signal Processing

ATES, developed in the 1940’s by Andrews et al.,6 is a very sensitive cryogenic energy detector
made from a superconducting film held at its phase transition temperature. In this temperature
region, a very small change in temperature leads to a very large change in film resistance.
An incident photon heats this element, resulting in the resistance change. The superconducting
element is inductively coupled to a SQUID resonator array, which is frequency division multi-
plexed similarly to MKID arrays. Inductively coupling TES devices to a microwave multiplexed
SQUID array allows for thousands of TES devices to be utilized simultaneously and share a
common RF feedline (Fig. 10).

Readout of TES devices, once multiplexed by microwave SQUID resonators, are read out
similarly to MKIDs. The common element between MKID and microwave SQUIDS is the use of
a comb signal to excite the microwave resonator array and the use of a spectrometer to measure
the resultant spectrum of the comb signal. Compared with MKIDs, TES devices require addi-
tional linearization. This is accomplished by means of flux ramp modulation. In this technique,
a secondary set of signals are sent to the TES devices so that their responses can be linearized,
whereas the primary set of signals are the individual sinusoidal components of the comb signal
that address each microwave SQUID resonator element. In this paper, the terminology TES
implies frequency-domain SQUID multiplexed variety of TES detectors (Fig. 6).

Fig. 5 Equivalent parallel LC circuit representation for a MKID array of n resonators and its
corresponding frequency response (S21 parameter). Figure from Day et al.4
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2 FIP Readout Electronics Hardware

The current design for the FIP readout is based on the Xilinx RFSoC device. This section pro-
vides some background on this device, why using it for MKID and TES readout is novel, and the
resulting system hardware architecture that supports its use. We show that, for both MKID and
TES detector arrays, a single RFSoC device can accomplish all of the digitization and processing
for the entire FIP instrument.

3 Digital Signal Processing Using the RF System-on-Chip

The Xilinx RFSoC Generation 1 (Gen-1) is currently a commercial SoC that combines an
field-programmable gate array (FPGA), 16 wideband data converters, and one quad-core Arm
Cortex-A53 and one dual-core Reduced Instruction Set Computer (RISC-V) processor into a
single device3 (Fig. 7). The data converters consist of eight 4 giga-samples per second (GSPS),
12-bit analog-to-digital converters (ADCs), and eight 6.4 GSPS 14-bit digital-to-analog

Fig. 7 RFSoC processor from Xilinx. The First Generation (Gen-1) RFSoC, highlighted in this
paper, has eight channels of RF input and eight channels of RF output for interfacing to the
FIP detector array via a stage of RF downconversion electronics.

Fig. 6 Microwave-multiplexed TES schematic. Figure from Becker et al.7
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converters (DACs). The data converters are independent of each other, can all be synchronized,
and are interfaced directly to the FPGA logic in the same chip; therefore, they do not need any
any external high-speed data interaces, such as JESD204N, to acquire and process samples. As a
result, the FIP input and output RF signals can all be sampled and processed simultaneously by a
single RFSoC device, which is commercially available, but not yet space qualified at the time of
this writing. Standard FPGA I/O on the same device can also handle control of bias current
circuitry and output of digital fluxramp control signals to corresponding low-rate monolithic
DACs on the same printed circuit board (PCB) as the RFSoC.

As shown in Fig. 8, development is already underway using an evaluation board provided by
Xilinx, which gives access to all of the RFSoC interfaces and FPGA logic for development.
A daughter card is necessary to break out the many RF signal I/O and clocking ports.

The novelty of using the RFSoC is that all of the necessary components for digital signal
processing are contained within a single chip package, which is unprecedented to date. In par-
ticular, we use an RFSoC that has eight ADCs and eight DACs, each operating at more than 12
bits per sample, at sample rates of 4 GSPS, to capture the full bandwidth of the resonator array
RF signals. Command and control functions are easily handled in one or more of the many
embedded processor cores that come along with the chip. Using an RFSoC as the main processor
for the FIP detector readout is functionally optimal since the chip only requires a single PCB to
reside on and no other RFSoCs or FPGAs would be necessary.

However, since the RFSoC is not yet radiation hardened, it is necessary to develop a spe-
cialized application specific integrated circuit (ASIC) that performs a similar function as the
RFSoC that is radiation-hardened. Alternatively, and at the cost of additional power (to be dis-
cussed in a later section), conventional spaceflight qualified ADCs, DACs, and FPGAs exist
now that can be used in place of the RFSoC. However, using these devices would also require
the development of more than one PCB due to the PCB layout for this kind of assembly being
significantly complex and multi-layered and requiring precise signal integrity analysis.

Fig. 8 Xilinx RFSoC development board under test at NASA Goddard Space Flight Center
Instrument Electronics Development Branch (Code 564). Courtesy of the Digital Signal
Processing Technology Group.
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3.1 Frequency Plan

Design of the FIP detector readout electronics system starts with careful consideration of the
frequency plan, i.e., the arrangement of the detector signals in the microwave frequency range
and the plan for how they arrive at the digital system for subsequent processing. Currently, both
TES and MKID detector array designs under consideration for FIP will be designed to operate in
the 4 to 8 GHz RF frequency range. This requires all signal processing to synthesize and acquire
signals in this range. The Xilinx RFSoC is aptly suited for this task since it has an array of on-
chip RF-Sampling ADCs and DACs that sample up to two Nyquist zones and operate at 4 GSPS.

However, the Nyquist bandwidth of each on-chip data converter on the RFSoC under con-
sideration is a maximum of 2 GHz for the ADCs and 3 GHz for the DACs. This means that the
entire 4-GHz bandwidth of either the MKID or TES detector array requires 2 DACs and 2 ADCs
each for processing. One RFSoC chip therefore is capable of processing 16 GHz of bandwidth;
therefore four different groups of 4 GHz detector arrays can be read out simultaneously using
only one device. To capture the full 4 GHz of any detector group, while minimizing the amount
of required RF analog electronics required for operating in the 4 to 8 GHz band, the bands must
be split before interfacing to the RFSoC.

The scheme to accomplish this is shown in Fig. 9. Currently, a group of roughly 2000 micro-
wave resonators (baseline TES or MKIDs) occupy 4 GHz of bandwidth and are presented to the
readout system over a single transmission line following a HEMT amplification stage.1 The full
band signal needs to be downconverted and split into two separate 2 GHz-wide bands to be
acquired by the on-chip ADCs of the RFSoC. Depending on which Nyquist zone the resulting
2-GHz signal lands—either first or second, a single ADC channel of the RFSoC acquires it since
all channels operate at 4 GHz.

FIP outputs four 4 GHz signals, therefore eight ADC channels are required, and the RFSoC
has exactly this many ADC inputs to accommodate this. Similarly, the RFSoC has complimen-
tary DACs that can operate at 6 GHz, and they can be used to synthesize the excitation signals
that the MKIDs and TES arrays require for readout.

The functional block diagram for the FIP detector readout subsystem is given in Fig. 10.
Reading the signal flow from left to right, the TES array (and similarly, the MKID array) pro-
duces the RF electrical signals that are captured by all subsequent electronics.

The baseline concept for FIP’s image sensor consists of 7957 TES elements, configured as a
rectangular array (109 × 73), and output over four RF transmission lines, with each being 4 GHz

Fig. 9 Detector array frequency plan. The detector resonators live within the 4- to 8-GHz RF band-
pass frequency in (a). This signal is downconverted to baseband (0 to 4 GHz), rejecting the image
frequency in (b). In (c) through (f), second-Nyquist zone sampling is employed to further down-
convert and acquire each signal portion, filtering out image signals along the way.
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in bandwidth and living in the 4- to 8-GHz RF frequency range. As a result, these four RF signals
need to be connected to corresponding HEMT amplifiers and transmitted downstream for read-
out. The required bandwidth of the FIP detector array is near 16 GHz to cover all TES elements.

The detector array configuration of the FIP instrument maps to a single RFSoC device with
the addition of a little RF processing to subdivide the total bandwidth into eight 2 GHz sections.
The four detector signals are passed to a set of mixers that downconvert and split each 4 GHz
signal into a pair of 2 GHz signals as shown in Fig. 11, which are interfaced to two RFSoC RF
input channels at a time. All input signals are digitized in parallel. The RFSoC FPGA portion
computes all spectra and generates the variable-frequency comb function that is sent back to the
detector array. Detector bias and fluxramp modulation signals are also generated by the RFSoC
and are sent to the detector array. The RFSoC also contains two different multicore processors
on-chip, which can carry out all necessary software functions in the signal processing chain.
These functions include input signal calibration, interfacing the instrument to the spacecraft via
SpaceWire, tone tracking algorithm implementation,5 and general-purpose board functions such
as telemetry and health monitoring, limit checking, and any signal processing intelligence that is
too cumbersome to implement in FPGA logic.

Fig. 10 FIP detector subsystem functional block diagram. Four RF signals corresponding to
∼8000 resonators (TES or MKID) interface the input of the system and are processed.
Simultaneously, the detector comb signals are synthesized digitally and are fed back via four out-
put RF signals. Two additional sets of outputs consist of flux rampmodulation signals required only
for TES detectors for linearizing the array and detector bias currents. Detector array spectra as
well as any pertinent system monitoring telemetry are output to the spacecraft computer.

Fig. 11 Each of the four RF input signals xk ðtÞ are mixed down to baseband using a 2-GHz LO
and subsequently lowpass filtered to 4 GHz. The resulting signal is split into upper and lower spec-
tral halves, which are acquired for subsequent signal processing, according to the frequency plan.
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Utilization of the RFSoC, or any ASIC that has RF-Sampling data converters, simplifies
the required radio-frequency and intermediate-frequency circuitry. For FIP, only a single RF-
to-baseband downconversion stage is required, along with a two-channel RF filterbank with
gain and filtering stages. The RF-to-baseband downconversion stage also incorporates any AC-
coupling and anti-alias filtering required for interfacing the RFSoC input. Similarly, the RFSoC
output stage requires baseband-to-RF upconversion, gain, and RF-combining circuitry.

3.2 Digital Spectrometer

A digital filter bank is a collection of related digital filters that share either a common input or a
common output signal.8 There are two types of filterbanks—synthesis and analysis. An analysis
filterbank is used as the spectrometer processor for the FIP instrument in much the same way that
the same type of filter bank was used in the Soil Moisture Active Passive Mission, launched
in 2015.9

The filterbank consists of a polyphase finite-impulse response filter that is used to shape
every frequency bin of the spectrometer. The polyphase filter employs a 50% overlap factor
so that each analysis bin overlaps adjacent bins and no signal droop occurs between frequency
bins. A standard fast Fourier transform is then applied to the polyphase-filtered data stream,
averaged, and transmitted to the command and data-handling subsystem. The filterbank spec-
trometer operates in real-time, over the entire 4-GHz bandwidth of signal originating from each
of HEMT amplifiers.

The digital spectrometer used for FIP signal processing is highly parallelized. The first level
of parallelization is due to the detector array signals themselves being fed into eight parallel RF
input ports of the RFSoC. All 7957 pixels, occupying a total of 16 GHz of bandwidth, are fed
into 8 on-chip ADCs that are all sampling at 4 GSPS. The second level of parallelization comes
from the ADCs themselves. The embedded data converters must demultiplex the high-speed 4
GSPS 12-bit data stream into 16 parallel streams of data clocked at the FPGA fabric rate of 250
MSPS. Since data are not re-interleaved, all algorithms that operate on the data must be devel-
oped to operate on the parallel data stream. Using the polyphase filterbank approach8 in Chapter
4, parallel processing is straightforward, linear, and identical for every ADC input stream.
Implementation of the polyphase filterbank spectrometer, comb function generation, and array
signal processing functions are shown in Fig. 12.

Fig. 12 Implementation of the polyphase filterbank spectrometer, comb function generation, and
array signal processing functions implemented on the Xilinx RFSoC processor.

Bradley et al.: On the advancements of digital signal processing hardware. . .

J. Astron. Telesc. Instrum. Syst. 011018-9 Jan–Mar 2021 • Vol. 7(1)



Currently, a hand-coded very high-speed integrated-circuit hardware description language
(VHDL) implementation of our 50% weighted-overlap and add filterbank, with 1024 frequency
bins per every 2 GHz of spectrum, utilizes 52% of the total logic of the RFSoC. This design is not
yet optimized to use the majority of the DSP48 macros on the device; therefore, this utilization
figure will decrease. Currently, our composite filterbank spectrometers, which is split into eight
independent filterbank spectrometers, covers a total of 8192 frequency bins. This number will
increase as the VHDL is optimized for performance.

3.3 FIP Data Rate

The primary output data product of the FIP instrument is a vector of 7957 12-bit numbers cor-
responding to the comb frequency amplitudes that are modified by the TES or MKID resonators.
The signal processor produces 300 of these per second to maintain a 150-Hz scientific band-
width. Therefore, the output data rate is the product of these quantities, or 7957 amplitudes ×
300 Hz readout × 12 bits/amplitude = 28.7 Mbps. A 12-bit resolution, corresponding to a 72-dB
dynamic range for each detector value, is sufficient to capture the detector’s photon noise-limited
dynamic range.

4 Future Work

The introduction of the RFSoC by Xilinx in 2017 had a monumental impact on digital signal
processing systems worldwide and influenced the design of the FIP readout subsystem. The
RFSoC is a single-chip solution—meaning that only a single RFSoC chip is needed to excite,
read out, control, and process all signals required for detector array operation.

However, the major caveat is that, currently, the RFSoC is not radiation-tolerant, nor does
Xilinx have immediate plans to make a radiation-tolerant version of this part. Therefore the
RFSoC cannot be used in the final flight build for the FIP instrument or any spaceflight instru-
ment for the time being unless a fault-tolerant approach for using them is developed. For ground
and airborne instruments, the RFSoC is the most efficient part to use from a size, weight, and
power perspective, but for space use, the RFSoC cannot be used without some method of fault-
tolerance to protect the device against radiation effects.

As a development platform, however, the RFSoC enables the entire FIP instrument to be
built, and it would reach what NASA calls a TRL-4,10 which means that the development will
work in the lab environment. The advantage here is that FIP, as an entire instrument, can be be
developed efficiently, with a RFSoC-based readout electronics as its readout algorithm develop-
ment and testing platform. As the instrument matures, the readout electronics subsystem could
be swapped out for another one that does have radiation-tolerant parts. All of the same interfaces
to the detector system and the data interface to the spacecraft can remain the same.

For FIP to operate as a spaceflight instrument at TRL-6, the unit must meet all space
environmental requirements, including temperature and radiation. All DSP algorithms could
be developed on the RFSoC and ported to radiaton-tolerant FPGAs, such as the Kintex
Ultrascale FPGA, also from Xilinx.11 The disadvantage of this approach is that external signal
data converters would necessarily need to be used, thus significantly increasing the PCB size and
number, cost, complexity, and power. Since the FIP instrument uses 16 data converters internal to
the RFSoC, all of these would have to be external to a device such as the Kintex Ultrascale.
External, monolithic, and radiation-tolerant data converters are currently available at the same
sample rates as the internal data converters of the RFSoC. However, since they are external, they
require very high-speed digital interfaces to the FPGA, resulting in multiple complex PCBs
needing to be implemented versus a single RFSoC-based PCB. It is estimated that a Kintex
FPGA can only support a total of four external data converters (2 ADCs and 2 DACs) using
high speed serial data interfaces such as JESD204B.

We estimate a board like this requiring 30 W and a total of four PCBs like this needing to
replace a single RFSoC-based board. A system built using this approach could be built today and
meet the requirements of a FIP flight instrument, but using significantly more mass, power, and
volume than a functionally equivalent RFSoC-based system.
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To estimate power, as a reference, Abaco Systems was one of the first commercial vendors to
make an RFSoC-based PCB, and they estimate 50 W of total power consumption for the entire
system. This is a conservative estimate. To compare against a conventional FPGA system
with external data converters, one can estimate ∼1 W per GHz of sample rate in total power
utilization, also taking into account the JESD204B interface to the FPGA. For a Kintex-based
system, we require at least 4 GHz of sample rate for DACs and ADCs, and only 4 of each data
converter can connect to one Kintex FPGA. Therefore we have 8 Wof power used for DACs and
8 W for ADCs. In addition, the FPGA itself on this PCB would utilize a conservative 20 W,
assuming a nearly full device, with digital logic clocking as quickly as possible. The big draw-
back of such a system is that a total of 4 PCBs, each with four data converters and 1 FPGA,
would be required to have to same signal processing functionality of a single RFSoC-based
board. Coincidentally, Abaco Systems actually notes this fact on their website with an advertis-
ing animation explaining the same advantage. Clearly, this is a strength of using the RFSoC for
FIP signal processing.

A notional estimate summarizing the power requirements of a TRL-6 readout versus a
TRL-5 readout based on the RFSoC is given in Table 1. A standard power loss of 15% due
to power conversion inefficiency that is typically seen in spaceflight electronics, and 10%
margin for supporting electronics on the same PCB were assumed in the estimations for each
subsystem.

Another approach, instead of using a high TRL-level but high-power consumption readout
for FIP, would be to use ASIC spectrometers instead of FPGAs and data converters. This is
the most power-efficient but most costly option since custom chips would be designed
from scratch. Commercial vendors such as Alphacore and Pacific Microchip are entering the
market now with such offerings, but they are severely limited since their devices are only
spectrometers. In addition, they present a similar radiation risk as the RFSoC since none
of these devices have reached TRL-6 yet. ASIC spectrometers wouldn’t solve the readout
problem entirely. FPGAs would still be required to generate the necessary comb signals to
excite the detector array and interface the detectors, and would also be needed to interface
the spectrometer ASICs themselves and tie the entire electrical systems architecture together.

Using the RFSoC as a ground-based development platform, while commercial electronics
matures for spaceflight use, is a prudent approach since the FIP as a system is optimized func-
tionally. All of the FPGA designs are portable between RFSoC and any other device, and the
readout system is modular and linear so that it is FPGA-agnostic. The RF frequency plan can
remain the same.

Table 1 Power estimation for the digital (non-RF) portion of the FIP readout electronics. Two
options are presented—a TRL-6 conventional readout versus TRL-5 RFSoC-based readout.

TRL-6 conventional rad-tolerant
readout electronics

TRL-5 RFSoC-based readout
electronics

Device Quantity Estimated power (W) Quantity Estimated power (W)

FPGA 1 20 1 50

ADCs (TI 6.4 GSPS) 2 8 0 0

DACs (E2V 8 GSPS) 2 8 0 0

Number of PCBs required 4 — 1 —

Power subtotal — 144 — 50

Overhead power (10%) — 14.4 — 5

Power loss due to inefficiency (15%) — 2.16 — 0.75

Total estimated power — 160.56 — 55.75

Note: Bold emphasizes total estimated power.
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5 Conclusion

The technology roadmap for detector readout for OST is both realistic and compelling. Although
it is currently based on using the revolutionary TRL-5 RFSoC technology that is only commer-
cial and not space-qualified, there are still several paths that lead to TRL-6 and beyond given
investment in this approach. At a cost of about 160 W and a box with 4PCBs, the FIP readout
electronics could be built and flown in space today with available radiation-tolerant parts. Using
the RFSoC reveals that, in the future, it will be feasible to do the same job with only 1 PCB and
55 Wor less. If Xilinx decides to make the a radiation-tolerant version of the RFSoC in the near
future, then FIP immediately benefits from it and jumps to TRL-6 with the most efficient FPGA-
based approach to readout. If not, there are still compelling ASIC spectrometer chips that can be
combined with smaller, radiation-tolerant FPGAs on the same PCB that can lead to electronics
solutions that are increasingly power-efficient. The industry is already heading in a direction that
makes all of the aforementioned approaches technically sound and programmatically reasonable.
As a result, the FIP instrument is on track with its technology roadmap and will lead to unprec-
edented science that takes advantage of all of the various investments and significant gains that
are happening now in commercial and government technology development.
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