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Abstract. Bacterial contamination of blood products is one of the most frequent infectious complications of transfu-
sion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the
presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence
this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion
blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-
reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit
level, and temperature variations among the RBC samples were observed. Results showed that the prediction
performance of a dataset which contained samples that differed in all three parameters had a standard error of
29.3 mg∕dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in
minimizing the variations in scattering patterns created by various sample properties. The results suggest that the
diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red
cell concentrations (RCC) products. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.017004]
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1 Introduction
Septic reactions from bacterial contamination of blood products
are considered to be one of the most frequent complications of
blood transfusion.1,2 The U.S. Food and Drug Administration
reported bacterial contamination as the third most frequent
cause of death related to transfusion,3 and data compiled from
11 prospective studies showed that, on average, there is about
one case of sepsis per 2695 units transfused.4 Such bacterial
contamination may be caused by bacteremia (i.e., the presence
of bacteria in donor’s blood), the introduction of contaminants
such as skin commensals during donor venipuncture, or the
incomplete disinfection of processing equipment, etc.5–7

One of the measures taken against this problem is to limit the
shelf life of the blood supply. For example, in the U.S. the sto-
rage time of platelet (PLT) concentrates was reduced from seven
to five days in 1986 due to a higher risk of bacterial sepsis with
older units,8 and in Japan the retention period for red cell con-
centrations (RCC) was reduced from 42 days to 21 days in 1995.
This reduction of storage life, though, may cause shortages in
blood supply in countries such as Japan, where the population
is aging.9,10 Therefore, a prolongation of the shelf life of
blood components would become useful in maintaining a stable
supply of transfusion blood.

In some European countries bacterial screening tests are
employed before transfusion to reduce the occurrence of bac-
terial sepsis.11–13 For instance, in one such bacteria-detecting
system, a small amount of blood is drawn from the transfusion
bag into a smaller pouch and incubated. Inside the pouch
oxygen (O2) consumption is monitored and used as a marker
for bacterial contamination.11 This method requires the use of
an additional sample pouch as a surrogate indicator for bacteria.
This is an extra and inessential step as there is a method that
enables the detection of bacteria directly from the transfusion
bag.

Besides O2 level, glucose consumption is also found to
increase in bacterially contaminated blood samples.14 For
example, one study showed that the glucose level of RCC
contaminated with Yersinia enterocolitica decreased by nearly
500 mg∕dL (from 700 mg∕dL to 200 mg∕dL) whereas that
of a sterile sample decreased by around 100 mg∕dL (from
700 mg∕dL to 600 mg∕dL).15 This result suggests that the
detection of glucose levels could serve as a useful indicator
for bacterial contaminations in blood components.

One of the most promising methods for the nondestructive
measurement of blood glucose levels is near-infrared (NIR)
spectroscopy because the NIR region contains the overtone
and combination bands for glucose absorption.16,17 One impor-
tant contributor in a successful component analysis using NIR
spectroscopy is the selection of a suitable measurement system
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wavelength region. Previous studies that took measurements
in biological components have utilized both shorter (800–
1300 nm) and longer (1300–2500 nm) wavelengths in the NIR
region.17 In general, the longer wavelength regions produced
larger absorbance signals but resulted in shorter optical path
lengths. In a study conducted by Heise, transmittance spectros-
copy was used to measure glucose levels in human blood
plasma.18 The results showed that measurements taken in the
longer wavelength regions produced more accurate glucose
quantification results than those taken in the shorter wavelength
regions. Similar results were also obtained by Amerov et al. in a
study that utilized diffuse-transmittance spectroscopy to detect
glucose levels in whole blood samples.19 They tested wave-
length regions in the NIR range between 1111 and 2500 nm
and showed that the longer wavelength region from 2062 to
2381 nm generated a higher correlation between predicted
and reference glucose levels than the shorter wavelength region
from 1117 to 1370 nm (correlation coefficient ½r� ¼ 0.960; stan-
dard error of prediction ½SEP� ¼ 17.3 mg∕dL). Furthermore,
in a study by Kim and Yoon, which utilized the diffuse-
transmittance method in the wavelength range of 1110 to
2400 nm, results also indicated that spectra taken in the long
wavelength region between 1390 and 1888 nm and 2044 to
2392 nm produced the best prediction of glucose levels in
whole blood (r ¼ 0.976; SEP ¼ 26.1 mg∕dL).20

In both Amerov et al. and Kim and Yoon’s studies of whole
blood, the SEP of glucose was lower than 30 mg∕dL, which
suggests that NIR spectroscopy can be utilized to measure
blood glucose levels. Moreover, since glucose concentrations
in transfusion products are known to decrease from the normal
level of around 600 mg∕dL to less than 200 mg∕dL when
bacteria proliferate, NIR spectroscopy is a promising method
to detect the presence of bacterial contamination in blood
components.

In contrast to studies that utilized diffuse-transmittance
method, Maruo et al. used NIR diffuse-reflectance spectroscopy
for the noninvasive measurement of blood glucose level in
vivo.21 They suggested the diffuse-reflectance method yields lar-
ger absorbance signals than the diffuse-transmittance method
because it can take changes in both glucose concentration
and the scattering property of the body into account when form-
ing the absorbance signals. Therefore, for materials with high
scattering properties, such as the RBC components used in
the present study, diffuse-reflectance may produce larger absor-
bance signals. Furthermore, unlike the diffuse-transmittance
method, diffuse-reflectance measurements do not require the
optical path length to be fixed, which would enable the measur-
ing machine to have a simpler design.

Since there has not been any published research on the
measurement of glucose concentrations in whole-blood or RCC
utilizing diffuse-reflectance spectroscopy, this paper attempts
to serve as a preliminary study. In this study glucose concen-
trations in blood samples were predicted using NIR diffuse-
reflectance spectroscopy in the 1350 to 1850 nm range. The
effect of variations in hematocrit (Hct) level, temperature, and
donor properties among the samples was also observed to test
whether the present method could be used in real-life settings.
From the results of the present study, the possibility of optical
detection of glucose in RCC by NIR diffuse-reflectance spec-
troscopy can be evaluated.

2 Methods

2.1 Device

We developed a diffuse-reflectance spectrometer to measure the
NIR spectra of RBC samples. Figure 1 is a schematic diagram of
the instrument. The instrument consisted of a 150-watt halogen
lamp light source (Philips, TYPE 6550), an optical fiber bundle
that included both detector and illuminator fibers (Fujikura, clad-
ding diameter 200 μm, core diameter 175 μm, NA ¼ 0.2), and
mini spectrometer containing a grating and a 256-channel linear
array photo detector (Hamamatsu Photonics K. K., C9914GB).
The optical signal from the spectrometer was transferred to a
computer (Panasonic, Let’s Note), where the optical signal
was processed to predict the glucose concentrations.

The detector and illuminator optical fibers were fixed at the
measuring tip (see Fig. 1) of the optical fiber bundle. Figure 2
shows the geometry of the optical fibers at the measuring tip.
The tip of the optical fiber was designed such that twelve illu-
minator fibers surrounded one central detector fiber in a circle.
The distance between the detector fiber and each of the illumi-
nator fibers was 650 μm. This design maintained a sufficient
average NIR radiation path length and allowed the illuminator
to emit high-intensity radiation.
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Sample
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Fig. 1 The schematic diagram of the diffuse-reflectance spectrometer
used in the present study.
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Illuminator fibers
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m

Fig. 2 The geometry of detector and illuminator fibers at the measure-
ment tip of the sample.
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For spectral measurement, the measuring tip was directly
submerged into the RCC. Inside the spectrometer, radiation
from the halogen lamp was gathered through a concave mirror,
transmitted through the illuminator fibers, and irradiated into the
samples. Then, in the RCC the diffuse-reflected radiation was
scattered many times in the turbid media, and only the radiation
that reached the detector fiber was transmitted back to the spec-
trometer. Finally, the transmitted signal was sent to the compu-
ter, where the absorbance spectra were calculated. The reference
spectra needed to form the absorbance spectra were taken by
irradiating a standard 10% reflectance target (Labsphere) at
the beginning of the experiment. Although this spectrometer
is able to record measurements in wavelength regions between
1100 and 2200 nm, only spectral signals taken in the 1430 to
1850 nm range were used for glucose prediction. The accumu-
lation time of each linear array photoreceptor was 50 ms, and
200 spectral data were averaged per measurement.

The quality of the spectra was also assessed by taking a spec-
tral measurement every 5 min for 120 min and then conducting
a root-mean-square (rms) noise analysis of 100% lines on the
collected data. Results showed that the average rms of 100%
line of the wavelength region between 1430 and 1850 nm was
87.4 μAU, which we predicted to be sufficient for the purpose of
the study.

2.2 Red Blood Cell Samples

The RBC samples used for this experiment were prepared by the
Japanese Red Cross Society (JRCS) using two packages of Red
Cells Concentrates-Leukocytes Reduced “Nisseki” (RCC-LR)
that did not qualify for transfusion after a blood test. The
blood from the two packages was not mixed together in this
experiment.

To make the RBC sample, the disqualified RCC-LR was cen-
trifuged to separate the RBC portion from the rest of the blood.
A typical RCC-LR contains glucose concentrations up to
600 mg∕dL and Hct values around 50 to 60%. The collected
RBC portion was first adjusted into samples with Hct levels
of 50 or 60% by diluting it with physiologic saline solution.
Then, within each Hct group, the samples were further adjusted
into samples with glucose concentrations of 0, 100, 200, 300,
400, 500, or 600 mg∕dL. Because the Hct and glucose levels
were hand-adjusted, it was likely for the actual Hct and glucose
values to deviate from the ideal values. Therefore, the actual
Hct and glucose levels were measured using an automated

hematology analyzer (Sysmex, K-4500) and Glucose CII-test
Wako (Wako Pure Chemicals, Osaka), respectively, and used in
the data analysis. Since the measurements were taken from the
supernatant of the samples, the effect of haemolysis on glucose
measurement was considered negligible.

After the RBC samples were separated into their respective
Hct and glucose levels, 25 mL of each sample were transferred
to a glass container, inside which the measurement took place.
To create different temperature conditions, these containers were
first placed in a 25 °C water bath and taken out at the time of
measurement. Then, following the first round of measurements,
they were transferred to a 27 °C water bath for the second round
of measurements. All experimental steps, from preparation of
the RBC samples to measurement of the spectra, were com-
pleted within one hour; hence, the properties of each sample
were assumed to be constant throughout the experiment.
Furthermore, the Hct levels and glucose concentrations were
not correlated to each other (r ¼ −0.08).

Table 1 shows a summary of the experimental conditions and
the measured Hct, temperature, and glucose values for each sam-
ple. RBC from Donor A was separated into four measurement
conditions: 1. Hct 50% at 25 °C; 2. Hct 50% at 27 °C; 3. Hct
60% at 25 °C; and 4. Hct 60% at 27 °C, as shown in Table 1.
RBC from Donor B was adjusted to two measurement condi-
tions: 1. Hct 50% at 25 °C and 2. Hct 50% at 27 °C. Each mea-
surement condition had RBC samples with seven glucose levels
ranging from 0 to 600 mg∕dL, making 42 independent blood
samples in total. Three spectral measurements were taken for
each sample, producing a total of 126 spectral readings available
for analysis.

2.3 Prediction Method

Partial least squares (PLS) regression analysis was used to form
calibration models for glucose quantification based on the mea-
sured data.22 Because the number of data points for each con-
dition was limited, the cross validation method was utilized.23

Furthermore, the effect of multiplicative scatter correction
(MSC) preprocessing method, which is known to reduce the
scattering effect for quantitative prediction, was observed
using the spectral data from each condition.24

3 Results and Discussion
Figure 3(a) shows all 126 spectra taken from samples in condi-
tions 1 to 6. The unprocessed spectra showed multiplicative and

Table 1 Experimental conditions.

Condition Donor Hct (%) Temp (°C) Glucose concentration (mg∕dL)

1 A 50.8� 0.3 25.0� 0.1 14, 119, 204, 281, 370, 450, 545

2 A 50.8� 0.3 27.0� 0.1 14, 119, 204, 281, 370, 450, 545

3 A 60.5� 0.5 25.0� 0.1 24, 129, 206, 287, 373, 456, 540

4 A 60.5� 0.5 27.0� 0.1 24, 129, 206, 287, 373, 456, 540

5 B 50.3� 0.4 25.0� 0.1 167, 225, 282, 341, 389, 457, 501

6 B 50.3� 0.4 27.0� 0.1 167, 225, 282, 341, 389, 457, 501
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additive variations due to different sample parameters in Hct
level, temperature, and donor properties.

3.1 Glucose Sensing in Samples from the Same
Condition

The glucose concentration in each sample was estimated from
all the spectral data taken from its respective condition. Table 2
summarizes the cross validation and calibration regression
results of samples from conditions 1 to 6. Fairly robust correla-
tions were obtained between predicted and measured glucose
levels for all groups. The average correlation coefficient of cross
validation (rCVal) was 0.994, and the standard error of cross
validation (SECV) was 17.1 mg∕dL. Moreover, the average
correlation coefficient of calibration (rCal) was 0.998, and

the standard error of calibration (SEC) was 9.9 mg∕dL. The
numbers of PLS factors used for all conditions, excluding
condition 1, were four or five.

Our results showed improvement in prediction performances
compared to previous studies on optical glucose sensing in
blood. For example, Amerov et al. obtained rCVal of 0.980
and SECV of 21.6 mg∕dL in the wavelength region between
1550 and 1754 nm in their research utilizing diffuse-transmit-
tance spectroscopy.19 Compared to their study, the SECV was
improved by around 4.5 mg∕dL in the present study. Although
different types of measurement systems were utilized, their
study could serve as a basis of comparison for results from
our study because similar experimental setups and a similar
wavelength region were used.

A closer look at the results from a single condition also
shows that correlations obtained are fairly high. For example,
Fig. 4(a) is a regression graph that illustrates the results obtained
from samples in condition 4. The correlation was fairly high,
with rCVal of 0.997 and SECV of 13.3 mg∕dL. Furthermore,
Fig. 4(b) is a regression vector obtained from the same set of
samples. The vector had a positive peak around 1580 nm,
which is near the peak absorbance spectra of glucose. In addi-
tion, Kim and Yoon also observed two positive peaks around
1580 nm and 1750 nm in their regression vector,20 which are
similar to those seen in Fig. 4(b). These evidences support
the validity of this calibration model.

3.2 Glucose Sensing in Samples from Different
Conditions

Several datasets were constructed by pooling together spectral
data from various conditions, as shown in Table 3. These cali-
bration sets were then used to predict glucose levels to test
whether a good calibration model could be constructed from
data taken from samples with various conditions. The effects
of donor, Hct, and temperature differences on glucose prediction
were observed.

In the first set, data that varied only in the original donor were
combined (see Table 3 “donor difference”). The rCVal was
0.971, and the SECV was 36.1 mg∕dL. For the second dataset,
which includes samples with different Hct content (see Table 3
“hematocrit difference”), rCVal was 0.985 and SECV was
29.9 mg∕dL. For the third dataset, which included spectral
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Fig. 3 Comparison between raw (unpreprocessed) and preprocessed
absorbance spectra of all RBC samples (126 spectra): (a) raw, (b) prepro-
cessed by MSC.

Table 2 Prediction of glucose concentrations in spectral region between 1430 and
1850 nm for RBC samples from conditions 1 to 6.

Condition
Number of
spectra

Number of
factors

SECV
(mg∕dL) rCVal

SEC
(mg∕dL) rCal

1 21 7 27.4 0.988 9.9 0.998

2 21 5 14.2 0.997 7.8 0.999

3 21 4 21.6 0.993 13.8 0.997

4 21 4 13.3 0.997 10.1 0.998

5 21 4 10.1 0.996 6.8 0.998

6 21 5 16.0 0.990 10.7 0.996
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data taken at various temperatures (see Table 3 “temperature
difference”), rCVal of 0.990 and SECV of 16.5 mg∕dL were
obtained. The last dataset consists of samples that differed in
all parameters, including donor, Hct, and temperature (see
Table 3 “donor, hematocrit, temperature difference”). Its rCVal
was 0.969, and its SECV was 36.0 mg∕dL.

The dataset for “temperature difference” exhibited the high-
est correlation between the reference and predicted glucose con-
centrations, which is likely due to the fact that samples from this
set had the same donor and Hct values and differed only in their
measured temperatures. Because the scattering properties of
samples with different temperatures were relatively constant,
a better calibration model was achieved. In contrast, for datasets
that contained samples with varying scattering properties due to
Hct or donor differences, the accuracy of glucose prediction
decreased.

3.3 Effects of MSC Preprocessing Method

Spectral data from samples in Tables 2 and 3 were preprocessed
by MSCmethod. Tables 4 and 5 summarize the calibration mod-
els created from the MSC preprocessed data. The effect of MSC
preprocessing can be seen by comparing Fig. 3(a), which dis-
plays all 126 raw spectra, with Fig. 3(b), which illustrates MSC
preprocessed spectra from all 126 samples. It is evident that the
multiplicative and additive variations in the raw spectra were
compensated by the MSC preprocessing method.

Table 4 shows the prediction results using MSC preprocessed
data from RBC samples in conditions 1 to 6. After MSC pre-
processing, the rCVal and SECV averages for all six conditions
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Fig. 4 Analysis for diffuse-reflectance measurement between 1430 and
1850 nm for samples from condition 4: (a) cross-validation prediction of
glucose concentrations, and (b) regression vector of cross validation
model (PLS 4) and absorbance of aqueous glucose (10 g∕dL).

Table 3 Calibration models for glucose prediction in wavelength regions between 1430 and 1850 nm using datasets that consist of spectral
data from different conditions.

Calibration set Samples used
Number of
spectra

Number of
factors

SECV
(mg/dL) rCVal

SEC
(mg∕dL) rCal

Donor difference Condition 1 & 5 42 10 36.1 0.971 14.2 0.996

Hematocrit difference Condition 1 & 3 42 8 29.9 0.985 18.6 0.994

Temperature difference Condition 5 & 6 42 8 16.5 0.990 9.7 0.996

Donor, hematocrit, temperature difference Condition 3, 4, 5 & 6 84 12 36.0 0.969 18.6 0.992

Table 4 The effects of MSC preprocessing on the prediction of glucose concentration in a spectral region between 1430 and 1850 nm for RBC
samples from conditions 1 to 6.

Condition
Number of
spectra

Number of
factors [MSC]

SECV
(mg∕dL) [MSC]

rCVal
[MSC]

SEC
(mg∕dL) [MSC]

rCal
[MSC]

1 21 5 18.5 0.995 9.5 0.999

2 21 5 26.0 0.989 12.6 0.998

3 21 4 24.7 0.991 13.0 0.997

4 21 3 18.0 0.995 14.7 0.996

5 21 2 13.1 0.994 10.5 0.996

6 21 5 17.8 0.988 8.12 0.998

Suzuki et al.: Preliminary evaluation of optical glucose sensing in red cell concentrations : : :

Journal of Biomedical Optics 017004-5 January 2012 • Vol. 17(1)



were 0.992 and 19.7 mg∕dL, respectively. Results show that the
MSC preprocess did not improve the quantitative determination
accuracy of the raw data (average raw rCVal ¼ 0.994;
raw SECV ¼ 17.1 mg∕dL). These results are most likely due
to the small differences in scattering properties between each
raw sample, which minimize the effect of the MSC preprocess.

The MSC preprocess was also performed on datasets that
combined samples from various conditions (see Table 5). Glu-
cose concentrations were then predicted using the processed
data. The rCVal and SECV for the “donor difference” dataset
was 0.982 and 28.4 mg∕dL, respectively, an improvement com-
pared to those of nonpreprocessed dataset, which had an SECV
of 36.1 mg∕dL. This improvement was probably due to the
MSC preprocess’s effect, which diminishes the variation in
scattering properties of the blood from different donors.

The same effect was seen in the dataset for “hematocrit dif-
ference.” The MSC preprocessed rCVal of 0.993 and SECV of
20.9 mg∕dL were better than the raw SECVof 29.9 mg∕dL. In
addition, in the dataset for “donor, hematcrit, temp difference,”
the MSC preprocessed rCVal of 0.980 and SECV of
29.3 mg∕dL were better than the raw rCVal of 0.969 and
SECV of 36.0 mg∕dL. Again, this effect was probably due to
the decrease in scattering properties caused by Hct and donor
differences following MSC preprocessing.

Interestingly, the dataset for “temperature difference” did not
seem to be affected by MSC preprocessing. The rCVal and
SECV after MSC preprocessing were 0.989 and 16.6 mg∕dL,
respectively, whereas the rCVal and SECV for the unprepro-
cessed were 0.990 and 16.5 mg∕dL, respectively. This is prob-
ably because this dataset contained samples that had the same
donor and Hct level. The difference in measuring temperature
alone did not cause variance in scattering property, which
was significant enough for MSC preprocess to pose an effect.

In the present study, the MSC-preprocess method was able to
effectively reduce the scattering properties created by different
blood properties. The same effect, though, could not be
observed in Kim and Yoon’s study.20 One possible explanation
for this discrepancy is that different optical measurement
systems were used (i.e., diffuse-reflectance as opposed to
diffuse-transmission spectroscopy).

4 Summary
In the present study NIR diffuse-reflectance spectroscopy
was used to measure the glucose concentrations in RBC sam-
ples. As we evaluated above, the glucose concentrations in
RCC decrease from around 600 mg∕dL down to less than

200 mg∕dL when it is bacterially contaminated. Considering
that the SECVobtained from even the most complex calibration
set—which included samples that differed in donors, Hct levels,
and temperatures—was 29.3 mg∕dL, we can suggest that our
method has the potential to detect bacterial contamination in
RCC with sufficient quantitative determination accuracy.

The present study was a preliminary study for the evaluation
of the optical measurement of glucose in blood supplies as
a method of bacterial detection. We showed that the diffuse-
reflectance method has several advantages over alternative
methods, including simpler instrumental structure and higher
glucose-sensing accuracy. In addition, we determined that the
MSC preprocessing method was effective in minimizing the
variation in scattering properties created when samples with
different properties are combined, thereby improving the predic-
tion performance. In the future we plan to examine methods
by which glucose concentrations can be measured directly
through the RCC transfusion bags using NIR diffuse-reflectance
spectroscopy.
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