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Abstract. Unique features and the underlining hypotheses of how these features may relate to the tumor physiology
in coregistered ultrasound and photoacoustic images of ex vivo ovarian tissue are introduced. The images were first
compressed with wavelet transform. The mean Radon transform of photoacoustic images was then computed and
fitted with a Gaussian function to find the centroid of a suspicious area for shift-invariant recognition process.
Twenty-four features were extracted from a training set by several methods, including Fourier transform, image
statistics, and different composite filters. The features were chosen from more than 400 training images obtained
from 33 ex vivo ovaries of 24 patients, and used to train three classifiers, including generalized linear model, neural
network, and support vector machine (SVM). The SVM achieved the best training performance and was able to
exclusively separate cancerous from non-cancerous cases with 100% sensitivity and specificity. At the end, the
classifiers were used to test 95 new images obtained from 37 ovaries of 20 additional patients. The SVM classifier
achieved 76.92% sensitivity and 95.12% specificity. Furthermore, if we assume that recognizing one image as a
cancer is sufficient to consider an ovary as malignant, the SVM classifier achieves 100% sensitivity and 87.88%
specificity. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.12.126003]
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1 Introduction
Ovarian cancer has the lowest survival rates of the gynecologic
cancers because it is predominantly diagnosed in stages III and
IV due to the lack of reliable symptoms as well as the lack of
efficacious screening techniques.1 Currently, there is no single
test for ovarian cancer, the combination of the serum marker
CA125 screening (sensitivity of less than 50%),2–4 transvaginal
ultrasound (3.1% positive predictive value),5 and pelvic exams
(sensitivity of only 30%) yields low positive predictive value.2

Computed tomography (CT) scan has been studied extensively
for ovarian cancer detection and multiple studies confirm that
CT has a sensitivity of 45%, a specificity of 85%, a positive
predictive value of 80%, and a negative predictive value of
50%.6 It is poor in detecting small metastases of less than
2 cm in diameter. MRI has not been shown to have a significant
advantage, although it may be superior to CT for characterizing
malignant features of an ovarian mass and is often used when
ultrasound is not diagnostic.7 However, magnetic resonance
imaging (MRI) is costly and typically used as a secondary ima-
ging method. Positron emission tomography (PET), using 18F-
FDG as a tracer, can detect malignant cancers with altered glu-
cose metabolism and has been used for the assessment of lymph
node involvement,8 evaluation of pretreatment staging and treat-
ment response,8,9 and detection of cancer metastases. However,
it has limited value in lesion localization in early stages of ovar-
ian cancer because of the difficulty in distinguishing between

the signal from early-stage cancers and the background uptake
signals coming from the normal tissue.10

In recent studies, multi-parametric ultrasound and clinical
analysis scoring systems showed a superior performance in
diagnosing adnexal masses. The scoring systems are based
on subjective scoring of some biographical, morphological,
and clinical parameters, e.g., age of the patient, CA125 test,
some sonographic features, such as size of the ovary, inner
wall structure, thickness of the wall, presence of cysts, presence
and type of septations and papillations, color in Doppler flow
signals (vasculature of tumor), etc. After subjective scoring, var-
ious mathematical models were constructed to improve diagno-
sis, and the performances of the models were compared
thoroughly. They reported that simple scoring systems per-
formed the worst overall, whereas multitechnique risk of malig-
nancy index models performed better and similar to that of most
logistic regression and artificial neural network (NN) models.
The most accurate results were obtained with a relevance vector
machine (similar to SVM) model, with the use of these complex
mathematic models resulting in the correct diagnosis of a sig-
nificant number of additional malignancies.11–14

Photoacoustic tomography (PAT) is an emerging technique in
which a short-pulsed laser beam penetrates diffusively into a tis-
sue sample.15–18 The transient photoacoustic waves generated
from thermoelastic expansion resulting from a transient tempera-
ture rise are then measured by ultrasound transducers, and used to
reconstruct, at ultrasound resolution, the optical absorption distri-
bution that reveals optical contrast, which is directly related to the

Address all correspondence to: Quing Zhu, University of Connecticut, Biomedi-
cal Engineering Program, 371 Fairfield Way, U-2157, Storrs, Connecticut 06269.
Tel: 860-486-5523; Fax: 860-486-2447; E-mail: zhu@engr.uconn.edu 0091-3286/2012/$25.00 © 2012 SPIE

Journal of Biomedical Optics 126003-1 December 2012 • Vol. 17(12)

Journal of Biomedical Optics 17(12), 126003 (December 2012)

http://dx.doi.org/10.1117/1.JBO.17.12.126003
http://dx.doi.org/10.1117/1.JBO.17.12.126003
http://dx.doi.org/10.1117/1.JBO.17.12.126003
http://dx.doi.org/10.1117/1.JBO.17.12.126003
http://dx.doi.org/10.1117/1.JBO.17.12.126003
http://dx.doi.org/10.1117/1.JBO.17.12.126003


microvessel density of tumors or tumor angiogenesis.19 Angio-
genesis is a key process for tumor proliferation, growth, and
metastasis.20 These functional parameters are critical in the initial
diagnosis of a tumor and in the assessment of tumor response to
treatment. The penetration depth of PAT is scalable with ultra-
sound frequency, provided that the signal-to-noise ratio (SNR)
is adequate. In the diagnostic frequency range of 3 to 8 MHz,
the penetration depth in tissue can reach up to 4–5 cm using
near infrared (NIR) light,21 which is compatible with the penetra-
tion depth used in conventional transvaginal ultrasound.

We have introduced coregistered photoacoustic and ultra-
sound imaging for detection and characterization of malignant
and benign ovarian tissues.21–23 This new approach allows us to
visualize tumor structure and functional changes simulta-
neously, which may potentially reveal early tumor angiogenesis
development that is not available by ultrasound alone. Our
recent study evaluated 33 ex vivo ovaries with diverse patholo-
gical conditions using a coregistered photoacoustic and ultra-
sound system and showed that malignant ovaries exhibited
on average a much higher total absorption than normal ovaries.
The quantitative parameter used to evaluate the absorption is the
measured average maximum radio-frequency PAT signal for
each ovary, with the maximum taken at each ultrasound array
element and the average taken across all the array elements.
Using this measure, we obtained sensitivity of 83% and a spe-
cificity of 83% between malignant ovaries and normal ones
(P ¼ 0.0237) in the postmenopausal group. This result suggests
that photoacoustic imaging is a promising modality for improv-
ing ultrasound diagnosis of ovarian cancer.

Automated identification of ovarian cancer from confocal
microendoscopic images showed promising results that can
be effective in assisting physicians with diagnosis and guiding
biopsies.24 In this study, we introduce an automated algorithm
for recognition of ovarian cancer from coregistered ultrasound
and photoacoustic images. PAT provides high resolution images
of vascular distribution features that can be used for assisting
diagnosis of malignant and benign ovaries, whereas ultrasound
images reveal many morphological features that can be used as
classifying features that may be unique to some physiological
processes of the complex ovaries and distinguishing them
from malignant patterns. The need for utilizing more features
for improving the diagnosis of malignant cancers from benign
ovarian tissues and lack of literature data in this area has moti-
vated our study reported in this paper.

2 Methods
In this study, 24 unique features were extracted from more than
400 coregistered ultrasound and photoacoustic images obtained
from 33 ovaries of 24 patients. The coregistered images were
taken from different elevation imaging planes obtained with a
1.75-D array ultrasound system of center frequency 5 MHz
and 60% bandwidth. The details of the system, experimental
setup, and patient diagnosis can be found in Refs. 22 and 23.
Table 1 provides a brief summary of the patient information
and diagnosis based on the pathology. The extracted features
detailed in this section were used to train three classifiers: a gen-
eralized linear model (GLM), NN, and SVM structure, to
uniquely separate the cancer cases from the non-cancerous
cases. After that, we tested a second set or testing set of addi-
tional 37 ovaries of 20 different patients. The coregistered
images of the testing set were obtained from a 1-D transvaginal
array system of center frequency 6 MHz and 80% bandwidth.

Table 2 provides patient information and diagnosis of each
ovary of the testing set. Both the training and non-training
set of images were obtained from ex vivo ovaries, imaged
fresh 30 to 90 min after the oophorectomy at the University
of Connecticut health center before any preservation is needed.

Unlike the previous study23 that concentrated on the ampli-
tude of the RF signals, our recognition algorithm concentrated
on the imaging patterns, power distribution over the spatial fre-
quency, and spatial statistical properties. Furthermore, all core-
gistered images were normalized to their own maximum with
15-dB dynamic range for PAT images, and 40-dB dynamic
range for ultrasound pulse-echo (PE) images.

Coregistered images are usually made with two images
superimposed on each other by thresholding one of them to
show certain dynamic range, and displayed with different color
maps. Ultrasound image is displayed in grayscale (black to
white, where white is the highest intensity), whereas photoa-
coustic image is in autumn scale (red to yellow, where yellow
is the highest intensity), Figs. 1 and 2 show examples of core-
gistered photoacoustic (color) and ultrasound (grayscale)
images of a malignant ovary and a normal ovary, respectively.

2.1 Spatially Shift-Invariant Recognition

The photoacoustic intensity distribution was used to guide us
to the suspicious area because it indicates the area of higher
absorption of light, and subsequently higher microvasculature
density. To identify the area with the highest photoacoustic
signal distribution, we first computed the single-level two-
dimensional (2-D) wavelet approximation coefficients of the
image to reduce the amount of data for processing and to reduce
the fluctuations in the suspicious area. We then calculated the
normalized Radon transform along the x-axis (θ ¼ 0 deg) and
y-axis (θ ¼ 90 deg) as shown in Figs. 1 and 2. The 2-D Radon
transform gðl; θÞ of an image fðx; yÞ is defined as:

gðl;θÞ ¼
Z

∞

−∞
fðl cos θ− s sin θ; l sin θ− s cos θÞds; (1)

where θ is the angle of the projection, and l is the projection axis
of the Radon output.25 After the Radon transform was calculated
for a certain angle, it was normalized by dividing by its max-
imum along the projection axis l. Because the illumination of
all the photoacoustic images was done by expanding the laser
Gaussian beam with a diverging lens over the ovary, we consid-
ered a Gaussian fitting with least-squares algorithm as the best
estimate to find the centroid of the suspicious area along the
spatial x and y-axes. The Gaussian model used for fitting is
given as follows:

fðlÞ ¼ e−ðl−μÞ2∕2σ2 ; (2)

where μ is the mean of the Gaussian curve, which is the centroid
along the projection axis, and σ is the standard deviation of the
Gaussian curve, which is a measure of the spread of tumor vas-
culature along the projection axis. After applying the Gaussian
fitting to the normalized Radon transform for the two mentioned
angles, we obtain the estimated centroid of the suspicious area
(x0, y0), which is an important step to make the algorithm spa-
tially shift-invariant, and to employ linear and non-linear com-
posite filters as described later. The suspicious area, which was
analyzed exclusively by most of the feature extractors within
the algorithm, is considered to be a fixed window around
the calculated centroid. The window was made square about
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1.5 × 1.5 cm2 in size, because the diameter of the expanded
laser beam used for photoacoustic imaging was around 1.5 cm.
Figures 1 and 2 show the process of centroid estimation and
cropping the area of interest for cancer and normal case images,
respectively.

2.2 Feature Extraction

Some features were extracted by applying several composite
filters constructed by finding the joint frequency spectrum of
the cancer case images of the training set. This allowed the

Table 1 Patient information and ovary diagnosis for the training set of images.

Patient no. Ovary no. Menopausal status Diagnosis Class

5 5

Premenopausal Normal

Non-cancer case

6 6

8 8

10 11

17 20

17 21

21 28

22 29

1 1

Postmenopausal Normal

4 4

12 13

13 15

20 27

24a 33

2 2

Postmenopausal Abnormal:

Carcinosarcoma in the uterus

3 3 Endometrial cancer

7 7 Endometrial cancer

9a 9 Endometrial cancer

9a 10 Endometrial cancer

14 16 Adenofibroma

16a 22 Ovarian cancer in the other side

19a 25 Endometrial cancer

19a 26 Endometrial cancer

24a 32 Fibroma

15a 17

Postmenopausal

High grade cancer on the other side

Cancer case

15a 18 High grade cancer

16a 19 Low grade cancer

18 23 High grade cancer

23a 30 Intermediate grade cancer

23a 31 Intermediate grade cancer

aIndicates patients who have both ovaries studied.
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Table 2 Patient information and ovary diagnosis for the testing or non-training set of images.

Patient no. Ovary no. Menopausal status Diagnosis Class

26a 36

Premenopausal Normal

Non-cancer case

26a 37

30a 44

30a 45

25a 34

Postmenopausal Normal

25a 35

27a 38

27a 39

28a 41

31a 46

31a 47

32a 48

32a 49

33a 50

33a 51

34a 52

34a 53

35a 54

35a 55

37a 58

37a 59

38a 60

38a 61

39a 62

39a 63

40a 64

40a 65

41 66

42 67

44a 70

44a 71

45 72

46a 73

46a 74
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finding of common features between the cancerous images that
we could not observe by eye as they are embedded in the ampli-
tude and phase of the spatial frequency spectrum. Other features
were found by carefully observing the 400 training images on
common and non-common features between the normal and
malignant cases, and then extracted using necessary mathema-
tical tools.

2.2.1 Features extracted by composite filters

The procedure described Sec. 2.1 was used to crop 44 cancer
images from the training set and find their centroid (x0, y0).
The photoacoustic part of the image was used to construct linear
and nonlinear composite filters. Both types of filters were

constructed to maximize their output peak to output energy
(POE) ratio when applied to all the training cancer case images.
The linear filter is similar to Weiner filter but the frequency spec-
trum considered here is the mean frequency spectrum of all 44
training cancer images. For more information about POE linear
and non-linear optimum composite filters and their application
for shift-invariant image recognition, please see Refs. 26 and 27.
The optimum filter output is given by the following 2-D form:26

H�
optðu; vÞ ¼

E½Sðu; v; x0; y0Þejðx0uþy0vÞ�
E½jSðu; v; x0;y0Þj2�

; (3)

where H�
optðu; vÞ is the complex conjugate of the 2-D frequency

response of the filter with u and v the spatial frequencies, and

Table 2 (Continued).

Patient no. Ovary no. Menopausal status Diagnosis Class

28a 40

Postmenopausal Abnormal:

Benign tumor

36a 56 Endometriosis and low grade cancer on the other side

43a 68 Carcinoma involving the fallopian tube only

29a 42

Postmenopausal

High grade solid tumor

Cancer case
29a 43 Carcinoma, calcification, and 75%∼80% malignant tumor

36a 57 Mucinous cystadenocarcinoma, and necrotic tumor Carcinoma
involving both the ovary and fallopian tube and benign tetratoma

43a 69

aIndicates patients who have both ovaries studied.

Fig. 1 Coregistered photoacoustic and ultrasound image of a malignant
ovary (the actual size of the coregistered image is 6.1 × 6.1 cm), dis-
played using different color maps, the figure also shows the Radon
transform for 0 deg and 90 deg, both fitted with the Gaussian model
to estimate the centroid of the area of interest. The photoacoustic image
revealed clustered absorption distribution with higher intensity than
that of benign cases.

Fig. 2 Coregistered photoacoustic and ultrasound image of a normal
ovary (the actual size of the coregistered image is 6.1 × 6.1 cm), the
figure also shows the centroid estimation using Radon transform and
Gaussian fitting method. The photoacoustic image revealed diffused
absorption distribution with lower intensity than that of malignant
cases.
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the expectation is taken over different ðx0; y0Þ. Because the
tumors could be in any area within the original images, we
needed to align them spatially by estimating their centroid
ðx0; y0Þ, cropping around a fixed window, and then substituting
in the phase part (ejðx0uþy0vÞ) of Eq. (3).

The difference between the linear and nonlinear composite
filters is that the nonlinear one has some additional nonlinear
operators to be applied to the amplitude of each cancer image
frequency spectrum, before finding H�

optðu; vÞ as follows:

S 0ðu; νÞ ¼ jSðu; νÞjkeiφsðu;νÞ; (4)

where S 0 is the non-linearized version of S, where its phase φs
is left unmodified while the amplitude is powered to k < 1.
We can obtain the linear version by setting k ¼ 1, which will
give the best recognition SNR if the image has only additive
white noise.27 The reason behind using more nonlinear filters is
to add some features with better tolerance to distortion, and to
give better recognition SNR in case the image has colored noise.
It has been shown that the use of nonlinearities in the Fourier
plane of pattern-recognition correlators can improve correlator
performance and make it more tolerant to distortions,28 such as
scaling, rotation, illumination change, etc. Two additional non-
linear filters were constructed with two different non-linearities,
k ¼ 1∕3 (cubic root) and k ¼ 0.01 (binary). Both have better
SNR than the linear one in case the image has colored noise.
However, the first one will perform better (higher SNR) if
the bandwidth of the colored noise is wide, whereas the sec-
ond one performs better than the first if the colored noise is
narrowband.27

The linear and the two nonlinear filters were tested on all the
training images. However, because the shape of the tumors in
PAT images is not deterministic like a car or a toy, the peak
of either of the filter outputs didn’t give significant separation
between the cancer and normal cases to be able to exclusively
use it as a measure of malignancy. Nonetheless, it is used as a
feature for the image classifiers.

Other than the peaks, the 2-D outputs of the filters can also be
described by their statistical mean and variance over the 2-D
spatial dimensions, which can capture the average amount of
correlation, and its spatial variation. Statistical mean and var-
iance can describe data with symmetrical distribution around
the mode because it uses uniform distribution; however, we
also need some features to describe the outputs of filters if
they have data with non-symmetrical distribution around their
mode. It has been shown that gamma distribution (GD) can bet-
ter represent data with non-symmetrical distributions around
their modes.29–31

In summary, after finding three 2-D optimum filter responses
(i.e., linear, cubic nonlinear, and binary nonlinear) from the
training cancer images, all three filters were applied on all the
400 training images and 15 filter features were extracted from
each image (5 features per filter) and used to train the image
classifiers. The five features are the peak output of the 2-D filter,
its statistical mean and variance, and the GD mean and variance.

2.2.2 Features computed based on observations

Several other features based on careful visual observation of the
training images were extracted. The first observation was that
the texture of the ultrasound image is somehow different be-
tween malignant and normal images. For example, malignant
tissue texture pattern is more irregular and changing than that

of normal ovaries. The second observation was that the photo-
acoustic intensity usually shows clustered distributions due to
abundant and localized microvessels in cancer cases, whereas
the distribution is more diffused, scattered, and spatially spread
out in normal cases.

The first and second observations suggest that the spatial fre-
quency components of the coregistered image are of particular
importance. Therefore, the mean absolute value of the low spa-
tial frequency components of the ultrasound image is considered
as a feature, where 2-D fast Fourier transform (FFT) was done to
the cropped 1.5 × 1.5-cm image and a fixed low-pass window of
one-fourth the sampling frequency was considered. Also, the
mean absolute value of the high frequency components of the
cropped image is considered as a feature; in this case, all the
values of the 2-D FFT output outside of the low-pass window
were considered as high frequencies. Similar processing is done
to the photoacoustic image.

The second observation also suggests that the spatial spread-
ing of the photoacoustic intensity is of particular importance.
Consequently, the Radon transform from angles of 0 deg to
90 deg was computed, averaged over all the angles, normalized
to peak at unity, and then fitted with Gaussian function. The
resulting standard deviation was found to be a good estimate
for the spatial spreading of the photoacoustic intensity (see
Fig. 3). As it can be seen from the histogram in Fig. 4, the cancer
cases on average exhibited less spatial spreading in the photo-
acoustic intensity than normal ones, which confirms our visual
observation.

The Gaussian fitting error of the mean Radon transform had
also shown a particular importance as a feature. Because the
illumination is Gaussian, if the absorption from the tissue is uni-
form, the fitting error is small. However, if the absorption of
the tissue is not uniform due to increased blood vessel activity
related to tumor angiogenesis, the Gaussian shape will be dis-
turbed and the fitting error will increase. The normalized histo-
gram in Fig. 5 shows that the lowest fitting errors were from
the postmenopausal non-cancer cases because of significantly
reduced blood activity within these ovaries.

The second observation also suggests that the statistical
properties of the photoacoustic images are of particular
importance to account for the fluctuation of the photoacoustic
intensity. The features considered for this purpose were
obtained from the cropped photoacoustic images, which are
the statistical variance, and the GD mean and variance
over the image. Figure 6 shows the histogram of the statistical
variance over the photoacoustic image for the training set.
Figure 6 also shows that the optical absorption fluctuation
is highest on average in the premenopausal normal ovaries
because these ovaries have increased blood activity, whereas
the lowest fluctuations in the absorption were on average in
the cancer cases because the vasculature cluster is usually
bulky with lower fluctuations.

In summary, an additional 9 observable features were con-
sidered, and computed for each image in the training set to train
the image classifiers.

2.3 Image Classifiers Training

Three types of classifiers were considered here, a GLM, NN,
and SVM; the SVM performed the best among the three.

For the GLM classifier, GLMFIT function in MATLAB was
used to find the coefficients of the linear model that best follow
the actual diagnosis after appropriate thresholding (zero for
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normal, and one for cancer case) given the training set feature
values. After that, these coefficients were used with the same
thresholding to compute the output of the classifier for the train-
ing set. The best training performance achieved by this classifier
was 89.13% sensitivity and 85.61% specificity.

A feed-forward NN was used with 6 layers; the number of
neurons in each layer was chosen 104, 52, 52, 52, 13, and 1,
respectively. All the transfer functions were used as TANSIG
function, which is a standard thresholding function in MATLAB
for NN. The training algorithm used is the resilient propagation
(TRAINRP); which was found to be the best in terms of obtain-
ing the best performance among all the other tried built-in

algorithms, such as the gradient descent (TRAINGD, and
TRAINGDM). However, the algorithms used can make the net-
work extremely moody in terms of the best-achieved perfor-
mance (sum of squared error). Thus, a lot of trials should be
done to get the best performance. The learning algorithm used
was the gradient descent with momentum (LEARNGDM); this
algorithm performed the best among all the other available
learning algorithms in MATLAB for our case. The trained net-
work was used to test the same training set of images and the
best performance was achieved with 86.96% true positive results
(sensitivity) and 98.11% true negative results (specificity) on the
training set of images.

Fig. 3 Normalized mean Radon transform over the range of 0 deg to 90 deg, along with the fitted Gaussian model for the cancer case photoacoustic
image in Fig. 1 (a), and the normal postmenopausal case in Fig. 2 (b).

Fig. 4 Normalized histograms of the standard deviation of the Gaussian fitted normalized mean Radon transform showing the spreading of the
photoacoustic intensity, which is less in cancer cases due to the clustering of highly absorbing vasculature in the tumor area.
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The SVM is a well-known classifier that is used in most
smart cell phones for recognition of letters. SVM optimizes the
separation of two populations of data by using a certain model
(kernel), linear, non-linear, etc. It maps the input data into high-
dimensional feature spaces and finds the hyperplane to categor-
ize the two populations. More details on SVM can be found in
Ref. 32. The SVM package in MATLAB (2008) was used with a
polynomial kernel, where the sequential minimal optimization
(SMO) method was used to find a hyperplane threshold that
separates the cancer from non-cancer cases. The features
were fed to the SVM training function, and then the trained
structure was used to test back the training set of images

until 100% of the images were identified correctly by the trained
structure, with no false-positive or false-negative results.

3 Results
After testing the training set of images and achieving the best
classifiers performance, the testing set of images was evaluated.
Table 2 shows a summary of the testing set of ovaries and their
diagnosis. The testing images consisted of 95 images obtained
from 37 ovaries of 20 patients. All were evaluated with a com-
prehensive test that used all the previously mentioned methods
along with the three trained classifiers.

Fig. 5 Histograms of the fitting error showing how irregular the absorption of the ovary is from Gaussian, which could be due to random absorption
distribution (cancer) or scattered vessels with higher blood activity. The postmenopausal non-cancer cases show the lowest mean fitting error because
of significantly reduced blood activity in this group of patients.

Fig. 6 Histograms of the statistical variance of the photoacoustic intensity of the cropped suspicious area, which shows that the optical absorption
fluctuation is the highest on average in the premenopausal normal ovaries because these ovaries have increased blood activity, whereas the lowest
fluctuations in the absorption were on average in the cancer cases because the vasculature cluster is usually bulky with lower fluctuations.
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For the test set, the trained SVM structure achieved the best
results among the three classifiers; it was able to identify 10 of
13 cancer images correctly (sensitivity 76.92%) and 78 of 82
non-cancer images correctly (specificity 95.12%). The positive
and negative predictive values were 71.43% and 96.30%,
respectively.33–35 We also considered the classification by
ovary whereby if one of the images from any ovary is identified
by the classifier as a cancer case, then that ovary is considered a
cancer case; the ovary is not considered normal unless all its
images are identified as normal. Using this criterion, 4 of 4 can-
cer case ovaries were identified correctly (sensitivity 100%) and
29 of 33 normal ovaries were identified correctly (specificity
87.88%); Table 3 summarizes the results of all the three classi-
fiers for the training and testing sets.

It is worth noting that we tried several methods based on
similarities, and linear regression analysis to reduce the number
of features. However, reducing features always resulted in de-
creased performance of the classifier on the testing set. It was
also noticed that the SVM classifier was sensitive to the selec-
tion of window size which was optimized in this study based
on the actual laser illumination area.

4 Summary
We conclude that the selected features in this study and their
relation to the physiology of tumors allowed the SVM classifier
to find a hyperplane threshold that gave perfect separation be-
tween 400 cancer and non-cancer images. At the same time, the
trained SVM classifier was able to achieve superior sensitivity
and specificity on the testing set of 95 images obtained from 37
ex vivo ovaries of 20 additional patients. These promising results
will be validated in future in vivo studies.

We are currently developing a real-time (15 frames∕s) cor-
egistered ultrasound and photoacoustic imager and a dual-
modality probe with a 1 × 19 fiber assembly surrounding a
commercial ultrasound transducer for in vivo ovarian cancer
diagnosis. The dual modality images are coregistered with
different color scales in real-time using FPGA-based reconfigur-
able processing technology.36,37 We made good progress over-
coming challenges in adequate light delivery to tissue to achieve

a reasonable photoacoustic SNR while maintaining the light
energy density within the safe FDA-approved limits.38 The
possible limitation of this algorithm when we apply it in
in vivo transvaginal imaging would be the Gaussian illumination
assumption. However, the light diffusion profile from each fiber
tip inside the tissue will merge at approximately 5 mm and
beyond to generate an approximate Gaussian profile to illumi-
nate the ovarian tissue, which is more than 1-cm deep behind
the vaginal muscle wall, as shown by simulations reported in
Ref. 38. Additionally, our recognition algorithm proved to be
robust to system changes because it performed well on the non-
training data set which was obtained from a different system and
ultrasound transducer than that of the training set of images.

In summary, we report, to the best of our knowledge, unique
features in coregistered ultrasound and photoacoustic images to
allow recognition of malignant versus benign ovaries, and the
hypotheses and interpretations of how these features may relate
to physiology of malignant and benign ovaries. Our method has
a great potential in assisting physicians in ovarian cancer diag-
nosis after validated by a larger patient pool in the near future.
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