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Abstract. For many research areas in biomedical optics, information about scattering of polarized light in turbid
media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of
radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory
is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume
concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic
simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due
to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the
two methods with deviations related to dependent scattering being prominent for high volume concentrations and
high scattering angles. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.045003]
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1 Introduction
The investigation of polarized light propagation in scattering
media is an aspiring field in biomedical optics. In many
areas of research understanding of light propagation in biologi-
cal tissue becomes more and more important.1–3 Polarized light
has a high potential in a large variety of diagnostic purposes for
gaining morphological and functional information as for exam-
ple in-vivo noninvasive glucose sensing, skin cancer detection
and bacteria sensing.4–6 The establishment of possible polarized
light applications and their improvement imply an accurate
method for polarized light propagation modeling.

Monte Carlo simulations of light propagation in turbid media
are used for the numerical solution of the radiative transfer the-
ory since decades.7,8 There exists a variety of Monte Carlo pro-
grams for a wide range of applications. Though, only a limited
number of investigations which describe polarization dependent
light propagation in turbid media has been presented. Experi-
mental determination of the Müller matrix elements is well-
known9–13 and also different simulation approaches using the
Monte Carlo method have been published.10,13–21 However,
this commonly used approach is an approximation compared
to accurate solutions based on Maxwell theory.

An alternative approach is the solution of Maxwell’s equa-
tions. In general, Maxwell theory provides exact solutions, but
mostly requires much more computer resources since, apart
from a few exceptions, numerical solution methods (e.g.,
Finite-Difference Time-Domain,22 Discrete Dipole Approxima-
tion23) have to be used. The extensive requirements for compu-
tational power are the major drawback of these solution
methods. Monte Carlo programs generally require less compu-
tational power. However, it is quite difficult to assess under

which conditions radiative transfer theory is a satisfying approx-
imation of Maxwell theory.

Differences in scattering cross sections calculated by radia-
tive transfer theory and Maxwell theory were described in
literature.24 Schäfer and Kienle25 showed that there is a good
agreement for the angle-dependent differential scattering cross
section between the two methods in two-dimensional light pro-
pagation problems. A similar agreement was observed for low
scatterer concentrations as well.26 Also in three dimensions it
was found27 that for unpolarized light deviations due to radiative
transfer theory remain small, even for concentrations up to about
20 Vol.-% for the investigated sphere diameters. To our knowl-
edge, there is a lack of reference studies so far, which directly
compare solutions of Maxwell theory to the radiative transfer
theory in case of polarized light.

One goal of this study was to develop a Monte Carlo program
(see also Hohmann et al.28 and Kienle et al.29) for simulation of
polarized light propagation in three-dimensional turbid media.
By using the results from this program for the scattering by
multiple spheres and from an appropriate Maxwell solution
(Generalized Multisphere Mie, see Xu and Gustafson30) direct
comparison between the Monte Carlo and Maxwell methods
calculating polarized light propagation has been carried out.
A further goal of this study was to show the similarities and
differences between the two methods using the whole Müller
matrix formalism. This was performed by calculating the nor-
malized Müller matrix elements while taking into account dif-
ferent concentrations of scatterers in the simulation medium.

2 Methods
For comparison of the two calculation methods [(1) Monte Carlo
method as a numerical solution of the radiative transfer theory
and (2) Generalized Multisphere Mie (GMM) as an analytical
solution of Maxwell theory], a certain number (12, 24, 48 or
96) of scattering spheres (radius r ¼ 1 μm) was assumed to
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be randomly distributed in a cubic simulation volume with an
edge length of D ¼ 10 μm. This simulation volume was irra-
diated perpendicularly to one side by a plane monochromatic
wave (wavenumber k) and the scattered light was registered
at a far-field distance r, r ≫ D, from the origin of the simulation
volume for each scattering angle θ and azimuthal angle ϕ. By
this approach, the polarization-dependent scattering characteris-
tics of the whole sphere distribution can be calculated and
described by the so-called Müller matrix.31 To reduce the
statistical noise the results were averaged over all azimuthal
angles ϕ for both methods. This Müller matrix describes the
transformation of the polarization state characterized by the
Stokes vector Sst ¼ ðI;Q;U;VÞT from its incident state Ssti ðθÞ
to its final state Sstf ðθÞ through the scattering system32 [see
Eq. (1) and Fig. 1].

Sstf ðθÞ ¼
1

k2r2

0
BB@

S11ðθÞ S12ðθÞ S13ðθÞ S14ðθÞ
S21ðθÞ S22ðθÞ S23ðθÞ S24ðθÞ
S31ðθÞ S32ðθÞ S33ðθÞ S34ðθÞ
S41ðθÞ S42ðθÞ S43ðθÞ S44ðθÞ

1
CCASsti ðθÞ:

(1)

2.1 Monte Carlo Model

A Monte Carlo program for simulation of polarized light pro-
pagation in scattering media was developed based on the radia-
tive transfer theory.10,13,15–18,20,21,28 The Monte Carlo method

simulates a multitude of random light propagation paths through
the medium omitting the wave character of light, nonetheless
considering polarization effects. The scatterers were assumed
to be randomly distributed within a simulation volume of V ¼
10 × 10 × 10 μm3 and to have an angularly-resolved scattering
probability (phase function) similar to the phase function of a
single sphere.

This phase function was calculated using Mie theory (single
homogeneous sphere in a homogeneous medium, see Bohren
and Huffman32 and Mie33) and used in case of a scattering
event. For polarized light, this phase function depends on
both the scattering angle as well as on the polarization state
of the incident light. The optical properties of polystyrene
microspheres (radius r ¼ 1 μm) in water were used as input
parameters for the spherical scatterers in the Mie program:
the refractive index of the spheres was n ¼ 1.59 in an infinite
medium of nm ¼ 1.33. There was no difference between the
refractive index of the medium within the simulation volume
and the surrounding medium. The vacuum wavelength of the
light was set to λ ¼ 600 nm. This results in a size para-
meter x ¼ 2πrnm∕λ ≈ 13:928.

The scattering efficiency Qsca ¼ Csca∕ðπr2Þ of a single
sphere resulting from the Mie program can be applied to calcu-
late the scattering coefficient μs as in Eq. (2) used for the Monte
Carlo simulations

μs ¼ f V ·
Csca

Vs
¼ N · Vs

V
·
Csca

Vs
¼ N

V
· Qsca · πr2; (2)

where the volume of a single sphere Vs, the scattering cross sec-
tion Csca and the volume fraction (concentration) f V of N
spheres in a volume V are given. A volume fraction f V of
5.03 Vol.-% (corresponding to a number of spheres N ¼ 12),
10.05 Vol.-% (N ¼ 24), 20.11 Vol.-% (N ¼ 48) and 40.21
Vol.-% (N ¼ 96) resulted in a scattering coefficient of
μs ¼ 111.73 mm−1, μs ¼ 223.46 mm−1, μs ¼ 446.91 mm−1

and μs ¼ 893.82 mm−1, respectively, for the Monte Carlo simu-
lations. The absorption coefficient was set to zero for all con-
centrations. The number of photons used for the simulations was
3 × 108ðN ¼ 12; 24; 48Þ and 1 × 108ðN ¼ 96Þ, respectively.

A commonly used technique to gain the Müller matrix ele-
ments of a scatterer system via the Monte Carlo method is the
subsequent execution of four simulations applying an incident
Stokes vector Ssti of ð1; 1; 0; 0ÞT , ð1;−1; 0; 0ÞT , ð1; 0; 1; 0ÞT and
ð1; 0; 0; 1ÞT which is labeled by H, V, P and R, respectively.6,20

The exit (scattering) angle of each photon which left the simula-
tion volumewas registered for each simulation run together with
its corresponding Stokes vector. The results are four scattered
Stokes vectors Sstf : ðIH ;QH ;UH ;VHÞT , ðIV ;QV ;UV ;VV ÞT ,
ðIP;QP;UP;VPÞT and ðIR;QR;UR;VRÞT . These four Stokes
vectors, resulting from the average of many photon paths,
can be used to calculate the Müller matrix of the system:

1

k2r2

0
BB@

S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

1
CCA ¼ 1

2

0
BB@

IH þ IV IH − IV 2IP − IH − IV 2IR − IH − IV
QH þ QV QH − QV 2QP − QH − QV 2QR − QH − QV

UH þ UV UH − UV 2UP − UH − UV 2UR − UH − UV

VH þ VV VH − VV 2VP − VH − VV 2VR − VH − VV

1
CCA: (3)

Fig. 1 Scattering scene of the multiple sphere model. Incident light
(Einc ) enters a cubic simulation volume from where it is scattered to
all angular directions (Esca). For illustration the orientations of scattering
angle θ and azimuthal angle ϕ are shown.
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By this method, the angular distribution of each Müller matrix
element was obtained. All Müller matrix elements were normal-
ized to the S11 element for each scattering angle θ and the Müller
matrix element S11ðθÞ was normalized to the S11ð0Þ element for
all angles θ. The resulting normalized Müller matrix is denoted
by M in Sec. 3.

2.2 Maxwell Theory

A Maxwell solution for the scattering problem is given by the
Generalized Multiparticle Mie approach, an extension of Mie
theory, which is able to handle multiple spherical scatterers
and, as an exact solution, also takes into account dependent scat-
tering effects. A Fortran code is provided by Xu et al.34 and used
as a reference Maxwell solver. Therein the scattering of an inci-
dent plane wave by a distinct arrangement of spheres is calcu-
lated by employing the wave equation as opposed to the
statistical Monte Carlo model dealing with photon paths.

The total scattered field results from coherent superposition
of the scattered field contributions Ej

sca of each sphere j:

Esca ¼
X
j

Ej
sca: (4)

Therein the field Ej
sca scattered by each individual sphere results

from an incident field Ej
inc which is composed of the external

incident field Ej
inc;0 as well as the scattered fields from all

other spheres:

Ej
inc ¼ Ej

inc;0 þ
X
k;k≠j

Ek;j
sca: (5)

The solution of the resulting equation system is described in
detail by Xu.30 It yields expansion coefficients for the scattered
field containing interaction information of the whole sphere
arrangement. This is referred to as dependent scattering. In
the far-field, a (2 × 2) complex-valued amplitude scattering
matrix Sðθ;ϕÞ can be derived35 for monochromatic incident
light which specifies the angular part of the scattered spherical
wave’s amplitude distribution. Thus, the scattering problem can
be compactly written as32

Esca ¼
eikðr−zÞ

−ikr

�
S2 S3
S4 S1

�
Einc; (6)

where the incident plane wave (wavenumber k) propagates
along the z-axis (see Fig. 1) and the scatterer is located at
the origin of the reference frame. For a given scatterer orienta-
tion, all elements S1; : : : ; S4 of this amplitude scattering matrix
in Eq. (6) are generally dependent on scattering angle θ as well
as azimuthal angle ϕ. In this formulation, the incident and scat-
tered fields E ¼ ðEk;E⊥ÞT consist of parallel and perpendicular
components which contain all phase information. Yet, these
quantities are sophisticated to interpret in terms of polarized
intensities as given in the Stokes vector components. Therefore
the elements of the amplitude scattering matrix are converted to
particular Müller matrix elements Sijðθ;ϕÞ; ði; j ¼ 1; : : : ; 4Þ as
can be found in Bohren and Huffman:32

S11 ¼
1

2
ðjS1j2 þ jS2j2 þ jS3j2 þ jS4j

2Þ

S12 ¼
1

2
ðjS2j2 − jS1j2 þ jS4j2 − jS3j

2Þ
S13 ¼ ReðS2S�3 þ S1S�4Þ
S14 ¼ ImðS2S�3 − S1S�4Þ

S21 ¼
1

2
ðjS2j2 − jS1j2 − jS4j2 þ jS3j

2Þ

S22 ¼
1

2
ðjS2j2 þ jS1j2 − jS4j2 − jS3j

2Þ
S23 ¼ ReðS2S�3 − S1S�4Þ
S24 ¼ ImðS2S�3 þ S1S�4Þ
S31 ¼ ReðS2S�4 þ S1S�3Þ
S32 ¼ ReðS2S�4 − S1S�3Þ
S33 ¼ ReðS1S�2 þ S3S�4Þ
S34 ¼ ImðS2S�1 þ S4S�3Þ
S41 ¼ ImðS�2S4 þ S�3S1Þ
S42 ¼ ImðS�2S4 − S�3S1Þ
S43 ¼ ImðS1S�2 − S3S�4Þ
S44 ¼ ReðS1S�2 − S3S�4Þ:

(7)

Just like the amplitude matrix, all Müller matrix elements in
Eq. (7) depend on both scattering angle θ and azimuthal
angle ϕ. Thus, to comply with the θ-dependent Monte Carlo
results, each element is azimuthally averaged. In addition, all
Müller matrix elements except S11ðθÞ itself are normalized to
S11ðθÞ to get results within a range of ½−1; : : : ;þ1�. For ease
of comparison, the intensity S11ðθÞ is normalized to the
S11ð0Þ Monte Carlo solution.

Since multiparticle Mie theory requires definitely positioned
scatterers of finite extent for solution of the underlying boundary
conditions, a collection of spheres is randomly distributed in a
given simulation volume in order to achieve defined volume
concentrations. To approximate homogeneous turbid media
models, several random configurations of finite spheres (reali-
zations) are generated where the results are averaged over these
realizations. The spheres are randomly distributed under the
restriction that no overlapping is allowed. For generation of
these distributions a Metropolis shuffling algorithm36,37 was pro-
grammed where each sphere in an initial periodic arrangement
(simple cubic lattice) is randomly shuffled many times consi-
dering periodic boundary conditions with respect to the cubic
volume. This algorithm converges to an equilibrium distribution
when performing a high number of displacement steps.

In order to improve convergence of the algorithm, the ran-
dom step size is adjusted dynamically. An initial displacement
step size is randomly chosen within a size interval in the order
of the sphere radius. After shuffling each sphere for a predefined
number of times, an acceptance rate of allowed (non-
overlapping) with respect to tried sphere displacements is eval-
uated. In case the new position would lead to sphere overlap the
tried displacement is rejected and the old position is kept.37

A small acceptance rate indicates a poor probability to find
allowed positions, then the step size is decreased for the
next shuffling pass. On the other hand, a high acceptance
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rate indicates too small deviation from the initial arrangement, in
that case the step size is increased for the next shuffling pass.
Generation of sufficiently randomized sphere distributions is
achieved if the acceptance rate stays around 50%.

For the Maxwell simulations, the same parameters as for
the Monte Carlo simulations were used, i.e., the different
volume concentrations are modeled by N ¼ 12; 24; 48 and 96
spheres (r ¼ 1 μm), respectively, in a simulation volume of
10 × 10 × 10 μm3. This volume size allows simulations to be
performed in a reasonable amount of time even at higher volume
concentrations. Apart from diffraction around forward scattering
angles, the characteristics of an infinite scattering medium are
reproduced in this subset simulation volume. For the four
concentrations 10 distinct random realizations were generated
where each sphere is shuffled ca. 10000 times. From these rea-
lizations the resulting Müller matrix elements are averaged to
reduce interference effects. As above, the incident vacuum
wavelength is set to λ ¼ 600 nm, the relative refractive index
to m ¼ 1.59∕1.33 resulting in a size parameter x ≈ 13.928.

2.3 Properties of the Müller Matrix

Both introduced methods are based on scatterers of spherical
symmetry. This leads to a reduction in the number of indepen-
dent Müller matrix elements. Moreover, random orientation of
these scatterers has an additional impact on the matrix proper-
ties. For example, arbitrarily shaped scatterers of random orien-
tation lead to 10 independent elements. Employing scatterers
which have a plane of symmetry further reduces the number
of independent elements to 6 (see van de Hulst38). In case of
randomly arranged spheres (labeled rs), the Müller matrix
can be denoted as

Srs ¼

0
BB@

a1 b1 0 0

b1 a 2 0 0

0 0 a3 b2
0 0 −b2 a4

1
CCA: (8)

The off-diagonal elements Srs13, S
rs
14, S

rs
23, S

rs
24, S

rs
31, S

rs
32, S

rs
41 and S

rs
42

vanish. Further, the elements Srs12 and Srs21 are symmetric (b1)
whereas Srs34 and Srs43 are antisymmetric (b2). All diagonal ele-
ments aiði ¼ 1; : : : ; 4Þ are differing. Note that in case of spheres
additional relations38,39 (a1 ¼ a2, a3 ¼ a4) are only valid if
multiple scattering is neglected (single scattering). That
means, multiple scattering can be interpreted as violation of
spherical symmetry of an equivalent single scatterer.6 These
diagonal elements ai characterize the coupling of equal Stokes
components by the scattering system. The element b1 shows the
degree of parallel linear polarization with respect to unpolarized
incident light whereas b2 shows the transformation of oblique
linear to circular polarization. From the Müller matrix elements
information on the conservation of interference effects40 and
polarization states41 can be derived. For spheres with high rela-
tive refractive index it is known that depending on the scatterers’
size parameter residing in Rayleigh or Mie regime, linear or cir-
cular polarization states are better maintained, respectively.5,42

3 Results and Discussion
The resulting 16 angularly resolved Müller matrix elements
were compared between the Monte Carlo method and the Max-
well method. Figure 2 shows all angularly resolved Müller
matrix elements in case of 24 randomly distributed spheres cor-
responding to a volume concentration f V ¼ 10.05 Vol.-%. It is
obvious that both 2 × 2 submatrices on the secondary diagonal
[see Eq. (8), namely theM13,M14,M23,M24,M31,M32,M41 and
M42 elements] show noisy results around zero for all angles.
This behavior was expected for single as well as for multiple
scattering by randomly distributed spheres.38 Further, the
well-known symmetry between the M12 and M21 elements as
well as antisymmetry between the M34 and M43 elements
was reproduced by both methods. The remaining concentrations
of 12 (f V ¼ 5.03 Vol.-%), 48 (f V ¼ 20.11Vol.-%) and 96
spheres (f V ¼ 40.21 Vol.-%) dispersed in the medium showed
the same expected behavior as above. Because of that, only the
relevant Müller matrix elements M11, M22, M33, M44 and M21,
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Fig. 2 Angularly resolved Müller matrix: Monte Carlo results (red) and Maxwell results (black) compared to each other. Parameters used: N ¼ 24
nonabsorbing spheres (radius r ¼ 1 μm, relative refractive index m ¼ 1.59∕1.33), size of cubic scattering volume 10 × 10 × 10 μm3 (volume concen-
tration f V ¼ 10.05 Vol.-%), wavelength of incident light λ ¼ 600 nm in vacuo. All elements are normalized to M11, the M11 element is normalized to
forward direction. Every element is depicted versus the scattering angle θ in the range from 0 to 180 deg.
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M34 are shown in Fig. 3 (12 spheres), Fig. 4 (48 spheres) and
Fig. 5 (96 spheres).

3.1 Effects on Multiple and Dependent Scattering

This study was aimed at pointing out agreements and differences
between the two light scattering simulation approaches for
polarized light. It can be observed that especially for small
concentrations the two methods are in good agreement for all
Müller matrix elements. This was already described for unpo-
larized light27 and was now observed for polarized light within
this study.28 With increasing scatterer concentrations slightly
increasing differences can be observed for all Müller matrix

elements, mainly for higher scattering angles. These differences
are attributed to dependent scattering effects since multiple
scattering is considered by both solution methods. In Fig. 6
the angular errors are depicted for the same Müller matrix
elements as above and three different volume concentrations.
For M11 the relative error and for all normalized elements
i; j ¼ 1; : : : ; 4 the difference MGMM

ij −MMonteCarlo
ij between the

both methods is shown. Only for large investigated volume con-
centrations above 20 Vol.-% dependent scattering effects
become predominant, especially in the backscattering hemi-
sphere. It is not possible to reproduce dependent scattering
by standard solutions of the radiative transfer theory due to
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Fig. 3 Relevant Müller matrix elements for N ¼ 12 nonabsorbing spheres (f V ¼ 5.03 Vol.-%). All elements are normalized to M11, theM11 element is
normalized to forward direction. Every element is depicted versus the scattering angle θ in the range from 0 to 180 deg.
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Fig. 4 Relevant Müller matrix elements forN ¼ 48 nonabsorbing spheres (f V ¼ 20:11 Vol.-%). All elements are normalized toM11, theM11 element is
normalized to forward direction. Every element is depicted versus the scattering angle θ in the range from 0 to 180 deg. Increasing deviations due to
dependent scattering can be observed.
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near field interactions. This has to be kept in mind whenever
results of Monte Carlo simulations of polarized light propaga-
tion are regarded.

All Müller matrix elements show oscillations in the whole
angular range, especially for small concentrations, while the
oscillations are decreasing with increasing scatterer concen-
trations. These oscillations for small concentrations result
from the solution of scattering by a single sphere (Mie scat-
tering). With increasing concentrations, multiple scattering
becomes predominant which leads to a reduction of the oscilla-
tion amplitudes.

3.2 Results for the Unpolarized Intensity

The M11 element is a normalized measure for the scattered
intensity for unpolarized light. The differences in the M11 ele-
ment between the two methods for small angles (θ≲10 deg) are
due to forward interferences resulting from the limited simula-
tion volume (Maxwell theory).27 The angular width of these for-
ward interferences would become infinitesimally small if a
laterally infinite instead of a finite cubic simulation volume
would be regarded. Another effect is the coherent backscattering
peak43 at θ≍180 deg which can be reproduced by Maxwell
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Fig. 5 Relevant Müller matrix elements forN ¼ 96 nonabsorbing spheres (f V ¼ 40:21 Vol.-%). All elements are normalized toM11, theM11 element is
normalized to forward direction. Every element is depicted versus the scattering angle θ in the range from 0 to 180 deg. Deviations due to dependent
scattering are obvious.
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Fig. 6 Concentration dependent deviations between Maxwell and Monte Carlo results for all relevant Müller matrix elements. In case of M11 the
relative error is calculated, otherwise the difference between normalized elements. For volume concentrations of f V ¼ 10:05 Vol.-% (red),
f V ¼ 20:11 Vol.-% (blue) and f V ¼ 40:21 Vol.-% (black) the resulting deviations are depicted versus the scattering angle θ in the range from 0 to
180 deg. Apart from forward- and backscattering peaks (θ ≈ 20 − 170 deg) deviations do not exceed 30%.
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theory in contrast to the radiative transfer theory. It can be
observed for all concentrations and for scattering angles θ
near 180 deg and becomes more pronounced for high scatterer
concentrations. Forward interferences and coherent backscatter-
ing cannot be reproduced by the Monte Carlo method as the
radiative transfer theory neglects the wave character of light.

Beside that, it can be observed that the angular distribution of
the M11 element flattens for higher sphere numbers, i.e., the
scattered intensity becomes more isotropic with increasing con-
centrations. This effect appears for both methods. Further, a flat-
tening of the oscillations attributed to the single Mie scattering
function is found for higher concentrations, also for the other
Müller matrix elements. Increasing concentrations lead to irre-
gular deviations of the M11 element between both methods
being most apparent for the highest concentration (96 spheres).
The Monte Carlo solution stays rather smooth while the exact
Maxwell results show more oscillations, even if no speckles are
considered.

3.3 Polarization Specific Müller Matrix Elements

The absolute value of all normalized Müller matrix elements
(except M11) generally decreases for higher angles as the con-
centration increases. This effect, investigated with Monte Carlo
simulations, was attributed to multiple scattering by Tuchin
et al.6 The Maxwell solutions presented here show a similar
behavior even if increasing deviations to the Monte Carlo solu-
tions for higher concentrations are taken into account. The
decrease of these Müller matrix elements indicates the depolar-
izing character of multiple scattering. It is important to mention
that the described decrease is mostly present, though for some
angles there are also exceptions of this behavior.

For angles near forward direction, theM22,M33 andM44 ele-
ments take values near 1, while the off-diagonal elements take
values near 0 for all concentrations. This means that the polar-
ization properties are better maintained in the forward direction.
For both simulation methods this effect is dominant for small
concentrations.

The M44 element contains information about the circular
polarization. It also decreases when scatterer concentrations
increase for forward scattering angles θ≲50 deg, but the
decrease is smaller than for the M22 and M33 Müller matrix ele-
ments. For higher scattering angles, no general decrease with
higher concentrations of the M44 element can be observed
from the Monte Carlo simulations. It could be confirmed that
this effect can mainly be attributed to multiple scattering as
was assumed by Maksimova et al.,18 who considered constant
scatterer concentrations (size parameters in the Mie regime), but
increasing scattering volumes. This may indicate that circular
polarization is better maintained than linear polarization for
multiple scattering. However, for very high scatterer concentra-
tions as is the case for 96 spheres dispersed in the medium it can
be observed (see Fig. 5) that the M44 element calculated by
Maxwell theory is below the M44 element calculated by the
Monte Carlo method while the M22 element shows an opposite
behavior. This shows that the better maintenance of circular
polarization for high scatterer concentrations is not as manifest
as could be expected only due to multiple scattering. In this case
dependent scattering leads to a further reduction of the M44 ele-
ment. It has to be mentioned that these results hold for the para-
meters used in this study with scatterers in the Mie regime and a
relatively high refractive index mismatch between scatterer and
surrounding medium. For scattering media in the Rayleigh

regime or in the Mie regime in case of scatterers with low rela-
tive refractive index it is possible that linear polarization is better
maintained than circular polarization.5

4 Conclusions
In summary it could be shown that it is possible to reproduce the
exact Maxwell solutions for low to moderate volume concentra-
tions in good approximation when using a polarization sensitive
Monte Carlo code based on radiative transfer theory. This holds
for all Müller matrix elements, especially for scattering angles
θ≲140 deg. For high volume concentrations of the scatterers
(≳20 Vol.-% in this study), dependent scattering effects are
no longer negligible, so in case of highly concentrated scatterers
the results of the Monte Carlo method must be taken with care,
especially for high scattering angles.

The direct comparison method between solutions of the
radiative transfer theory and Maxwell theory for the whole
Müller matrix is useful for testing polarization dependent
Monte Carlo programs for arbitrary optical properties of the
scatterers and the surrounding medium. This could lead to
more realistic simulation models of biological tissue. An
extended investigation for complex models including polydis-
perse and absorbing scatterers, as is the case for biological
media, is expected to disclose more polarization features.
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