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Abstract. Traditional image reconstruction methods in rapid dynamic diffuse optical tomography employ l2-norm–

based regularization, which is known to remove the high-frequency components in the reconstructed images and
make them appear smooth. The contrast recovery in these type of methods is typically dependent on the iterative
nature of method employed, where the nonlinear iterative technique is known to perform better in comparison to
linear techniques (noniterative) with a caveat that nonlinear techniques are computationally complex. Assuming
that there is a linear dependency of solution between successive frames resulted in a linear inverse problem. This
new framework with the combination of l1-norm–based regularization can provide better robustness to noise and
provide better contrast recovery compared to conventional l2-based techniques. Moreover, it is shown that the
proposed l1-based technique is computationally efficient compared to its counterpart (l2-based one). The pro-
posed framework requires a reasonably close estimate of the actual solution for the initial frame, and any subop-
timal estimate leads to erroneous reconstruction results for the subsequent frames. © 2012 Society of Photo-Optical

Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.8.086009]
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1 Introduction
Near-infrared (NIR) diffuse optical tomography is an emerging
imaging modality with applications including breast cancer ima-
ging and brain function assays.1–3 The interrogating medium in
diffuse optical tomography is NIR light in the spectral range of
600 to 1000 nm. A finite set of boundary measurements are
made in NIR tomography that is in turn used to reconstruct
the internal distribution of optical properties.2 The NIR light
is typically delivered through optical fibers and the transmitted
light is also collected through the same fibers which are in con-
tact with the external surface of the tissue. The distributions of
wavelength-dependent absorption and/or scattering coefficients
of the tissue are reconstructed using model-based iterative algo-
rithms that in turn use measured boundary data.2 As NIR studies
have the advantage of being noninvasive and nonionizing, they
are suitable for investigating functional changes in tissue over a
prolonged time.3

As the tumor vasculature provides a mechanism to distin-
guish malignant from benign, NIR imaging has the capability
to capture this difference in vasculature due to its high sensitivity
to hemoglobin and water.3,4 The rapid dynamic imaging of
tumor vasculature using NIR light will also enable characteriza-
tion of the disease, making diffuse optical imaging highly desir-
able in the clinic. Dynamic diffuse optical imaging is capable of
providing images typically at video-rate (>15 frames∕s) to
study changes in hemodynamics of the tissue under investiga-
tion.5–10 Even though the data is collected at video-rate, the
image reconstruction is typically handled off-line.5–8 One of the

main bottlenecks to get images at video-rate is the computational
complexity of nonlinear image reconstruction techniques,5,8

leading to investigations such as linear iterative techniques and
singular-value decomposition (SVD) methods.9 The best perfor-
mance for these linear techniques is achieved when the initial
guess to the image reconstruction procedure is close to the actual
solution.9,10 Also, the linear techniques that were presented in
the literature do not account for the correlation between the
frames.9,10 In this work, a new framework for the linear image
reconstruction procedure is presented that takes into account
this correlation. The main hypothesis for this framework arises
from the fact that the main difference between the two successive
dynamic optical images is only in the tumor vasculature, and as
tumors are highly localized, the difference in the optical images
can be reconstructed effectively. This hypothesis leads to a lin-
earized framework that could be solved using l1-based methods,
which are known to promote sparseness and allow sharp changes
in the optical property distribution. Using both numerical and
experimental studies, it is shown that linearized framework in
combination with l1-based technique provides effective quanti-
tation of optical properties for the tissue under investigation
compared to traditional l2-based techniques. In the presented
work, the discussion has been limited to two dimensions, as the
main emphasis is on providing a linearized l1-based framework
for the dynamic optical image reconstruction.

2 Dynamic NIR Diffuse Optical Tomography:
Forward Problem

Video-rate diffuse optical imaging involves collection of the
continuous-wave (intensity alone) data at the boundary of the
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tissue under investigation.5,8 Continuous-wave NIR light propa-
gation in thick biological tissues like breast and brain can be
modeled using diffusion equation (DE),2,11 given as

−∇ · DðrÞ∇ΦðrÞ þ μaðrÞΦðrÞ ¼ QoðrÞ; (1)

where the optical diffusion and absorption coefficients are given
by DðrÞ and μaðrÞ, respectively. The continuous-wave light
source, represented by QoðrÞ, is modeled as isotropic. ΦðrÞ
is the photon fluence density at a given position r. The diffusion
coefficient is defined as

DðrÞ ¼ 1

3½μaðrÞ þ μ 0
sðrÞ�

; (2)

where μ 0
sðrÞ is the reduced optical scattering coefficient, which

is defined as μ 0
s ¼ μsð1 − gÞ with μs as the optical scattering

coefficient and g as the anisotropy factor. In the present
work, μ 0

s is assumed to be known and remains constant through-
out the domain. The finite element method (FEM) is used to
solve Eq. (1) to generate modeled data for a given distribution
of the absorption coefficient μaðrÞ. A Type III boundary condi-
tion is employed to account for the refractive-index mismatch at
the boundary.12 Under the Rytov approximation, the modeled
data becomes the natural logarithm of the intensity (A),
GðμÞ ¼ lnðAÞ, where the forward model is represented by GðμÞ
and μ is the spatially varying μa here. This forward model is
used repeatedly in an iterative manner to estimate the optical
property of the tissue under investigation.2

3 Dynamic NIR Diffuse Optical Tomography:
Inverse Problem

The inverse problem primarily involves the estimation of optical
absorption coefficients from the CW boundary measurements
[lnðAÞ] using a model-based approach. This is achieved by
matching the experimental measurements with model-based
ones iteratively in the least-squares sense over the range of
μa. This minimization problem can be solved using several
approaches, the most common one involving computing of
repeated solutions of the forward model [including Jacobian
(J)] and solving linear system of equations.13

In the present work, the inverse problem needs to be solved
for a given set of measurements (also known as frames) that
were acquired in a dynamic fashion. Most commonly used tech-
niques estimate distribution of μa using a set of data acquired at
time point t, typically resulting in a nonlinear inverse problem.
This type of estimation does not account for correlation among
the frames (i.e., between time t and tþ δt, with δt representing
the time step) and independently estimates μa.

9,10,14 In this work,
a new framework that assumes that μa distributions estimated at
t and tþ δt are linearly dependent will be presented, which
leads to linearization of the estimation problem, resulting in a
linear inverse problem.

3.1 Linearization

As the assumption of two successive frames being linearly
dependent is taken into account, the aim of the minimization
problem here becomes minimizing the difference in the data–
model misfit between successive frames (assuming that the pre-
vious frame solution is available). This leads to an objective
function defined as

Ω ¼ min
μ2

n
kδ2ðμ2Þ − δ1k22

o
; (3)

where δ2ðμ2Þ is the data–model misfit of the second frame,
δ2ðμ2Þ ¼ y2 −Gðμ2Þ, and δ1 is the data–model misfit of the first
frame, δ1 ¼ y1 − Gðμ1Þ. y2 and y1 are the natural logarithms of
the amplitude of experimental data of second and first frame,
respectively. μ2 and μ1 represent the solution of the second
and first frame, respectively, and Gðμ2Þ and Gðμ1Þ represent
the modeled response of the second and first frame, respectively.

As stated earlier, in this framework it is assumed that μ1 is
available and known, with the unknown being μ2. Equation (3)
needs to be minimized over the range of μ2. Note that μ1
(corresponding to first frame) could be obtained by any standard
estimation technique, here, Levenberg-Marquardt (LM) minimi-
zation scheme was utilized.

Using the above information and rewriting Eq. (3) leads to

Ω ¼ min
μ2

n
ky2 − Gðμ2Þ − ½y1 − Gðμ1Þ�k22

o
: (4)

As μ2 is the only unknown here, expanding Gðμ2Þ using Taylor
series around μ1 gives

Gðμ2Þ ¼ Gðμ1Þ þ G 0ðμ1Þðμ2 − μ1Þ
þ ðμ2 − μ1ÞTG 0 0ðμ1Þðμ2 − μ1Þ þ : : : ; (5)

where G 0ðμ1Þ ¼ Jjμ1 is the Jacobian [dimension: NMXNN with
NM representing number of measurements and NN number of
imaging parameters (nodes in the FEM mesh)] evaluated at μ1
and G 0 0ðμ1Þ is the Hessian.

Neglecting the higher-order terms, equivalently linearizing
the expansion gives

Gðμ2Þ ≃ Gðμ1Þ þ Jjμ1ðμ2 − μ1Þ: (6)

Using Eq. (6) in Eq. (4) leads to

Ω ¼ min
Δμ2

n
kΔy2 − Jjμ1Δμ2k22

o
; (7)

where Δμ2 ¼ μ2 − μ1 and Δy2 ¼ y2 − y1. Now, the solution to
the second frame is given by

μ2 ¼ μ1 þ Δμ2: (8)

Note that Eq. (3) represents a nonlinear inverse problem; assum-
ing that μ2 and μ1 are linearly dependent [Eq. (8)] makes it a
linear inverse problem [Eq. (7)]. Also, the inverse problem is
still ill-posed primarily due to the condition number of Jacobian
J and requires regularization to solve the problem. The linear
inverse problem given by Eq. (7) needs to be minimized over
the range of Δμ2, whereas the original problem [Eq. (3)]
needs to minimized with respect to μ2.

Generalizing Eq. (7) for the nth frame, Eq. (9) can be written
as

Ω ¼ min
Δμn

n
kΔyn − Jjμn−1Δμnk22

o
; (9)

where Δμn ¼ μn − μn−1 and Δyn ¼ yn − yn−1. Now, the solu-
tion to the nth frame is given by

μn ¼ μn−1 þ Δμn: (10)
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3.2 l1-Based Linear Reconstruction Method

As this new framework results in a linear inverse problem, it
could be solved using l1 type of approaches under the assump-
tion that the update Δμn need not be a smooth function. This is a
valid assumption even in the physiological sense, as tumors tend
to be highly localized and the appreciable change in optical
properties between successive frames is pulsatile.4,10,15

Even though the regularization term to be added for solving
Eq. (9) can take many forms, the l1-based regularization is
explored in this work. Under this framework, the regularization
term that is added to the objective function is based on l1-norm
and in this work it is posed as a basis pursuit denoising (BPDN)
problem,16,17 resulting in an additional term to be added to
Eq. (9), given by

Ω ¼ min
Δμn

n
λkΔμnk1 þ kΔyn − Jjμn−1Δμnk22

o
; (11)

where kΔμnk1 denotes the l1-norm of Δμn, i.e., kΔμnk1 ¼P
ijΔμnj, and λ is the regularization parameter which should

be selected (optimized) such that the error between the residual
and the image is minimized. The solution obtained with this
objective function is substituted in Eq. (10) to get the solution
to the nth frame. Note that l1-framework is shown to provide
better noise-tolerance characteristics as well as better conver-
gence properties and promotes sparseness in the solution in
other linear estimation problems;16,17 discussion of the same
is beyond the scope of this work.

Minimization of Eq. (11) to find solution Δμn can be
achieved using any of the greedy or basis pursuit algorithms.
In this work, we have used YALL1, which is open source
and known to provide a lot of versatility in terms of finding
Δμn. YALL118 is derived from the alternating direction method
(ADM), which minimizes augmented Lagrangian functions
through an alternating minimization scheme and updates the
multipliers after each sweep. The YALL1 solver can solve
eight equivalent l1-minimization models, although here only
one such model was used (details to follow). The construction
of these equivalent models consist of two main steps: 1. refor-
mulate an l1 problem into one having partially separable objec-
tive functions by adding new variables and constraints; and
2. apply an exact or inexact alternating direction method to
the resulting problem. This algorithm can be regarded as a first-
order primal dual algorithm because both primal and dual vari-
ables are updated at each and every iteration. Among the eight
l1-minimization models, the model that has the form

Ω ¼ min
Δμn

n
kΔμnk1 þ

1

2ρ
kΔyn − Jjμn−1Δμnk22

o
(12)

was chosen with ρ representing the data-fidelity (also known as
regularization), chosen as 10−2 for the studies performed in this
work. It could be easily shown that Eqs. (12) and (11) are
equivalent with λ ¼ 2ρ. A detailed account of the numerical
implementation employed can be found in Ref. 18. Note that
the l1-based minimization technique employs an iterative
approach to find the optimal solution (Δμn), even though the
inverse problem is linear. The choice of number of iterations
that were deployed was based on the noise level in the data.
For a typical 1% noise case, the number of iterations was chosen
to be 60, and as the noise level increased, the number of itera-
tions were also increased (for the case of 5% noise, it was 65).

3.3 Regularized Minimal Residual Method: l2-Based

The traditional/conventional method of solving an ill-posed lin-
ear inverse problem involves the addition of regularization term
that is based on l2-norm. As the l1-norm–based regularized pro-
blemwas solved using an iterative approach, also here an iterative
method was employed. Regularized minimal residual (MinRes)
method is a computational alternative for conjugate gradient
(CG) method which minimizes the l2-norm based optimization
problem.19 In this the objective function has an additional term
based on l2-norm [similar to Eq. (11)] and is given by

Ω ¼ min
Δμn

n
αkΔμnk22 þ kΔyn − Jjμn−1Δμnk22

o
; (13)

where α is the regularization parameter. The solution obtained
with this objective function is substituted in Eq. (10) to get
the solution to the nth frame. A computational scheme of the reg-
ularized MinRes method19 for minimizing the objective function
[Eq. (13)] is given in Algorithm 1.

The MinRes method primarily solves the minimization func-
tion given by Eq. (13) for a given α and an initial guess for Δμn
using an iterative approach, without employing any explicit
inverse.19 In this method, for increasing computational effi-
ciency only matrix-vector multiplications are performed. As
the name suggests, the aim is to find a solution that gives the
minimal residual in an iterative manner. Initially, a guess for
Δμn (with n representing the frame number) is given as input
to the algorithm (Δμ0n), typically chosen to be constant vector
(0.001 here). A residual (r) is calculated at every step (as
given in step 1 of Algorithm 1) with the help of Jacobian
(J) and data-model misfit (Δyn) corresponding to that iteration.
Subsequently a positively determined vector (liα) that takes into
account regularization (α) is computed using the residual vector
as well as earlier value of Δyn (either a guess or corresponding
to previous iteration). The liα is also known as the residual of the
Euler equation, which is the direct solution to Eq. (13) given by
Ref. 13

½fJjμn−1gT � Jjμn−1 þ αI�Δμin ¼ fJjμn−1gTΔyn: (14)

Following this, the step length based on the residual and Jaco-
bian is determined (step 3 of Algorithm 1) before proceeding to

Algorithm 1 Regularized MinRes method.

Reconstruction of μa corresponding to frame n

INPUT: Jjμn−1 and Δyn; OUTPUT: Δμn.

Initialize Δμ0n (initial guess), α.

for i ¼ 0;1; : : : (representing inner iteration number)

1. ri ¼ Jjμn−1Δμni − Δyn

2. l iα ¼ lαðΔμinÞ ¼ fJjμn−1gT ri þ αΔμin

3. kiα ¼ klαðΔμinÞk2
kJjμn−1 lαðΔμ

i
nÞk2þαklαðΔμinÞk2

4. Update equation: Δμiþ1
n ¼ Δμin − kiαl iα

5. The iterative process, steps: 1 to 4, is terminated when the misfit
reaches the given stopping criterion ðϵoÞ∶ krik2 ≤ ϵo
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the update equation. This process is repeated until the residual
(calculated in step 1) becomes small (less than or equal to ϵo). In
this work, ϵo ¼ 10−4 and α ¼ 100 were chosen for all studies
performed here, as they provided the best estimates (also shown
later). This algorithm is equivalent to the regularized steepest
descent method that is applicable to linear inverse problem.

In this work, Jacobian (J) corresponding to the initial frame
was used for reconstructing rest of the frames in both l1- and l2-
based iterative reconstruction schemes, removing the computa-
tionally expensive step of computing Jacobian (J) for every
frame.20 The reconstructions were performed on a Linux work-
station that had a 2.4 GHz Intel Quadcore processor along with
8 GB RAM. The details of simulation and experimental studies
performed as part of this work are presented in the next section.

4 Simulation and Experimental Evaluation

4.1 Numerical Experimental Data

As the reconstruction problem in rapid dynamic NIR imaging
has been reformulated as a linear problem, initially the perfor-
mance of the same in recovering high-contrast tumors is taken
up. Note that in all simulation cases discussed here, the imaging
domain is chosen to be circular in shape having a diameter of
86 mm, mimicking breast imaging. The target is also considered
to be circular in shape with a radius of 10 mm. The background
optical properties, mimicking the breast, are assumed to be
μa ¼ 0.01 mm−1 and μ 0

s ¼ 1.0 mm−1. The target μa was varied
depending on the numerical experiment, but μ 0

s was fixed at
1.0 mm−1 (as it is considered a known parameter). The data
collection setup had 16 fibers arranged in equi-spaced fashion
on the boundary of the imaging domain, where when one fiber
acted as a source, and the rest acted as detectors. This resulted in
240 (16 × 15) measurement points.21 The sources were modeled
as having a Gaussian profile with full width half maximum of
3 mm to mimic the experimental conditions.21 The source was
placed at one mean transport length inside the boundary.

For conducting the numerical experiments, two finite
element meshes were considered, one for experimental data
generation, the other in reconstruction scheme. In the case of
experimental data generation, the finite element mesh had
10,249 nodes corresponding to 20,160 triangular elements. For
the reconstruction scheme, the nodes were 2728 corresponding
to 5362 elements. In all cases (including experimental), the first
frame is always reconstructed using nonlinear iterative method
[Levenberg-Marquardt (LM) minimization scheme13] and the
dynamic reconstruction starts from the second frame using both
linear methods (l1 and l2) discussed in the earlier sections.

In the numerical experiments, initially a stationary target
located at the center of the domain with increasing contrast initi-
ally for four frames and decreasing contrast in subsequent
frames is considered. The increase/decrease in μa in the target
at every step is 0.005 mm−1, mimicking the hemodynamic
response in a tumor. The target distribution of μa along with
the frame numbers are given in top row of Fig. 1(a). The numer-
ical experimental data corresponding to each of these frames
were generated using 10,249-node mesh and was calibrated for
the 2728-node mesh using the standard calibration routines.22

Note that the calibration procedure uses the analytical solution
to DE, where the domain is assumed to be infinite/semi-infinite,
making the procedure computationally inexpensive.22 Four
cases of noise levels (0%, 1%, 3%, and 5%) in the data were
considered to mimic the experimental data. Note that the noise

level up to 4% was reported in the literature23 in diffuse optical
tomography systems, the 5% noise forms the worst case.

A similar effort is considered for the case where the target
(having a fixed contrast of 2∶1) placed on the x-axis [with center
being at ð20; 0Þ] moving in 11 steps to reach diagonally opposite
location ð−20; 0Þ. The target distribution for this case is given in
Fig. 2(a) top row along with their corresponding frame number
given on top.

In all cases considered here, it was assumed that the reduced
scattering coefficient of the imaging domain was uniform and
constant, which may not be true in the real cases. To study the
influence of scattering on the estimated μa, a case of μs 0 having
a contrast of 2∶1 in the target compared to the background is
considered. Note that as it is very unlikely to have a significant
variation in the scattering coefficient in the dynamic imaging
scenario, it was assumed that there is no change in μs

0 through-
out the frames. For this case, the μs 0 is an inhomogeneous model
with target value being at 2 mm−1 and background at 1 mm−1.
The reconstructions were performed for the stationary target
located at the center [target distribution is shown in top row
of Fig. 1(a)] using 1% numerically generated experimental
data assuming a homogenous μs

0 (¼ 1 mm−1) throughout the
domain.

4.2 Experimental Phantom Data

To assess the capabilities of the proposed method, an experi-
mental phantom dataset that was acquired using a video-rate
NIR tomography system7 was considered. In this case, the sys-
tem had an imaging array of 27 mm in diameter (mimicking the
small-animal imaging, e.g., rat’s cranium) and 16 equi-spaced
channels for collecting the NIR data. The solid phantom with
a diameter of 27 mm used here also had a hole of 6.35 mm
in diameter for holding the intra-lipid solution. A 785-nm-
wavelength laser diode was used as a source and the correspond-
ing optical properties were μa ¼ 0.0002 mm−1 and μs

0 ¼
1.45 mm−1. The intra-lipid had matching optical properties of
the solid phantom and the undiluted India ink was injected
shortly after the data acquisition. The data was acquired at
35 frames per second and the ink was injected using a pipet.
Once again, here the data was calibrated to remove biases in
the data and to match the response of the numerical model.22

5 Results
Using both l1- and l2-based linear reconstruction techniques,
the contrast recovery study results with varying noise level, 0%,
1%, 3%, and 5%, in data in the case of stationary target located
at the center of imaging domain are given in Fig. 1(a), 1(b), 1(c),
and 1(d), respectively. Here, the contrast recovery refers to the
ratio of the mean value of the reconstructed μa in the target
region (mimicking tumor) to the background. The target distri-
butions are given in the top row of Fig. 1(a). The distributions
corresponding to frame 1 (target and reconstructed image using
l2-based method) are also given in the respective figures in the
first column. Figure 1 results indicate that the contrast recovery
was better using l1-based method compared to l2-based
method. To assess this quantitatively, the contrast recovered
by computing the mean value of μa in the target region is
taken up and the same is plotted in Fig. 3 correspondingly.
The results indicate that the contrast recovery is poor when
l2-based methods are employed compared to l1-based method.

For the case of moving target (fixed contrast of 2∶1) the
reconstruction results using 0%, 1%, 3%, and 5% noisy data
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are given in Fig. 2(a), 2(b), 2(c), and 2(d), respectively. These
results also indicate that the performance of l2-based recon-
struction technique is inferior in both qualitative and quantitative
nature of reconstructed images compared to l1-based technique.

The results pertaining to the case of having an inhomoge-
neous μs 0 and reconstructing the μa distribution using l1- and
l2-based methods assuming a homogeneous μs

0 are given in

Fig. 4(a). Similar to Fig. 3, the contrast recovery plot for this
case is given in Fig. 4(b). It is amply clear from this result
that having a reasonable μs

0 distribution close to the actual
(expected) one is essential for obtaining quantitatively accurate
results.

The reconstructed μa distribution using experimental phan-
tom data are presented in Fig. 5(a). Note that even though the

Fig. 1 Comparison of performance of l1- and l2-based reconstructions for the case of stationary target with data having noise levels of 0% (a), 1% (b),
3%, and 5% (d). The target distribution is given as first row of images in (a). The corresponding frame numbers are given on top of each subfigure. The
reconstruction method that was employed has been indicated against each row of the subfigures. The first column gives the reconstruction of first frame
using l2-based method that was used as prior image for the second frame.
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NIR data was acquired at 35 frames∕s, the reconstruction results
that were presented here are sampled versions of total available
distributions and the corresponding time of acquisition is given
on top of Fig. 5(a). The recovered contrast in the target region
for these set of results [given in Fig. 5(a)] is also plotted in
Fig. 5(b) for providing quantitative assessment. From both
Fig. 5(a) and 5(b), it is evident that the contrast recovery is
superior in case of l1-based reconstruction technique compared
to its counterpart (l2-based method).

To understand the computational complexity of the presented
reconstruction technique, the total reconstruction time, overhead
time, and total number of inner iterations (corresponding time) is
recorded (averaged over four runs) for the results of Fig. 2(b)
and the same is reported in Table 1.

6 Discussion
Rapid dynamic NIR tomography has the potential to reveal the
hemodynamic response of the tumor, providing functional data
that could potentially characterize/reveal the patho-physiological
state of the tissue under investigation. But typically, the image
reconstruction is handled off-line (not in sync with data acqui-
sition) due to the computational complexity.5–10,15 Developing
image reconstruction methods that can improve the imaging
speed to be on par with the data acquisition is highly desirable
to take advantage of NIR tomography’s potential. Unfortu-
nately, the linear reconstruction techniques that perform
single-step reconstruction can reduce the computational com-
plexity, but are known to have limited capability in terms of con-
trast recovery,5,7,9 which is needed for an accurate estimation of

Fig. 2 Similar to Fig. 1 except the target is moving and the expected contrast is fixed at 2∶1.
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the patho-physiological state of the tissue. l1-Based techniques
are known to promote sparse solutions and have been reported to
provide better spatial resolution in case of diffuse optical
imaging.24–27 In this work, a new framework that can make
use of l1-based regularization in dynamic diffuse optical ima-
ging is developed, and the developed framework also made the
reconstruction problem to be linear. Even though it is possible
that the solution within this frame work could be sparse, this
work did not explicitly take this into account as it was aimed
at showing that contrast recovery, in cases resulting in pulsatile

absorption,10,15 could be better using l1-based techniques
compared to traditional methods (l2-based). There could be
scenarios, especially in small-animal imaging, where the
changes in optical properties need not be localized or in the
tumor vasculature alone. In this cases, a sparsifying transform
(wavelet or Fourier-based) could be employed, which can
make the solution sparse to deploy l1-based optimization
schemes. This is well-studied for static diffuse optical tomo-
graphic case,14 but requires additional computation for such a
transformation.
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Fig. 3 Comparative plots of reconstructed mean μa in the target region (ROI) using l1- and l2-based methods along with expected values (target) for
results presented in Fig. 1.

Fig. 4 (a), Reconstructed distributions of μa in the case of 1% noise
level in the data with different optical scattering coefficient for the back-
ground (μ 0

s ¼ 1.0 mm−1) and the target (μ 0
s ¼ 2.0 mm−1) using l1- and

l2-based methods. The μa target distribution is same as the one shown
in Fig. 1(a). (b), Recoveredmean μa of the target corresponding to results
presented in (a).

Fig. 5 (a) Reconstructed distributions of μa in the case of experimental
phantom data using l1- and l2-based methods. The time corresponding
to each frame is given in top row. (b) Maximum recovered μa contrast
corresponding to results presented in (a).
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The hemodynamic changes between the successive frames in
rapid dynamic NIR tomography are predominantly in tumors
alone, leading to changes in optical properties to be highly loca-
lized, resulting in a linear solution between the successive
frames. Untill now the reconstruction algorithms that were
investigated in the literature for dynamic diffuse optical imaging
did not account for the linear dependence.5–10,15 In the l1-based
reconstruction method presented here, alternating direction
method was deployed, making use of an iterative technique
to solve the optimization problem. These iterations are not glo-
bal in nature and do not require recomputation of either Jacobian
(J) or forward data. In spirit, they are similar to inner iterations
applied in gradient-based methods that were employed earlier in
NIR tomography.2,3 As the l1-based method employed iterative
technique to solve the linear inverse problem, an iterative tech-
nique based on MinRes method (similar to steepest descent
method) was introduced in this work in case of the l2-based
method for an effective comparison. The solution obtained
from MinRes is the same as the one obtained by direct method
[given by Eq. (14)], except that MinRes has the advantage that
the order of computation here isOðn2Þ in comparison toOðn3Þ19
in case of Eq. (14), with n being the number of columns in Jaco-
bian (J). Note that in both l1 and l2 cases, an unconstrained
optimization was performed as the update (Δμn) could be
negative or positive.

The l1-based methods are known to improve the spatial reso-
lution (avoiding over smoothing) as well as depth localization in
diffuse optical imaging.24,14,27 Recent works also indicated that
they are capable of providing more robustness to noise.14. The
results (Figs. 1–5) obtained using l1-based method in the linear
framework for rapid dynamic NIR tomography asserted the
same in comparison to l2-based methods. In case of quantita-
tion, the l1-based method is atleast 70% better in terms of error
in the contrast recovery compared to l2-based methods (Fig. 3).
Also, as the noise level increased, the performance of l2-based
method became inferior (Figs. 2 and 3) in comparison to
l1-based method.

In case of experimental phantom data, even though the
expected contrast was close to infinity (as the ink was undi-
luted), the l1-based method was at least six times superior in
terms of recovered contrast [Fig. 5(b)], making l1-based tech-
nique highly desirable in the experimental cases.

It should be noted that the linear inverse problem framework
obtained in this work has a limitation that the obtained recon-
struction of initial frame (Frame 1) needs to be close to the
target/expected distribution, otherwise the quantitation errors
will propagate. Having an inaccurate μs

0 distribution used in
the NIR light propagation models induces errors in the forward

data calculations. In turn, these errors reflect in the reconstructed
μa values, as it is the only parameter that is assumed to be
unknown and allowed to change. The same is observed in
Fig. 4. As the NIR light is attenuated by both absorption and
scattering, having an inaccurate μs

0 distribution in the forward
model will lead to estimated μa being higher then the expected
value [Fig. 4(b)]. To uniquely estimate the μa and μs

0 one
requires either frequency-domain or time-domain measurements
rather than pure CW measurements (intensity data). Obtaining
these frequency or time-domain measurements requires addi-
tional resources/instruments and should be very easy to incor-
porate in the video-rate data acquisition systems. As scattering is
unlikely to change with the frames, it is reasonable to assume
that the additional data other than pure intensity needs to be
obtained only for the initial frame (Frame 1). This could ensure
that the errors do not propagate in the time. Interest in most
dynamic video-rate optical imaging applications lies with the
relative difference in the absorption properties between the
frames. Having an inaccurate μs 0 might change the base value,
but the observed relative difference is similar to that of the target
in the results shown in Fig. 4. It also could be observed that the
inaccurate modeling of μs 0 only added the bias to the contrast
recovered [Fig. 4(b)], with the l1-based method doing better
than the l2-based one.

The choice of regularization (λ in Eq. (11) for l1-based
method and α in Eq. (13) for l2-based method) was based
on root mean square (RMS) error in the reconstructed μa dis-
tribution. The plot showing this is given in Fig. 6(a) and 6(b)
for the choice of λ and α, respectively, showing that lowest
RMS errors were obtained for λ ¼ 0.02 (in turn ρ ¼ 10−2)
and α ¼ 100. Note that even though this is shown only for
one case [fourth frame of Fig. 1(b)], the same trend correspond-
ing to other frames is observed to confirm that the chosen values
of regularization leads to the least amount of errors.

Note that the total variation regularization will also obey
the l1-norm, but is known to be computationally complex in
providing a solution to the minimization problem compared
to l2-norm based methods.28,29 Here, the alternating direction
method (ADM) that minimizes the l1-norm-based scheme was
directly employed through the open-source YALL1.18 The com-
putational time that was recorded in l1- and l2-based methods
(Table 1) also showed that the l1-based method has a distinct
advantage not only in providing better quantitation, but also in
computational complexity. Also, in the l1-based method the
computational time for actual reconstruction (for completing
the inner iterations) is on par with the overhead time (Table 1).
In the l2-based method, the number of inner iterations is larger
compared to its counterpart. Even though the computational
time recorded was only reported for the results obtained in
Fig. 3, the trends that were observed in general are true for
other cases in this work. Moreover, these computations can be
accelerated further by using any high-performance computing
environments.20

The recent work by Dutta et al.30 in the context of fluores-
cence molecular tomography (FMT), which has a similar phy-
sics to diffuse optical imaging, has shown that l1 reconstruction
has out performed the l2-based methods in both the recon-
structed target (ROI) value and the obtained contrast (signal to
background), reconfirming that the trends observed here match
with the literature. It is also shown in Ref. 30 that a joint l1

and total variation (TV) regularization for the FMT not only
provided better contrast in comparison to standard l2

Table 1 Average computational time recorded for reconstruction of
single frame using both l1- and l2-based methods with 1% noise when
the target is in motion [results corresponding to Fig. 2(b)].

Task l1 l2

Total reconstruction timea 0.5075 0.9001

Overhead timea 0.2070 0.185

Number of iterations 60 670

Timea taken per iteration 0.005 0.00106

aTime in seconds.
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regularization, but also reduced the RMS errors in the back-
ground, which were higher when used individually. The detailed
study in similar lines in the current context will be taken up as a
future work.

7 Conclusions
Traditional l2-based techniques are known to provide poor con-
trast recovery in case of linear reconstruction methods employed
in rapid dynamic diffuse optical imaging. In this work, the
dynamic diffuse optical image reconstruction problem is refor-
mulated as a linear problem taking into account the linear depen-
dence among the frames. This formulation naturally led to
effective usage of l1-based techniques to estimate the corre-
sponding optical distributions for these under-determined linear
problems. The l1-based method that was deployed here used
alternating direction method (ADM), which is an iterative
method. These solutions were compared and contrasted against
l2-based methods (iterative in nature) and showed that the
l1-based method can provide better quantitation in these
dynamic studies and also is more robust to noise. Moreover,
these l1-based methods have lesser computational complexity
compared to their counterparts (l2-based). These types of recon-
struction techniques that provide better quantification as well
as being computationally inexpensive are highly desirable for
better characterization of tissue hemodynamics.

Acknowledgments
The authors are thankful to Dr. Daqing Piao for providing the
experimental phantom data that was used in this work. The
authors also thank Dr. Chandra Murthy and Dr. Namrata
Vaswani for their initial discussions on sparse estimation tech-
niques. This work is supported by the Department of Atomic
Energy Young Scientist Research Award (No. 2010/20/34/6/
BRNS) by Government of India.

References
1. D. A. Boas et al., “Imaging the body with diffuse optical tomography,”

IEEE Signal Process. Mag. 18(6), 57–75 (2001).

2. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and
inverse problems,” Inv. Problems 25(12), 123010 (2009).

3. T. Durduran et al., “Diffuse optics for tissue monitoring and tomogra-
phy,” Rep. Prog. Phys. 73(7), 076701 (2010).

4. B. W. Pogue et al., “Implicit and explicit prior information in near-
infrared spectral imaging: accuracy, quantification and diagnostic
value,” Phil. Trans. R. Soc. A 369(1955), 4531–4557 (2011).

5. C. H. Schmitz et al., “Instrumentation for fast functional optical tomo-
graphy,” Rev.Sci. Instrum. 73(2), 429–439 (2002).

6. C. H. Schmitz et al., “Dynamic studies of small animals with a four-
color diffuse optical tomography imager,” Rev. Sci. Instrum. 76(9),
094302 (2005).

7. D. Piao et al., “Instrumentation for video-rate near-infrared diffuse
optical tomography,” Rev.Sci. Instrum. 76(12), 124301 (2005)

8. D. Piao et al., “Video-rate near-infrared optical tomography using spec-
trally encodedparallel lightdelivery,”Opt.Lett.30(19), 2593–2595 (2005).

9. S. Gupta et al., “Singular value decomposition based computationally
efficient algorithm for rapid dynamic near-infrared diffuse optical tomo-
graphy,” Med. Phys. 36(12), 5559–5567 (2009).

10. Z. Li et al., “Video-rate near infrared tomography to image pulsatile
absorption properties in thick tissue,” Opt. Express 17(14), 12043–
12056 (2009)

11. H. Jiang et al., “Optical image reconstruction using frequency domain
data: simulations and experiments,” J. Opt. Soc. Am. A 13(2), 253–266
(1996).

12. M. Schweiger et al., “The finite element model for the propagation of
light in scattering media: boundary and source conditions,” Med. Phys.
22(11), 1779–1792 (1995).

13. P. K. Yalavarthy et al., “Weight-matrix structured regularization pro-
vides optimal generalized least-squares estimate in diffuse optical
tomography,” Med. Phys. 34(6), 2085–2098 (2007).

14. M. Suzen, A. Giannoula, and T. Durduran, “Compressed sensing
in diffuse optical tomography,” Opt. Express 18(23), 23676–23690
(2010).

15. Z. Li et al., “Rapid magnetic resonance-guided near-infrared mapping to
image pulsatile hemoglobin in the breast,”Opt. Lett. 35(23), 3964–3966
(2010).

16. E. Candes and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Magaz. 25(2), 21–30 (2008).

17. J. Romberg, “Imaging via compressive sampling,” IEEE Signal
Process. Magaz. 25(2), 14–20 (2008).

18. J. Yang and Y. Zhang, “Alternating direction algorithms for L1-pro-
blems in compressive sensing,” SIAM J. Sci. Comput. 33(1), 250–
278 (2011).

19. M. S. Zhdanov, Geophysical Inverse Theory and Regularization
Problems, 1st ed., Elsevier Science, New York (2002).

0 0.2 0.4 0.6 0.8 1
0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61
(a) (b)

Regularization (λ)

R
M

S
 E

rr
o

r 
(%

)

L1−based

0 100 200 300 400 500
0.635

0.64

0.645

0.65

0.655

0.66

0.665

Regularization (α)

R
M

S
 E

rr
o

r 
(%

)

L2−based

Fig. 6 Plot showing the root mean square (RMS) error in the reconstructed μa (region of interest) as a function of regularization parameter for l1-based
(a) and l2-based (b) methods corresponding to fourth frame as shown in Fig. 1(b).

Journal of Biomedical Optics 086009-9 August 2012 • Vol. 17(8)

Shaw and Yalavarthy: Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography...

http://dx.doi.org/10.1109/79.962278
http://dx.doi.org/10.1088/0266-5611/25/12/123010
http://dx.doi.org/10.1088/0034-4885/73/7/076701
http://dx.doi.org/10.1098/rsta.2011.0228
http://dx.doi.org/10.1063/1.1427768
http://dx.doi.org/10.1063/1.2038467
http://dx.doi.org/10.1063/1.2149147
http://dx.doi.org/10.1364/OL.30.002593
http://dx.doi.org/10.1118/1.3261029
http://dx.doi.org/10.1364/OE.17.012043
http://dx.doi.org/10.1364/JOSAA.13.000253
http://dx.doi.org/10.1118/1.597634
http://dx.doi.org/10.1118/1.2733803
http://dx.doi.org/10.1364/OE.18.023676
http://dx.doi.org/10.1364/OL.35.003964
http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1109/MSP.2007.914729
http://dx.doi.org/10.1109/MSP.2007.914729


20. J. Prakash et al., “Accelerating frequency-domain diffuse optical tomo-
graphic image reconstruction using graphics processing units,”
J. Biomed. Opt. 15(6), 066009 (2010).

21. T. O. Mcbride et al., “A parallel-detection frequency-domain near-
infrared tomography system for hemoglobin imaging of the breast in
vivo,” Rev. Sci. Instrum. 72(3), 1817–1824 (2001).

22. B. W. Pogue et al., “Calibration of near infrared frequency-domain
tissue spectroscopy for absolute absorption coefficient quantitation in
neonatal head-simulating phantoms,” J. Biomed. Opt. 5(2), 185–193
(2000).

23. G. Gulsen et al., “Design and implementation of a multifrequency near-
infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1),
014020 (2006).

24. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse
optical tomography using sparsity regularization and expectation-
maximization algorithm,” Opt. Express 15(21), 13695–13708 (2007).

25. J. C. Baritaux et al., “Sparsity-driven reconstruction for FDOT with
anatomical priors,” IEEE Trans. Med. Imag. 30(5), 1143–1153 (2011)

26. O. Lee et al., “Compressive diffuse optical tomography: noniterative
exact reconstruction using joint sparsity,” IEEE Trans. Med. Imag.
30(5), 1129–1142 (2011).

27. V. C. Kavuri et al., “Sparsity enhanced spatial resolution and depth
localization in diffuse optical tomography,” Biomed. Opt. Express
3(5), 943–957 (2012).

28. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image
reconstrution in tissues through total-variation minimization,” Appl.
Opt. 35(19), 3447–3458 (1996).

29. A. Borsic et al., “In vivo impedance imaging with total variation
regularization,” IEEE Trans. Med. Imaging 29(1), 44–54 (2010).

30. J. Dutta et al., “Joint l1 and total variation regularization for fluores-
cence molecular tomography,” Phys. Med. Biol. 57(6), 1459–1476
(2012)

Journal of Biomedical Optics 086009-10 August 2012 • Vol. 17(8)

Shaw and Yalavarthy: Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography...

http://dx.doi.org/10.1117/1.3506216
http://dx.doi.org/10.1063/1.1344180
http://dx.doi.org/10.1117/1.429985
http://dx.doi.org/10.1117/1.2161199
http://dx.doi.org/10.1364/OE.15.013695
http://dx.doi.org/10.1109/TMI.2011.2136438
http://dx.doi.org/10.1109/TMI.2011.2125983
http://dx.doi.org/10.1364/BOE.3.000943
http://dx.doi.org/10.1364/AO.35.003447
http://dx.doi.org/10.1364/AO.35.003447
http://dx.doi.org/10.1109/TMI.2009.2022540
http://dx.doi.org/10.1088/0031-9155/57/6/1459

