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Abstract. We describe an approach for estimating human skin parameters, such as melanosome concentration,
collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (sig-
natures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel
equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra.
Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters
from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the
visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and
African American ethnicities. Performance validation shows promising results: good agreement with the ground
truth and well-established physiological precepts. These methods have potential use in the characterization of skin
abnormalities and in minimally-invasive prescreening of malignant skin cancers. © 2013 Society of Photo-Optical
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1 Introduction
Skin optics is a research area rich in applications involving diag-
nosing, characterizing, and understanding the properties of tis-
sues and organs. For over three decades, the area has attracted
many research groups that have targeted a host of different appli-
cations. Several studies have attempted the task of developing
tools to estimate the biological parameters that make up the
layers of skin. This is an important task because quantitative
knowledge of these parameters can be invaluable in applications
such as medical diagnostics, wound-care, drug-delivery, and
skin aging, amongst others. Many studies have cited1–3 that skin
parameters can be used in a longitudinal study to trace the
growth and spread of skin cancers. They can also be used to
understand the pathophysiology of malignant tumors. There-
fore, technologies that can estimate skin parameters can help
in diagnosing cancers such as melanoma, which results in
approximately six deaths every hour worldwide.4 Such technol-
ogies can be especially effective because the most common
diagnostic for diseases such as melanoma remains a nonobjec-
tive visual examination by a health care professional.5

Traditionally used for remote sensing, hyperspectral imaging
has recently received increased attention for its ability to auto-
matically detect and classify anomalous areas in a wide variety
of biological materials, including the human skin.6 A hyperspec-
tral imaging system is able to measure specific spectral signa-
tures based on the pigmentation and the color of human skin in
the visible (UV-VIS) through the short-wave-infrared (SWIR)
regions of the electromagnetic spectrum.6 In this study, we
use hyperspectral radiometric measurements in order to detect

the optical properties of biological materials by reporting their
reflectance spectra. This reflectance signature can be used to
develop a model that forward maps the skin parameters to
their hyperspectral signature. This is the “forward model” dis-
cussed in this article—computing the reflectance spectra of a
skin sample based on the underlying biological parameters.
The novel aspect of this article is solving the inverse prob-
lem–using machine learning regression to estimate the skin
parameters from the hyperspectral signature.

This article is organized as follows. Section 2 reviews some
prior work in skin optics. Section 3 provides an overview of the
physics-based forward model. Section 4 reviews the derivation
of the machine learning based inverse model. Section 5 includes
the experimental methods and results. Section 6 discusses the
results and validations. Finally, Sec. 7 includes our concluding
remarks. Preliminary portions of this work are reported in
conference proceedings.7–9

2 Review of Prior Work
One potential taxonomy of research in skin optics is as follows:
first, studies focused on developing robust biophysical models
of human skin; second, studies focused on developing methods
to estimate the biological components of skin; and third, studies
focused on using computational models, coupled with imaging
modalities, for medical diagnostics. In this section, we review
some of these studies, and also highlight our own contribution.

The first group of studies deals with developing models of
how light interacts with human skin. The goal of these studies
is to create models that can represent skin and all of its optical
and biochemical properties using simply the measured spectral
power distribution. This power distribution is given by the
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measured reflectance and transmittance.10 One of the earliest
such models was developed by Kubelka and Munk who related
the reflectance spectra of paint to its absorption and scattering
coefficients.6,11 The Kubelka-Munk (K-M) theory based model
uses the absorption and the scattering coefficients as inputs for
the energy transport equations to describe the transfer of radi-
ation in scattering media (such as human skin). The K-M model
is also referred to as the “Flux Model” because it incorporates
two fluxes (diffuse upwards and downwards fluxes). Since the
original work by Kubelka and Munk, the model has been
improved and optimized by several groups. Van Germet and
Star12 expanded the K-M model to account for tissue scattering
behavior. Tuchin et al.13 and Yoon14 built on this work and
incorporated four and seven fluxes, respectively, to account for
the radiation scattering. Meglinski and Matcher15 developed a
hybrid K-M model that uses the Fresnel equations to speed
up the model output. Nunez6 modified this model by incorpo-
rating optical parameters coupled with in vivo and ex vivo
measurements. They report better performance for their model
compared with other K-M based models.6 Therefore, in this
article, we employ their hybrid K-M model.

Several groups have also developed variants of the K-M
model such as the diffusion theory model, which uses the
Boltzmann photon transport equation, the absorption and
scattering coefficients, and a phase function.16 Other variants
include the radiative transport model,17,18 and the Monte Carlo
methods model,19 however these are typically used for laser
applications. In addition, Baranoski and Krishnaswamy10 com-
ment that for these models, the comparisons between modeled
and measured data are seldom provided. Nonetheless, these
models have been used by several groups20 for a host of bio-
medical applications. In contrast to the K-M variant models,
Hanrahan and Kreuger21 (expanded by So-Ling and Li22) devel-
oped a scattering model, i.e., the H-K model, which models skin
as two-layers, epidermis and dermis. Finally, Stam et al. devel-
oped the discrete-ordinate model, i.e., the D-O model, which has
been used to simulate the scattering behavior of human skin.23

The D-O model treats skin as a single layer with homogeneous
optical properties and index of refraction. While each model
has advantages and disadvantages, the K-M based models
offer the greatest compromise between computational efficiency
and accuracy.10

The second group of studies focuses on developing methods
to estimate human skin parameters. In particular, several groups
have used variants of the K-M model in order to estimate skin
parameters. Our study best fits into this category. The following
studies are the closest to ours, in terms of methodology and
validation. Cotton24 and Cotton and Claridge25 employ a K-M
theory based model to estimate the melanin concentration in
skin. They have also developed26,27 an inverse model based
on finding a set of optimal image filters to minimize the
error between a mapping from color images to skin parameters.
Doi and Tominaga28 have also used a K-M model, coupled with
a least squares method, to fit measured and estimated reflectance
spectra in order to estimate skin pigments (e.g., melanin, etc.).
Yudovsky and Pilon29,30 developed a semi-empirical model for
diffuse reflectance of two-layered media by approximating the
solution of the Radiative Transfer Equation (RTE). They then
estimate a set of skin parameters using this optical two-layer
model and an inverse method based on least squares minimiza-
tion. We compare our methods, results, and validation to these
studies in Sec. 6.

In addition, there also exists work by Anderson and Parrish31

and Wan et al.32 who used the K-M model to estimate the reflec-
tance of dermal and epidermal tissues in vivo (but the physical
skin parameters). Tsumura et al.33–35 estimated skin chromo-
phores using Independent Component Analysis, and by match-
ing simulated reflectances to the estimated reflectances at each
pixel of a multispectral image. Claridge et al.36 created a model
of skin and tissue coloration by finding the spectral composition
of light remitted from skin parameters. They use this model to
find a mapping between color images and pigmented skin
lesions. Some groups, such as Alander, Kaartinen, Leonardi,
Zerubia, et al.,37–41 have also used hyperspectral and multispec-
tral imaging, often coupled with K-M model variants and/or
inverse methods, to estimate skin chromophore concentrations
and classify skin pigmentation.

The last group of studies apply computational models and
medical imaging modalities to medical diagnostic applications.
In particular, these studies apply the methods from the previous
two groups of studies to a clinical setting. For example,
Yudovsky et al.42 collected hyperspectral oximetry data from
54 in vivo subjects with some degree of foot ulcers. They
then used their algorithms to classify the subjects into two
groups: one, whose ulcers healed within 24 weeks, and the sec-
ond, whose ulcers did not heal within 24 weeks. They based
their classification on the estimated concentrations of oxyhe-
moglobin, de-oxyhemoglobin, and oxygen saturation. Similar
studies by other groups include classifying skin lesions from
images,43 investigating skin alterations in diabetes patients,44

and assessing hemodynamic changes in skin, post-burn,45

amongst several others.
The studies presented here by no means constitute a com-

plete review of the skin optics research area. However, they
do highlight the rich history of the area, and also help indicate
the novel features of our work. These features include:

1. Joint Parameter Estimation: This is important because
many parameters co-occur in certain pathologies. For
example, a large volume of blood through the dermis
precludes a thin dermal thickness. Such correlations
cannot be captured if the parameters are not explored
jointly.

2. Machine Learning Regression: Data-driven approaches
coupled with physics-based modeling derived from
K-M theory can overcome the shortcomings of some of
the above-mentioned approaches. Though there exists
prior work on using multivariate regression in chemo-
metrics and image classification,46,47 such work has not
been applied to in vivo skin. There is also somework on
classification of skin lesions using machine learning,43

however it does not estimate skin parameters.

3. SWIR Imaging: Exploring hyperspectral signatures
beyond the UV-VIS and through the SWIR region
allows for deeper penetration and could provide more
information.

3 Physics-Based Forward Modeling

3.1 Human Skin Model

The model of human skin presented here is based on the models
derived by Meglinski and Matcher15 and later modified by
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Nunez6 Skin is treated as an N ¼ 10-layered Lambertian
material, which allows for uniform bidirectional reflection.
The 10 layers are defined as follows: Layers 1 through 5 re-
present the strata of human skin; these layers are: stratum cor-
neum, stratum lucidum, stratum granulosum, stratum spinosum,
and stratum basale. Layers 6 through 9 are the dermises; these
layers are: papillary dermis, upper blood net dermis, reticular
dermis, and deep blood net dermis. Layer 10 is the subcutaneous
tissue layer, and it is assumed to be infinitely thick, allowing the
model to ignore the transmittance through it, as it is zero for a
layer with infinite thickness.

Skin is composed of seven biological parameters. In this
work, we estimate five such parameters. These parameters
are: melanosome concentration (pm), collagen concentration
(pc), O2-saturation (pbo), and subcutaneous reflectance (psr).
The physiological ranges for each estimated parameter are
detailed in Table 1. The last two parameters (layer thickness,
ppt, and water volume pwl) are assumed known and hence
not estimated.

In order to make the model tractable, the following underly-
ing assumptions (as described by Nunez6) are made. First, each
layer is assumed to have similar optical properties, and homo-
geneous absorption and scattering coefficients. This means that
the concentration of each parameter is the same for all the
layers. The parameter psr is an internal model parameter that
doesn’t have any physiological meaning. Therefore, it is
omitted from further analysis. Therefore, we are estimating
four parameters in this study (omitting psr). Next, each layer
has a particular thickness, and a water percentage. These thick-
nesses, and water percentages are assumed known and not
estimated. They are kept constant for each layer based on
work byMeglinski and Matcher;15 these are tabulated in Table 1.
Finally, blood is assumed to be uniformly distributed in the
dermis layers (rather than in differing concentrations for each
layer) and zero in the strata. While some of these constraints
may not be consistent with real human skin, Nunez et al.
demonstrate minimal modeling error despite these underlying
simplifications.6

3.2 Forward Model

The proposed method is based on a physics-based forward
model that describes the reflectance spectra of human skin

based on physiological optical parameters that make up its
layers.

The forward model describes a method of modeling the
reflectance spectra of each layer based on the knowledge of
each layer’s thickness and the optical properties of its constitu-
ent components.6,48 In general, the forward mapping can be
described as follows:

F∶p → s ¼ fðpÞ; (1)

where

p ¼ ½pm; pc; pbo; pwl; pbl; pdt; psr �T

is a vector containing the skin parameters (see Table 1), and

s ¼ ½ λNA
; : : : ; λNB

�T;

represents the corresponding hyperspectral signature vector.

3.3 Kubelka-Munk Theory

The relationship described by Eq. (1) is based on a set of
analytical models6,48 that describe the transmission, tnðλÞ, and
reflection, rnðλÞ, of light at a specific wavelength λ in a layer
of (biological) material, where n denotes the layer number.
The reflection and transmission are computed using the K-M
equations, given by:

tnðλÞ ¼
4βnðλÞ

½1þ βnðλÞ�2eKnðλÞdn − ½1 − βnðλÞ�2e−KnðλÞdn

rnðλÞ ¼
½1 − βnðλÞ2�½eKnðλÞdn − e−KnðλÞdn �

½1þ βnðλÞ�2eKnðλÞdn − ½1 − βnðλÞ�2e−KnðλÞdn ; (2)

with the following parameters tied to the absorption and scatter-
ing properties of the biological materials:

βnðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AnðλÞ
AnðλÞ þ 2SnðλÞ

s

KnðλÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AnðλÞ½AnðλÞ þ 2SnðλÞ�

p
; (3)

where dn denotes the thickness of layer n, and is equal to pdt.
The coefficients, AnðλÞ and SnðλÞ are based on the absorption,

Table 1 Biological parameter detailed descriptions and physiological ranges.

Parameter Description of the estimated parameters Range (per volume)

pm (%) Melanosome fraction by volume in the epidermis 0.80% to 43%

pc (%) Collagen fraction by volume in the reticular dermis 15% to 30%

pbo (%) Percentage of oxygenation of hemoglobin in blood 70% to 100%

pbl (%) Percentage of blood by volume in the dermis 0.25% to 2.00%

psr Scale factor for the subcutaneous reflection 0.40 to 0.65

Parameter Description of the fixed parameters Value (each layer)

pwl (%) Percentage of water by volume in each layer of skin 5, 20, 20, 20, 20, 50, 60, 70, 70

pdt (μm) Thickness of each layer measured in μm 40, 10, 10, 45, 15, 150, 80, 1500, 80
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anðλÞ, and the scattering, snðλÞ, coefficients and are given
by:

AnðλÞ ¼
anðλÞ

1
2
þ 1

4

n
1 − snðλÞ

½snðλÞþanðλÞ�
o

SnðλÞ ¼
snðλÞ

4
3
þ 38

45

n
1 − snðλÞ

½snðλÞþanðλÞ�
o : (4)

The coefficient anðλÞ is computed separately for each strata
(layers 1 through 5) and dermis (layers 6 through 9), and is
based on the components of p as seen by:

an1−5 ¼ pmam þ pcac þ pwlawl þ ace

an6−9 ¼ pcac þ ðpwl þ 0.9pblÞawl
þ pbl½pboaohb þ ð1 − pboÞadhb þ ace þ abilðλÞ�

sn ¼
30477ðλÞ−1.283

0.3
pcac; (5)

where am, ac, and awl, are the absorption profiles of the bio-
logical materials (melanosome, collagen, water) contained in
p based on empirically derived values tabulated in Ref. 6.
The coefficients ace, aohb, adhb, and abil are the absorption pro-
files of betacarotene, oxygenated hemoglobin, de-oxygenated
hemoglobin, and bilirubin, whose absorption profiles are also
included in Ref. 6.

3.4 Light Transport Model

In addition to using the K-M equations, we also use the Fresnel
equation, as detailed by Nunez6 Since human skin has uniform
bidirectional reflection, Nunez et al. assume that light incident
on the skin surface is always normal to the surface. This allows
us to use the Fresnel equation to describe the amount of reflec-
tion that is normal to the interface separating the skin from air.
The equation is based on the tabulated indices of refraction for
air and the stratum corneum (skin layer 1), given by ηair, and ηsc,
respectively. The Fresnel reflection FR is then given by:

FR ¼
�
ηsc − ηair
ηsc þ ηair

�
2

: (6)

The reflectance path of light is modeled in the following fashion.
For every layer, light can take one of four paths: it’s either (1)
absorbed, (2) scattered out of the top of the layer, (3) scattered
out of the bottom of the layer, or (4) doesn’t scatter, and con-
tinues along its path. Therefore, the reflectance and trans-
mittance between any two interfaces (layers) are going to be
infinite sums dependent on what path light takes between
those two interfaces.

In addition, light being reflected off the surface of the skin is
actually made up of light coming from each path leaving a skin
layer, as well as the Fresnel reflection. In other words, the total
fraction of light leaving each layer i is the product of: (i) the
Fresnel transmittance, (ii) transmittance of all the layers it
had to go through in order to each layer i, (iii) the reflectance
of the layer i (the model assumes an infinitely thick bottom
layer, and therefore has pure reflectance), (iv) the transmittance
of all the layers it must once again traverse in order to reach the
top, and finally (v) the Fresnel transmittance. Note that the

transmittance from layer 1 to layer i is the same as the journey
back from layer i to layer 1.

Using this methodology, the the total reflectance and trans-
mittance between any two interfaces is the sum of all reflectance
paths (see steps 1 through 4 above) and the transmittance and
reflectance it accrues from its journey [see steps (i) through (v)
above]. This is given by:

Rj ¼ ri þ t2i rj
X∞
m¼1

ðrirjÞm Tj ¼ titj
X∞
m¼1

ðrirjÞm; (7)

where Rj, and Tj ¼ 1 − Rj, are the total reflectance and trans-
mittance between interface i and j. The other variables are com-
puted using Eqs. (2)–(5) from above. A graphical version of
this, expanded from Ref. 6, is presented in Fig. 1.

The final step is to iterate the quantities in Eq. (7) for all opti-
cal layers 1 through N ¼ nþ 1. This is analogous to the pro-
cedure presented in Fig. 1 and Eq. (7), except adapted for all
N layers of the skin, until the overall reflectance RN (and trans-
mittance TN) is computed. The closed form solution is given by:

Rnþ1 ¼ Rn þ
T2
nrnþ1

1 − Rnrnþ1

Tnþ1 ¼
Tntnþ1

1 − Rnrnþ1

: (8)

Using this methodology, the reflectance spectra of human
skin, given by s, can be generated in the UV-VIS through the
SWIR regions of the electromagnetic spectrum based on the
physiological parameters p.

4 Machine Learning-Based Inverse Modeling
In Sec. 3, we described a physics-based model that maps the
physiological parameters of skin to its observed reflectance
spectrum. This section presents two methods to compute the
inverse map, answering the question: “given a reflectance spec-
trum of human skin, what are its underlying physiological
parameters?”

This problem can be expressed mathematically as follows:

G∶s → p ¼ gðsÞ; (9)

which is the inverse of Eq. (1). We adopt two machine learning
regression algorithms to estimate the inverse mapping function
gð·Þ: (a) support vector regression (SVR)49,50 and (b) k-nearest
neighbors based regression (k-NN).51

The use of regression is motivated by the availability of a
large number of training spectra s and their associated physio-
logical parameters p. It leverages the abundance of this data to

Fig. 1 A graphical representation of Eq. (7); the light transport model
for possible paths of light between any two interfaces (layers).
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yield an estimate of the parameters of gð·Þ with minimal error
and low variance. In contrast to other studies to estimate skin
parameters, we utilize machine learning methods because
they provide the following benefits: Nonparametric: the func-
tional form of gð·Þ is not known and it cannot be analytically
computed. The learning paradigm is data-driven and does
not require any a priori knowledge about the functional form
of gð·Þ. Generalizable: these methods avoid over-fitting and
hence offer good results to unseen data when compared to tradi-
tional methods. Kernels: these methods can exploit the kernel
trick to use linear regression to accurately model nonlinear func-
tions. Since one cannot assume linearity for gð·Þ, machine-learn-
ing regression can be a powerful tool for learning the nonlinear
function that maps the physiological parameters to their
observed reflectance spectrum.

4.1 Support Vector Machine Based Regression

For regression, we first use SVR, a now established machine
learning approach, with several open source implementations
(e.g., Ref. 52) in C++ and Matlab. The remainder of this section
gives a high level motivation of the SVR technique and its
implementation. The full mathematical details are left as a refer-
ence to Vapnik et al.49 and Smola and Scholkopf.53

To solve the regression problem in a way that can be
approached using SVR, we decouple the function gð·Þ, which
maps a spectral vector s to a skin biological parameter vector
p, into a set of five (one for each component of p, excluding
pwl, and pdt, which are known, and hence kept constant) scalar
regression subproblems where:

h∶s → p ¼ hðsÞ; (10)

where p is one of the scalar parameters (components of p) we
wish to estimate (e.g., collagen level, melanosome level, etc.),
and h is the scalar regression function. Each of the scalar param-
eters are then individually estimated in the same fashion.

Because the approach is data driven, we start by considering
the training dataset that was generated using the forward model
described in Sec. 3.3. This consists of parameters vectors pi and
their associated spectral vectors si. We consider the set of pairs
including one spectral vector and one biological scalar param-
eter we wish to estimate:

fðs1; p1Þ; : : : ; ðsn; pnÞg: (11)

In the simple linear case, the function h can take a functional
form given by:

hðsÞ ¼
Xl

i¼1

αihs;wii þ b; (12)

where hs;wi represents the linear dot product. The regression
function h approximates the output parameter p as a weighted
linear combination of the input spectral vector s, dot product
with a set of spectral vectors wi, with an added offset b. The
goal is to find the α�i and w� that satisfy an optimality criteria.
Consider the regression margin, i.e., the distance such that all
the training data points ðsi; piÞ lie within this distance margin
of the regression function h. The optimality criteria used in
SVR is to minimize the margin. As an additional improvement,
some of the points are allowed to violate the margin constraint
via the use of an additional slackness term, thereby allowing the

method to remain robust to possible outliers. This results in a
soft margin optimality criteria which is solved via a constrained
optimization technique using Lagrange multipliers. When one
invokes the Karush-Kuhn-Tucker (KKT) conditions,54,55 a set
of support vectors and associated weights emerge from the
complementary slackness constraint; these are the weights α�i
and vectors w� used in Eq. (12).53,56,57 These support vectors
are some of the original training spectral vectors si. The pro-
cedure just described makes up the training phase of SVR.
As noted earlier, since a linear approximation is not sufficient
to describe our skin dataset, we use a nonlinear dot product,
commonly called a kernel, and denoted by Khw; si. Then h
has the following expression:

gðsÞ ¼
Xl

i¼1

ν�i Khs; s�i i þ b: (13)

In sum, the regression machine uses the following steps: (a) train
the machine to obtain ν�i , s

�
i , and b. Then, given any input test

spectral vector s, form the regression by (b) first taking the dot
product between s and each support vector si, (c) these are then
weighted by the weights νi, and (d) a linear combination is
taken, which is (e) finally offset by the constant b. This is con-
veniently implemented in Matlab and numerous Open Source
implementations such as LibSVM52 or OpenCV.58 In particular
to Matlab and LibSVM, two functions, namely svmtrain and
svmpredict, implement the above training step (a) and regression
steps (b)–(e), respectively. Nonetheless, a more thorough review
of the SVR method is included in the Appendix.

4.2 k-Nearest Neighbors–Based Regression

This learning algorithm is used in order to classify objects based
on a “majority vote” system. Much like the SVR approach, this
algorithm starts with a database of input training sets, known as
the feature space, as presented in Eq. (11). The k-NN algorithm
regresses on a new testing set based on the closest training
examples it finds in the feature space.

In this work, the feature space consists of approximately
300,000 reflectance spectra generated as per Eq. (1). The testing
set consist of in vivo hyperspectral signatures that obey Eqs. (1)
and (9). The goal is to compute g from Eq. (9). As is typical for
hyperspectral signatures, the k-NN algorithm needs to compare
the shape of each hyperspectral signature from the testing set to
the signatures from the training set. This is done by computing
the inner product between the two signatures, and can be written
as the spectral angle give by:

Φ ¼ cos−1
�

stesting · straining
kstestingkkstrainingk

�
; (14)

where straining is a computationally generated hyperspectral sig-
nature from the training set contained within the feature space,
stesting is the signature obtained in vivo that is being classified
and k · k denotes the Euclidean norm.

Alternatively, experiments are also performed using two
other versions of the k-NN algorithm: first, the closest neighbor
is found by computing the Euclidean distance between spectra
and second, the training and testing datasets are first whitened,
and then spectral angle is used to compute the nearest neighbors.
A more mathematically rigorous treatment of k-NN regression is
included in literature.51,59
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5 Experiments
In this work, the goal is to compute the inverse mapping G, and
hence create a model that can infer the underlying constitutive
physiological parameters of human skin from hyperspectral sig-
natures. The evaluations are done through two sets of experi-
ments. The first set involves performance validation through
synthetic experiments. The second set involves performance val-
idation through in vivo experiments. In both sets, a skin reflec-
tance model, which is generated as per Eqs. (1)–(8), is used. The
skin reflectance model (this model will be labeled the training
dataset for the remainder of this article) is generated as follows.

Following the physics-based model described in Eq. (1),
approximately N ≈ 300;000 exemplars of all seven parameters
described by p are uniformly sampled on a grid and distributed
along their entire physiological domain. These ranges are
detailed in Table 1. An equal number of samples are generated
for each pi. The forward model F is used to generate a dataset of
hyperspectral signatures corresponding to each set of parameters
p. The water level and the dermal thickness are kept constant for
each layer as detailed in Ref. 6. This dataset is denoted as:

Training Dataset∶fðpTi ; sTi Þ; i ¼ 1; : : : ; Ng: (15)

This dataset is used for both sets of experiments.

5.1 Synthetic Experiments

In the first set of experiments, synthetic data is used to test the
accuracy of the inverse model G. Therefore, a new testing syn-
thetic dataset is generated by using the forward model F and a
set of K ¼ 50; 000 biological parameters that were not con-
tained within the training dataset. Each set of K ¼ 50; 000
parameters was generated by randomly sampling along the
parameters’ physiological range. If a parameter was found to
be too close to one already contained within the training dataset,
it was discarded and a new one was generated. This ensured that
there was no overlap between the training and testing datasets.
The training set and the newly instantiated testing set are then
used to perform the synthetic experiments. The synthetic testing
dataset is denoted as:

Synthetic Dataset∶fðpSj ; sSj Þ; j ¼ 1; : : : ; Kg: (16)

Tuples from the training dataset (15), fðpTi ; sTi Þg, are used to
train the SVR. The SVR algorithm employed here is imple-
mented using the NTU SVM Library49,52 in Matlab. This pro-
duces the trained SVR model and its associated support vectors.
Then, fsSjg, as well as the SVR model is used to estimate fpSjg.
In these experiments, the values of fsSjg and fpSjg are already
known, and therefore, they serve as the ground truth values.
However, by using the SVR and only fsSjg, as per G, the esti-
mated value of fpSjg, given by, fp̂Sjg, can be computed. The
estimated values, fp̂Sjg, can then be compared with the ground
truth values, fpSjg, in order to compute an error associated with
the inverse mapping G.

The same experiment is repeated using the three flavors of
the k-NN regression algorithm. For each sSj , the k-NN (in this
case, the one neighbor in the training dataset that had the small-
est spectral angle, Φ, with each sSj ) were found. The estimated
parameters, fp̂Sjg, are the parameters corresponding to the near-
est neighbor spectra, i.e., fpTi g. Once again, since the ground

truth values of fp̂Sjg are already available (given by fpSjg),
an error associated with the regression can be computed.

These average absolute errors (AAE), for all four algorithms,
along with the standard deviations (Std. Dev.) associated with
the estimated biological parameters are provided in Table 2.
The AAEs is computed as follows:

Average Absolute Errors ≡
P

K
i¼1 jpSi − pTi j

K
;K ¼ 50;000:

5.2 In Vivo Experiments

The in vivo experiments were performed using a dataset
obtained from in vivo hyperspectral imaging of 24 individuals
of both genders and Caucasian, Asian, and African American
ethnicities. The data was obtained at Johns Hopkins Hospital,
Department of Dermatology, under protocols approved by the
Institutional Review Board (IRB). All patients gave informed
consent, and the data was collected uniformly.

Hyperspectral signatures were obtained from each of the 24
individuals using the Analytical Spectral Devices, Inc. (Boulder,
Colorado) FieldSpec 3 Portable Spectroradiometer. The spec-
troradiometer has a hand-held probe which was positioned at
a perpendicular angle to the skin, with the enclosed lens at a
height of 5 cm from the skin. The spectroradiometer has a
lens diameter of 10 mm, a field of view of 25 deg, a 100 ms
scanning time, and a built-in illumination source. The spectror-
adiometer has two detectors, one containing a 512-element Si
photodiode array (for imaging up to 1000 nm) and the other
detector contains two graded index InGaAs photodiodes (for im-
aging beyond 1000 nm). The instrument is calibrated using a
panel whose reflectance is known; the amount of light captured
by the instrument is correlated with the reflectance of the panel
for each wavelength. The instrument is recalibrated after each

Table 2 Average absolute errors (AAE) associated with biological
parameter estimation for synthetic experiments.

Parameter

Support vector
regression (SVR)

k-nearest neighbors
based regression

(k-NN) (spectral angle)

AAE Std. Dev. AAE Std. Dev.

pm (%) 0.3379 5.0e-03 0.2387 6.8e-03

pc (%) 0.4057 2.7e-03 0.2919 5.5e-03

pbo (%) 4.1200 1.4e-01 2.8947 3.5e-01

pbl (%) 0.0269 2.1e-03 0.0171 2.6e-03

Parameter

k-NN (euclid. dist.) k-NN (whitened)

AAE Std. Dev. AAE Std. Dev.

pm (%) 0.2566 4.0e-03 0.2427 9.6e-02

pc (%) 0.4096 1.3e-03 0.2871 6.9e-03

pbo (%) 5.7891 2.1e-01 2.6231 2.2e-01

pbl (%) 0.0313 1.7e-03 0.0259 1.5e-03
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measurement. The spectra was obtained from 450 to 1800 nm
blue with a 1 nm step size (bandwidth). The in vivo dataset
obtained from this IRB is denoted as:

InVivo Dataset∶fsRk ; k ¼ 1; : : : ;Mg: (17)

This dataset was compiled by in vivo hyperspectral imaging of
24 individuals. Approximately ten hyperspectral signatures
were collected from each individual, from five anatomical loca-
tions on their bodies (two signatures from each location), to sum
to a grand total of M ¼ 241 signatures in the in vivo dataset.
These five locations include: the back, the palm, the cheek,
the dorsal forearm (DF) and the upper inner arm (UIA).

The major difference between the in vivo experiments and the
synthetic experiments is the ground truth. In the synthetic
experiments, the estimated parameters fp̂Sjg are compared to
the ground truth parameters fpTi g, in order to assess the

performance of the algorithms. The ground truth targets fpRk g
are not available for the in vivo dataset. However, we still per-
form performance validations for the in vivo dataset. The experi-
ments using SVR and k-NN are repeated in the same manner as
described in Sec. 5.1.

The estimated parameters fp̂Rk g are summarized in Table 3
and Fig. 2 as a function of anatomical location, and ethnicity.
We analyze these results using physiological precepts in
Sec. 5 of this article. In an effort to analyze the perfor-
mance of the algorithms, we also report error bounds between
the estimated and the ground truth spectra. In other words,
Table 4 reports the spectral angle, the root mean square error
(RMSE), and the standard deviation between the in vivo mea-
sured spectra and the k-NN estimated spectra for each of the 24
patients. In Table 5 we build on this analysis, and report the
spectral angle error as a function of anatomical location for
each of the 24 patients. Finally, Fig. 3 shows examples of

Table 3 Estimated skin parameters (percentage by volume) as a function of ethnicity (Caucasian, Asian, African American) and anatomical location
[dorsal forearm (DF), upper inner arm (UIA), back, cheek, palm].

Caucasian Asian African American

DF UIA Back Cheek Palm DF UIA Back Cheek Palm DF UIA Back Cheek Palm

pm (%) 21.2 18.3 20.2 28.5 8.3 22.6 20.7 21.5 23.5 16.1 38.5 21.4 33.1 42.8 13.3

pc (%) 20.6 18.3 20.2 22.6 18.3 25.2 21.3 24.3 25.4 17.2 22.3 17.8 18.7 23.7 16.3

pbo (%) 86.9 81.3 86.3 85.0 87.0 84.6 83.2 82.2 86.6 90.8 70.0 73.9 76.9 73.3 86.3

pbl (%) 1.28 1.35 1.33 1.48 1.29 1.39 1.45 1.37 1.48 1.44 1.32 1.34 1.31 1.38 1.35

(a)

(c)

(b)

(d)

Fig. 2 Bar graph representations of the estimated (a) melanosome concentration, (b) collagen concentration, (c) oxygen saturation concentration, and
(d) blood volume concentration, as a function of both ethnicity and anatomical location.
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in vivo measured hyperspectral signatures plotted along with
signatures estimated using the k-NN algorithm.

6 Discussion
In the past 30 years, several studies have attempted to solve the
inverse problem of estimating skin parameters from spectral
data. The validation of estimated skin parameters is a very dif-
ficult task because, in many cases, it is currently impossible to
obtain the ground truth. For the case of synthetic skin signatures,
the task is simpler, because the ground truth is readily available.
It is apparent from Table 2, given the results, that the inverse
mapping performs as desired. The task for in vivo signatures
is much more difficult because the ground truth is no longer
available. Many studies have presented novel inverse methods,

but to the best of our knowledge, no studies have augmented
their inverse methods with biopsies to ascertain ground truth.
A potential validation scheme has often been to check the
estimated parameters against well-established physiological
precepts. This scheme arose from exploring physiological
features that are specific to human skin. For example, as noted
by Zonois et al.60 and Nunez,6 melanin is directly responsible
for skin color. Therefore, we expect African American subjects
to have a larger melanosome concentration than Asian or
Caucasian subjects. In a similar manner, there are other phys-
iological precepts that can be checked to ensure that they fit
within the realm of physiological plausibility. While this does
not guarantee the estimates are accurate, it does offer a good
performance validation criteria.

Table 4 Root mean square error (RMSE), spectral angle (in radians),
and the standard deviation (Std. dev.) for each ethnicity.

Patient Ethnicity Angle RMSE Std. dev.

1 African American 0.1284 0.1086 0.0118

2 Asian 0.1313 0.0483 0.0029

3 Asian 0.1321 0.0758 0.0076

4 Asian 0.1324 0.0723 0.0073

5 Asian 0.1333 0.0554 0.0049

6 Asian 0.1341 0.0858 0.0093

7 Caucasian 0.1345 0.0360 0.0015

8 African American 0.1353 0.0460 0.0029

9 African American 0.1358 0.0616 0.0059

10 Asian 0.1364 0.0360 0.0017

11 African American 0.1367 0.0559 0.0051

12 African American 0.1371 0.0401 0.0031

13 Asian 0.1375 0.0436 0.0031

14 Caucasian 0.1380 0.0615 0.0033

15 Caucasian 0.1389 0.0343 0.0055

16 African American 0.1394 0.0619 0.0014

17 Caucasian 0.1395 0.0410 0.0058

18 Caucasian 0.1401 0.0405 0.0017

19 Caucasian 0.1408 0.0432 0.0023

20 Caucasian 0.1414 0.0336 0.0027

21 Caucasian 0.1419 0.0360 0.0013

22 Caucasian 0.1427 0.0656 0.0014

23 Caucasian 0.1434 0.0374 0.0037

24 Asian 0.1442 0.0625 0.0021

Average n/a 0.1373 0.0445 0.0097

Table 5 Spectral angle error (in radians) for each anatomical location
using the k-NN algorithm.

Patient DF UIA Back Cheek Palm

1 0.1293 0.1259 0.1345 0.1292 0.1233

2 0.1299 0.1277 0.1354 0.1297 0.1337

3 0.1300 0.1292 0.1367 0.1302 0.1343

4 0.1306 0.1295 0.1368 0.1304 0.1348

5 0.1308 0.1300 0.1369 0.1315 0.1372

6 0.1308 0.1308 0.1374 0.1336 0.1377

7 0.1308 0.1314 0.1377 0.1341 0.1383

8 0.1314 0.1341 0.1382 0.1342 0.1387

9 0.1315 0.1352 0.1388 0.1347 0.1389

10 0.1320 0.1354 0.1393 0.1347 0.1406

11 0.1329 0.1357 0.1393 0.1348 0.1410

12 0.1332 0.1358 0.1393 0.1352 0.1421

13 0.1336 0.1360 0.1403 0.1354 0.1421

14 0.1340 0.1367 0.1415 0.1355 0.1423

15 0.1352 0.1377 0.1435 0.1355 0.1424

16 0.1357 0.1393 0.1437 0.1355 0.1425

17 0.1359 0.1394 0.1442 0.1355 0.1426

18 0.1362 0.1395 0.1450 0.1366 0.1435

19 0.1366 0.1404 0.1453 0.1374 0.1445

20 0.1373 0.1412 0.1456 0.1379 0.1451

21 0.1375 0.1417 0.1461 0.1391 0.1452

22 0.1381 0.1418 0.1472 0.1395 0.1471

23 0.1382 0.1419 0.1475 0.1396 0.1499

24 0.1389 0.1426 0.1495 0.1403 0.1500

Average 0.1338 0.1358 0.1412 0.1350 0.1407
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Following the precept that skin color correlates with melano-
some concentration, it can be seen in the first row of Table 3 and
the green bars in Fig. 2 that for each anatomical location,
the relative concentration of pm is the largest for African
Americans than for Asians or Caucasians. Furthermore, we
would expect higher pm concentration in the DF and the cheeks,
than the palm or the back because these areas are naturally
exposed to greater sunlight and hence are inherently more tan.
It is clear from Fig. 2 that for caucasian patients, the average pm

concentration is highest in the cheeks at 28.5% and the DF at
21.2%, similarly for Asian and African Americans it is highest
in cheeks and the DF at 23.5% and 22.6% and 42.8% and
38.5%, respectively. It is also noteworthy that comparing
only cheeks and DF, the relative pm concentrations are still
highest for African Americans followed by Asians and then
Caucasian patients. Physiology dictates that we should expect
lower pm concentrations in the palm than the other four areas
imaged. It is clear in Fig. 2 that the lowest pm concentration is in
the palm than any other area. There are a number of studies that
estimate pm, and our results are consistent with many of those
studies. As such, Zhai et al.61 report pm concentration of approx-
imately 15% for Caucasians. Our estimate of approximately
18% is in agreement, where the 3% deviation is negligible, con-
sidering the variability in skin tone (e.g., tanning, etc.) amongst
individuals for each ethnicity.

Typically, collagen concentration is higher in the cheeks and
the DF than other anatomical locations.61,62 It can be seen in
Fig. 2 that the largest collagen concentration for each ethnicity
is in the cheeks followed by the DF. There is no pattern for col-
lagen based on ethnicity. We note that the relative collagen con-
centration between ethnicities remains constant. All patients
involved in this study were healthy, so we would expect oxygen
saturation concentrations to be greater than 70%. Table 3 shows
that the relative oxygen saturation concentrations are above
70%. Kelly et al.,63 Yudovsky and Pilon30 and Tuchin et al.13

have noted that blood volume varies based on anatomical loca-
tion. It is expected that the blood volume is larger in the cheeks
than the DF or the UIA. These precepts are consistent with what
is observed in Fig. 2. In summary, the concentrations for all
estimated parameters should be physiologically meaningful,
i.e., within the acceptable physiological range as outlined in
Table 1. This requirement is satisfied as seen by comparing

Tables 1 and 3. While these results are encouraging, it is
important to note that while all efforts were made to collect
hyperspectral data from macroscopically homogeneous skin,
a minority of patients had freckles and other types of hyper pig-
mentation (benign nevi, etc.). This prevented data collection
from a completely homogeneous patch of skin. It is possible
that these pigmentations contribute some degree of error to
our results.

Another potential method to validate the estimated parame-
ters is to test the inverse-forward modeling loop itself. In other
words, the measured ground truth spectra can be compared to
the estimated spectra. While this does not guarantee that the esti-
mated parameters are accurate, it provides some encouraging
evidence that the inverse-forward modeling loop works. In
this regard, the better the forward model, the higher the prob-
ability that the estimated parameters are accurate. Figure 3
shows that the estimated spectra and the ground truth spectra
are in good agreement with each other. This performance val-
idation metric is further quantified in Tables 4 and 5, which pro-
vide the spectral angles and RMSE for each patient and each
anatomical location. While no claims can be made about the
exact accuracy of the estimated parameters, the performance
validation done through physiological precept analysis and
comparisons of the measured and estimated spectra, provides
encouraging evidence that the estimated parameters fall within
the realm of physiological plausibility.

An important consideration in this study is that we fix the
skin thickness and the water percentage in the forward model.
The thickness of skin can vary based on anatomical location,
age, health, etc. In this study, we chose the thickness values
tabulated by Meglinski and Matcher15 and Nunez,6 which were
obtained based on weighted population averages for these
particular anatomical locations. It appears that this choice still
leads to reasonable errors on the modeled signature (see Table 4
and Fig. 3) as well as the estimated underlying parameters for
our synthetic experiments (see Table 2). However, taking into
account varying skin thickness and performing sensitivity analy-
sis are important endeavors which we intend to pursue in future
studies. It must be noted that our approach can be extended to
estimate the thickness and the water percentage of each of the
nine layers of skin. Indeed our inverse methods based on
machine learning can handle these extra parameters.

Fig. 3 Plotted, as examples, are 3 of the 241 in vivo signatures along with their estimated signatures using the k-nearest neighbors based regression
(k-NN) algorithm. The estimated parameters for each example are: ðpm; pc; pbo; pblÞ ¼ ð9%; 24%; 82%;1.4%Þ for the top trace, (17%, 19%, 83%,
0.86%) for the middle trace, and (29%,31%,79%,0.68%) for the bottom trace.
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While we cannot compare our results directly to other studies
because it is not a one-to-one comparison, i.e., we estimate
different parameters, on a different dataset, using a different
methodology, we can however compare our methodologies
and validation metrics. Table 6 provides a summary of this com-
parison for a few closely related studies. Yudovsky and Pilon30

use a subset of the same physiological precepts as presented here
to judge their performance. The estimated blood level (ranging
from approximately 1% to 2% by volume in the dermis) is in
agreement with this study. While the melanin concentration is
not provided as a fraction per volume, if average density for
melanin is assumed,64 the estimates are consistent (ranging
from approximately 20% to 40% by volume in the epidermis).
Cotton24 and Claridge and Preece26,27 perform validation by
computing errors associated with their RGB and optimal filters.
This is not too different from comparing modeled and estimated
signatures, as is done in this study. Effectively, the ground truth
is being compared with its estimate in another vector space
(rather than in the parameter space). Claridge et al. also employ
a modified K-M model with four layers (in contrast to the ten
layers used in this study). The physical values of the parameters
are not reported, so no further comparisons can be made.
Finally, Doi and Tominaga28 also use a K-M based model
and a least squares approach to minimize the error between
modeled and estimated spectra. Their analysis is similar to
the metric used here to compare estimated spectra to the ground
truth. They, however, use least squares to find weights for each
parameter, rather than reporting their physical values. Therefore,
a direct comparison is not possible. In summary, we have shown
that the skin parameters from in vivo patients can be noninva-
sively estimated using our machine learning methods. We have
reported acceptable accuracy as per our validation metrics and
the metrics used by various other studies, some of which are
summarized in Table 6.

In analyzing our results, it can be seen in Table 2 that oxygen
saturation concentrations exhibit larger errors than the other
parameters. A classic problem that has been discussed recently

by Nishidate et al.65 has been that of deoxyhemoglobin overesti-
mation in regions with a high concentration of melanosomes.
The results in this study seem to echo these findings, especially
in Table 3 when comparing the oxygen saturation in African
Americans for high melanin regions, and even so in Asian
and Caucasian subjects. These trends are consistent even
when compared to nonmachine learning studies, such as
Yudovsky and Pilon30 or the ones in Table 6. Similarly, this
may explain why the errors in Table 2 for oxygen saturation
are larger since the synthetic experiments are composed of a
wide range of melanosome concentrations. In this regard, we
believe our study can serve as a springboard for further inves-
tigating this issue. In particular, as a baseline, our synthetic
experiments can be redone, where the error in oxygen saturation
is plotted as a function of increasing melanosome concentration
in the forward model. This is a potential avenue for future work.

Finally, an important consideration before such a method
can be translated into clinical use is the computational time
complexity. This study currently employs a single point spec-
troscopic system. For this system, our model and algorithm
implemented in Matlab R2012b (Natick, Massachusetts) run-
ning on an Intel i3-3225 CPU with 8GB DDR3-1600 RAM,
takes approximately 30 s to estimate the parameters for each
signature. It is important to note that the code is not optimized
to take advantage of the parallel architecture of modern CPUs.
In the future, we would like to employ a hyperspectral imager.
While this would mean that each pixel would require 30 s to
analyze, one could implement this system into C++, or some
other compiled language so that the computation time is reduced
by a factor of 10 to 20 based on the number of threads on the
CPU (a current inexpensive CPU has eight threads).

7 Conclusion
In this article, we present a novel application of using hyper-
spectral signatures and machine learning in concert for estimat-
ing the biological parameters of human skin. We find promising
results through synthetic and in vivo experiments, which provide

Table 6 Comparison of parameter estimation methodologies and validation metrics.

Study Parameters estimated Methodology Validation Metric Comments

This article Melanosomes,
collagen, O2

saturation, and
blood volume.

Forward model based on K-M
theory, and an inverse method
based on machine learning
based regression.

Physiological precept
analysis. Measured and
estimated signature
comparisons.

See discussion.

Yudovsky and
Pilon30

Melanin, blood
volume, epidermal
thickness, and O2

saturation.

Two-layer optical model, simulate
reflectance from a semi-empirical
model based on an approximation
of the Radiative Transfer Equation
(RTE) using Monte Carlo methods,
and inverse method based on least
squares minimization.

Physiological precepts
analysis. Comparisons
to ground truth for
different datasets from
literature.

Similar performance validation.
Our estimated parameters in
agreement for blood level. Melanin
reported as concentration, but in
agreement if converted to fraction
per volume.

Cotton24 and
Claridge and
Preece26,27

Melanin, blood level,
and dermal thickness.

Physics-based skin coloring model
used to find a mapping between
digital images to histological
parameters. Spectral filter
optimization to reduce error.

Computing errors
associated with the RGB
and optimal filters.

Use of a simplified skin model
based on K-M theory. Similar
validation of comparing ground
truth and estimated reflectance.

Doi and
Tominaga28

Melanin, carotene,
bilirubin, oxy/de-oxy
hemoglobin.

K-M based skin model. Use least
squares to fit modeled and
measured spectra.

Least squares error
minimization between
modeled and measured
reflectance.

Essentially the same validation;
compare modeled reflectance with
ground truth. They report weighting
coefficients rather than physical
parameter concentrations.
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encouraging evidence that our methods can potentially be used
to noninvasively estimate the skin parameters from hyperspec-
tral signatures. We also report good agreement with the ground
truth, and well-established physiological precepts, as well as
comparative performance validation with closely related studies.
We propose that the temporal evolution of such constitutive
parameters, as would be done in a longitudinal study, could
help in noninvasive diagnostics and wound-healing applica-
tions, amongst others. Our future work will involve validating
our methods on datasets containing signatures from individuals
with skin abnormalities. We will also investigate means to
acquire ground truth for skin parameters in order to help better
benchmark our methods.

Appendix
Here we provide a more detailed review of SVR, originally
described in Sec. 4.1 We follow the SVR approach and treat-
ment detailed by Smola et al.49,53

We pick up with Eq. (12) from Sec. 4.1, where the goal is
to find a small w. This is achieved by minimizing the norm,
i.e., kwk2 ¼ hw;wi.53 This problem can then be written as a
constrained optimization problem given by:

minimize
1

2
kwk2 þ C

Xl

i¼1

ðζi þ ζ�i Þ

subject to

8><
>:

pi − hw; sii − b ≤ ϵþ ζi

hw; sii þ b − pi ≤ ϵþ ζ�i
ζi; ζ�i ≤ 0

; (18)

where ζζi and ζ�i are slack variables to account for infeasible
constraints on the problem as per the soft margin loss function.
C is a strictly positive constant, and it accounts for the degree to
which errors larger than ϵ are tolerated. This is accounted for by
optimizing the soft margin loss setting. The specific function,
the ϵ-insensitive loss function, jξje is given by:

jξje∶
�

0 if jξj ≤ ϵ
jξj − ϵ otherwise

: (19)

In this case (as is common in most cases), the dimensionality of
w is much higher than the number of observations, therefore, the
optimization problem posed in Eq. (18) can be solved with much
more ease in its dual formulation. As done in Ref. 49, a dual-
ization method formulated by Fletcher66 using Lagrangian mul-
tipliers is implemented. The first task is to construct a Lagrange
function from the primal objective function and its correspond-
ing constraints. As per Refs. 67–69, this function has a saddle
point with respect to the primal and dual variables at the solu-
tion. The Lagrangian function is then given by:

L ≔
1

2
kwk2 þ C

Xl

i¼1

ðζi þ ζ�i Þ þ
Xl

i¼1

ðηiζi þ η�i ζ
�
i Þ

−
Xl

i¼1

αiðϵþ ζi − pi þ Kðw; siÞ þ bÞ

−
Xl

i¼1

α�i ðϵþ ζ�i þ pi − Kðw; siÞ − bÞ;

(20)

where L is the Lagrangian and αi, α�i , ηi, and η�i are
the Langrangian multipliers. The Lagrangian multipliers in
Eq. (20) have to be greater than or equal to zero as it is a con-
straint posed by the optimization problem. Furthermore, as a
consequence of the saddle point condition, the partial derivative
of L with respect to each of the primal variables (w, b, ηi, and
η�i ), is zero. This is seen by the following:

∂L
∂b

¼
Xl

i¼1

ðα�i − αiÞ ¼ 0

∂L
∂w

¼ w −
Xl

i¼1

ðαi − α�i Þsi ¼ 0

∂L
∂ζ�i

¼ C − α�i − η�i ¼ 0: (21)

Equation (21) can then be substituted into Eq. (18), and the
new dual optimization problem can hence be written as:

maximize

(
− 1

2

P
l
i;j¼1ðαi − α�i Þðαj − α�jÞðsi − sjÞ

−ϵ
Pl

i¼1ðαi þ α�i Þ þ
Pl

i¼1ðαi þ α�i Þpi

subject to
Xl

i¼1

ðαi − α�i Þ ¼ 0; αi; α�i ∈ ½0; C�: (22)

In Eq. (22) the dual variables have been eliminated, and the
“support vector expansion,” can then be written as:

w ¼
Xl

i¼1

ðαi − α�i Þsi: (23)

This analysis is typically used for the linear case of SVR; in
this work, the nonlinear case needs to be used. However, the
analysis and methodology is largely similar. Kernel methods
are used in order to account for nonlinearities. Therefore, the
linear dot product is converted into a kernel dot product,
given by Khw; si. Then, the process proceeds in the same man-
ner, and from analogy, it arrives at the following result for the
support vector expansion:

gðsÞ ¼
Xl

i¼1

ðαi − α�i Þ · Khs; sii þ b: (24)

The complexity of the function’s representation by support
vectors, therefore, only depends upon the number of support
vectors, and not the dimensionality of the input space, X.
Finally, b can be computed using the KKT conditions.54,55

They state that the product between the dual variables and
the constraints must go to zero. This can be seen more formally
by the following:

αiðϵþ ζi − pi þ ðw; siÞ þ bÞ ¼ 0

α�i ðϵþ ζ�i − pi þ ðw; siÞ þ bÞ ¼ 0

ðC − αiÞζi ¼ 0

ðC − α�i Þζ�i ¼ 0: (25)

Based on these constraints, there can never be a set of dual
variables that are both nonzero at the same time. Therefore, the
following conditions are imposed on b:
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b ≥ maxf−ϵþ pi − ðw; siÞjαi < C or α�i > 0g
b ≤ minf−ϵþ pi − ðw; siÞjαi > 0 or α�i < Cg: (26)

A more formal treatment of choosing an appropriate b is
detailed in a technical report by Keerthi et al.70

In this manner, each parameter pi, from Table 1, is independ-
ently regressed from the other parameters. Therefore, each pi is
a scalar, where it is one of the five components of p being esti-
mated. This methodology is used in this work in order to first
compute, gðsÞ, as given by Eq. (13) and ultimately the desired
inverse mapping G, as detailed in Eq. (9). A more rigorous
formulation of SVR is provided in literature.53,56,57
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