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Abstract. A severe drawback to the scalar Monte Carlo (MC) method is the difficulty of introducing diffraction
when simulating light propagation. This hinders, for instance, the accurate modeling of beams focused through
microscope objectives, where the diffraction patterns in the focal plane are of great importance in various appli-
cations. Here, we propose to overcome this issue by means of a direct extinction method. In the MC simulations,
the photon paths’ initial positions are sampled from probability distributions which are calculated with
a modified angular spectrum of the plane waves technique. We restricted our study to the two-dimensional
case, and investigated the feasibility of our approach for absorbing yet nonscattering materials. We simulated
the focusing of collimated beams with uniform profiles through microscope objectives. Our results were com-
pared with those yielded by independent simulations using the finite-difference time-domain method. Very good
agreement was achieved between the results of both methods, not only for the power distributions around the
focal region including diffraction patterns, but also for the distribution of the energy flow (Poynting vector). © 2014
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1 Introduction
The generation of localized light fields through high numerical
aperture (NA ≥ 0.71) optical systems has become increasingly
common in the field of biophotonics, with applications ranging
from optical tweezers to microscopy and spectroscopy.2–6 Yet,
such systems ask for reliable simulation tools, not only for the
design of the optics, but also for a better understanding of light-
matter interactions (e.g., absorption and scattering) within the
focal volume. The tight focusing of beams induces diffraction
patterns in the focal volume where the polarization of the illu-
mination beam plays an important role.7,8 Consequently, if the
tight focusing of beams is to be modeled, the consideration of
the wave nature of the light becomes paramount. This can be
successfully achieved by solving numerically Maxwell equa-
tions, e.g., by carrying out finite-difference time-domain (FDTD)
simulations9 for small volumes.

The Monte Carlo (MC) algorithm10 is commonly used for
calculations of the light propagation in scattering and absorbing
media, and the problem of focused beams has been assessed by
various groups and is still a matter of ongoing research.11–14 We
present here an alternative MC approach that enables the han-
dling of the diffraction within absorbing media introduced by
a coherent light source. Moreover, the high sampling number
required for a destructive interference of a coherent source in
a vectorial MC15 is rendered obsolete by this approach. In
this contribution, we investigate the feasibility of including dif-
fraction of the incident light into MC simulations in order to
model tightly focused beams and Fraunhofer diffraction patterns
in arbitrarily large simulation volumes in a relatively simple
manner.

This paper is organized as follows: in Sec. 2, we describe
how the MC simulations are combined with the so-called angu-
lar spectrum of the plane waves technique (ASPWs) to simulate
the light propagation and to introduce, at the same time, our
“direct extinction method.” In Sec. 3, we present the results
yielded by the developed method and compare them with
those obtained from FDTD simulations, both in vacuo and in
absorbing media. We are interested not only in the power dis-
tribution over the sample, but also in the distribution of the
electric and magnetic field components and, subsequently, in
the energy flow (represented by the Poynting vector) at every
point. In the last section, we discuss the obtained results and
present conclusions on the feasibility of our approach.

2 Theory
We consider the tight focusing of a monochromatic beam
through a microscope objective (see Fig. 1). A collimated
laser beam with a uniform profile and propagating along the
x-direction is focused by an aplanatic cylindrical lens.16 The
focal volume lies within the simulation grid. To simplify
the computational effort and the simulation of larger grids,
we confine our investigation here to the two-dimensional (2-
D) case, so that only the x; y-plane is considered. We illustrate
our purpose with two types of polarizations for the illuminating
beam: first, linearly polarized along the z-axis, and second, radi-
ally polarized (within the x; y-plane). The sample and its sur-
rounding medium are assumed to have the same index of
refraction, i.e., there is no Fresnel reflection at the boundaries.

We distinguish two cases: first, the beam propagates in
vacuo, and second, the beam propagates in an absorbing, yet
nonscattering material.
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2.1 Direct Extinction Method within
the Monte Carlo Algorithm

When dealing with light propagation problems, the MC method
constitutes a well-established numerical alternative to the ana-
lytical solutions of the radiative transfer equation. 10,17–19 The
core idea consists of stochastically modeling the light propaga-
tion with individual photon paths akin to random walks. A sin-
gle photon path is composed of successive ray segments, each of
which is defined by (1) a starting point, (2) a propagation direc-
tion, (3) and a segment length. Since abundant documentation
can be found on the matter,10,15,20 we do not repeat the succes-
sive steps needed to generate such paths; instead, we emphasize
the novelty of our approach. Traditionally, the initial starting
point of the very first ray segment is chosen at the position of
the illuminating source, or on the surface of the sample, from
where the illumination is performed. Here, we propose an alter-
native method where the initial starting point of the rays coin-
cides to a “target position”. This position is independently
sampled from a probability distribution calculated with the
ASPW method and which corresponds to the probability that
the ray has not interacted (by scattering or absorption) with the
sample yet. We confine this study to absorbing materials as
a preliminary investigation.

In this section, we detail the calculation of the probability
distribution for the incident beam and the inclusion of the
absorption into the ASPW method. Further, we explain how
our method can be used to calculate the local Poynting vectors,
as these can help to model scattering processes at a later stage. In
all of these simulations, only the 2-D case is studied to simplify
the computation and to decouple the polarization of the light
into two orthogonal components: parallel and perpendicular.
However, the consideration of the 2-D case is beyond a mere
simplification of the three-dimensional (3-D) case. “In fact,
both the analyses and the final results are sufficiently different
in the two cases to call for separate treatments.”21

2.2 Angular Spectrum of Plane Waves Method in
Vacuo

In order to calculate the power distribution corresponding to the
probability of finding a photon propagating in the simulation

space, we need to know the electric field EðrÞ at every point
r ¼ ðx; yÞ. This can be obtained with the ASPW method,
which is particularly well suited for problems involving arbitrar-
ily shaped beams where the paraxial approximation fails, as in
our current proposal.16,22 The ASPW method is a mathematical
technique that allows for the representation of complex beam
profiles by a coherent superposition of plane waves: this is
achieved knowing that the field distribution in the focal plane
is given by the Fourier transform of the field distribution in
the far field, i.e., at the lens’ surface (we neglect the contribution
of the evanescent waves; as in our case, the focal plane is
assumed to be located sufficiently afar from the lens).

Since, in a first step, the monochromatic beam is propagating
in the x-direction in a nonabsorbing and nonscattering 2-D
space, each plane wave in the x; y-plane is characterized by a
wave vector k, which is defined by the wave’s incidence
angle θ onto the focal plane (see Fig. 1). Thus, if we consider
a linearly polarized beam such that its electric field is oscillating
along the z-direction (E ¼ Ez), the angular spectrum represen-
tation of the beam yields the expression of the field

EzðrÞ ¼
1

2π

Z
∞

−∞
E0
zðkyÞ exp½jðx − xphÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2y

q
þ jkyy�dky;

(1)

at every point r in the simulation space where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is

the wave number in the medium and xph is the position of the
focal plane (see Fig. 2). As for E0

zðkyÞ, it expresses the field in
the focal plane and is obtained by the transformation of a colli-
mated beam with a uniform profile truncated by an aperture inci-
dent on the cylindrical lens. We assume the field to be zero
outside the aperture (Kirchhoff approximation). Further, we fol-
low here the reasoning of Richards, Wolf, and Born,16,23 where
the intensity law of geometrical optics allows for the calculation
of the fields after passing through the lens, which leads to the
formulation24 of

EðrÞ ¼ k
2π

Z
θmax

−θmax

Êaðr; θÞdθ; (2)

Fig. 1 Geometry of the simulations, as carried out in this paper. The setup is infinite in z-direction.
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where Ê denotes the amplitude of the incident electric field.
Each plane wave is scaled by its respective factor of aðr; θÞ
to give a linearly polarized beam defined as

aðr;θÞ ¼
 
0

0

1

!
· exp½jkððx− xphÞcos θþ y sin θÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðθÞ

p
:

(3)

Note that the Kirchhoff approximation, combined with the
assumption that the focal region is located sufficiently afar
from the lens, corresponds to the so-called Debye-approxima-
tion.21,25 In order to implement a radially polarized beam,
aðr; θÞ needs to be modified:26

aradðr; θÞ ¼
 

sin θ
cos θ
0

!
sgnðθÞazðr; θÞ: (4)

The power PvðrÞ ∝ EðrÞ · E�ðrÞ leads to a probability den-
sity function pvðrÞ, which expresses the probability of finding
a photon at a position r

pvðrÞ ¼
PvðrÞR

r PvðrÞdr
: (5)

2.3 Modeling the Absorption

Now consider the beam propagating in an absorbing material
with a refractive index n ¼ nþ jκ, such that its absorption coef-
ficient is defined by μa ¼ 2kκ.

If we denote the fields of the beam in vacuo by EðrÞ,
the corresponding expression of the fields in the absorbing
material is Eeðr; μaÞ, where the superscript “e” refers to the
extinction. The influence of the medium can be represented
by inhomogeneous plane waves23 composing the beam, based
on Beer-Lambert law’s exponential decay (we neglect the
Fresnel reflection which occurs between the nonabsorbing
and the absorbing medium). The modified ASPW representation
is defined as

Eeðr; μaÞ ¼
Z

θmax

−θmax

Êaeðr; θ; μaÞdθ; (6)

where the integrand introduces the Beer-Lambert law as

aeðr; θ; μaÞ ¼ aðr; θÞ exp
�
−
1

2
μa

x
cosðθÞ

�
: (7)

Analogously to the case in vacuo [Eq. (5)], the power
PaðrÞ ∝ Eeðr; μaÞ · Ee�ðr; μaÞ leads to a probability density
function paðrÞ, which expresses the the probability of finding
a photon at a position r before it gets absorbed in the sample:

paðrÞ ¼
PaðrÞR

r PaðrÞdr
: (8)

This constitutes the essence of the “direct extinction
method,” which can later be extended to include scattering proc-
esses. The main advantage of this approach is that the diffraction
phenomena can be recovered from the sampled probability dis-
tribution without having to implement the interference between
photon paths.

For simplicity, in the following part of our manuscript, we
shall use the term “beam” to refer to the beam which fulfills
the assumptions described in this section and whose electric
field is given by EðrÞ in vacuo and by Eeðr; μaÞ in an absorbing
medium.

2.4 Ray Direction: Poynting Vector

As already mentioned, the present study is confined to nonscat-
tering materials, i.e., the MC simulations do not need to propa-
gate the photon paths, and the sampling from the aforesaid
probability distribution suffices. However, if scattering proc-
esses are to be modeled, another key information besides the
“first interaction point” needs to be known: the first path seg-
ment’s propagation direction.

To this end, we may utilize the energy flow or the energy flux
density given by the local time-averaged Poynting vector SðrÞ
SðrÞ ∝ realfEeðrÞ ×He�ðrÞg; (9)

where the magnetic fieldHe at a point r is calculated similarly to
the electric field with the modified ASPW method to give

Heðr; μaÞ ¼
Z

θmax

−θmax

beðr; θ; μaÞdθ; (10)

where b denotes the contribution of the single plane waves. For
the linearly polarized beam we obtain

beðr; θÞ ¼ Ĥ

 
sin θ
cos θ
0

!
aezðr; θÞ: (11)

Ĥ denotes the amplitude of the incident magnetic field. As
for the radially polarized beam we obtain

beradðr; θÞ ¼ Ĥ sgnðθÞaeðr; θÞ: (12)

Note that for μa ¼ 0, the magnetic and electric fields Ee and
He are reduced to the fields E and H in vacuo, respectively.

3 Simulations and Results

3.1 Principle: in Vacuo

We simulated the 2-D version of the situation sketched in Fig. 1:
the beam (as described in the previous section) propagating in
the x-direction is focused by an aplanatic microscope objective,
so that the divergence angle is θmax ¼ 65 deg, which lies

Fig. 2 Comparison between the grid sizes of FDTD and MC.
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beyond the paraxial limit. This corresponds to a numerical
aperture of NA ¼ 0.9 in air or NA ¼ 1.2 in water, and is rela-
tively common for modern confocal microscope objectives.
As an example, we consider the monochromatic beam with
a wavelength of λ ¼ 1 μm. Note that by scaling, these results
are also valid for any other wavelength.

The MC simulations were carried out in a square-shaped
sample, with 200 bins in the x- and y-directions, with bin
sizes of Δx ¼ Δy ¼ λ∕25. As in the ASPW model, Fresnel
reflection at the sample interfaces was neglected, i.e., the sam-
ple’s refractive index was assumed to be equal to that of the
surrounding medium (nsample ¼ nair ¼ 1). Since we are dealing
with nonscattering materials, the MC simulations are confined
to sampling “target positions” from the normalized probability
distribution pvðrÞ calculated with the ASPW method, where 41
plane waves were superimposed. In vacuo, pvðrÞ simply
expresses the probability of finding a photon at a position r.
The sampling is achieved with the rejection method. First, a
pseudorandom position ri is drawn. (Pseudorandom numbers
were generated with the Mersenne Twister27 algorithm.) The
corresponding probability density pvðriÞ at that position is com-
pared with a pseudorandom number ξ ∈ ð0;1�: If the number is
such that ξ > pvðriÞ, the position is rejected and the sampling is
repeated.

In order to assess the accuracy of our results, we conducted
independent FDTD simulations (more details on these simula-
tions can be found elsewhere9,24,28). These simulations numeri-
cally solve the discretized time-dependent Maxwell’s equations
of electrodynamics to propagate the electric and magnetic fields
within a grid using a leap frog algorithm. As input, we need
to specify for each plane wave its (1) incidence angle θ on
the sample, together with its subsequent starting position
r0 ¼ ðx ¼ 0; yÞ, and (2) its electric field at r0. To remain con-
sistent with the MC simulations, we propagated 41 plane waves
with incidence angles lying in the range ½−θmax;þθmax�. For a
given incidence θ, an expression of the electric field at r0 is
obtained from the ASPW calculations [i.e., from Eq. (2)]. All
FDTD simulations throughout the work were performed with
a resolution of λ∕25.

Results obtained with MC and FDTD simulations for a lin-
early polarized beam propagating in vacuo are shown in Fig. 3.
In this paper, all simulation results are displayed after normali-
zation by the probability density value at the focal point
(x ¼ xph, y ¼ 0) of the simulation in vacuo, denoted by pv;0
and p 0

v;0 for the linearly and radially polarized beams, respec-
tively. Both types of simulations were performed with the same
grid dimensions. The agreement between the two sets of data
serves as a verification to the implementation of both the MC
and the FDTD algorithms.

Besides, as the FDTD method accounts for the near-
field interactions, we can verify here the formation of the
Fraunhofer diffraction patterns in the vicinity of the focal plane.
However, we stress here the main constraint inherent to the MC
technique: the number of samplings should be large enough to
provide reasonable convergence.

3.2 In Absorbing Media

As a following step, we compare the MC and FDTD simulations
in the presence of absorption. This would be of interest, for
instance, to investigate the excitation of fluorophores with
confocal fluorescence systems. Again, the MC simulations
were performed with a square-shaped sample of dimensions
8λ × 8λ, such that the focal plane of the focused beam is located
at xph ¼ 4λ.

Four types of samples were considered, each sample having
a different absorption coefficient ð16λÞ−1 ≤ μa ≤ ð2λÞ−1. Note
that despite the large absorption values, we omit here re-emis-
sion, heat transfer, denaturation, etc., since these do not contrib-
ute to our present study. As opposed to the choice of these high
absorption coefficients, it is also possible to simulate smaller
values, but that requires a much larger grid in order to show
an effect on the focus. However, an increased grid size is dis-
advantageous for the performance of the FDTD simulation.

We proceed according to our extinction method, by sampling
“target positions” from paðrÞ instead of pvðrÞ. These “target
positions” bear a slightly different significance when absorption
is involved: paðrÞ represents the probability to find a photon in
the sample before it gets absorbed along its path.

Fig. 3 Comparison of the probability distributions yielded by the Monte Carlo (MC) simulations (the num-
ber of sampled “target positions” are 106 and 109 on (a) and (b), respectively) and the finite-difference
time-domain (FDTD) simulations for the linearly polarized beam focused in vacuo in the x -direction.
These distributions are displayed here in logarithmic scale over the range 8λ × 8λ. The MC simulations
are shown for y∕λ > 0 and FDTD simulations for y∕λ ≤ 0 for both figures. The curves are cross sections of
the probability profiles at the focal plane x ¼ xph ¼ 4λ.
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In the FDTD simulations, the absorption in the sample is
taken into account by increasing the imaginary part of the refrac-
tive index: ð64πÞ−1 ≤ κ ≤ ð8πÞ−1. The grid spacing is
preserved, but the overall dimensions of the simulation grid
need to be modified. This is shown in Fig. 2. Precaution is
needed when comparing the MC simulation results (based on
a propagation space infinite in the y-direction) with those
yielded by FDTD simulations: in the case of larger divergence
angles θmax, the inclusion of absorption in the medium where
the beam propagates requires an adjustment of the finite FDTD
simulation grid. In the figure, the darker region corresponds to
the MC simulation area. The symbol xph indicates the position of
the focal plane. The FDTD grid needs to be wide enough so that
all plane waves start getting attenuated at x ¼ 0; this principally
concerns plane waves incident on the focal plane with a highly
oblique angle θ. The dashed area corresponds to the extra com-
putational space: the choice of the additional space naturally
affects the outcome of the simulations. The interaction between
the incident plane waves (required by ASPW) and the absorbing
medium requires an infinite boundary. However, FDTD can
only calculate finite volumes.

An optimal grid size can be evaluated as shown in Fig. 4.
Here, a larger grid space in the FDTD simulations compared
with the grid considered in the MC simulations is evaluated.
We show here the power distribution obtained with three differ-
ent FDTD grid sizes for the linearly polarized beam focused in
an absorbing material with μa ¼ ð2λÞ−1 in the x-direction. The

grid size in the FDTD simulations needs to be large enough to
provide correct results by accounting for the absorption of
plane waves with a wide angular incidence on the focal plane.
The figure in the center and on the right reveals that the grid
size needs to be above a certain threshold for the results to
converge.29

Simulation results obtained with the four types of samples
are shown in Fig. 5 and more detailed profiles from the same
results are shown in Fig. 6. It can be seen that good agreement
is achieved between the MC and the FDTD simulations.
Nonetheless, closer inspection reveals the appearance of dis-
crepancies, both close to the sample’s illumination face and
in the focal region (the latter case is not shown here but was
observed, for instance, in the case of beams focused with a
divergence angle of θmax ¼ 25 deg). Since similar discrepan-
cies have been observed no matter what divergence angle
θmax was taken for the beam, the most plausible explanation
for the differences is the presence of Fresnel reflection in the
FDTD simulations. In the FDTD model, the plane waves propa-
gate from air into a sample, whose refractive index has a nonzero
imaginary component. However, as mentioned earlier, the MC
simulations were implemented assuming that there is no refrac-
tive index mismatch along the plane waves’ path.

3.3 Direction of the Poynting Vectors

In the last step of our investigation, we compared the orientation
of the Poynting vectors SðrÞ as calculated with both MC and

Fig. 4 Three different FDTD grid sizes displayed in logarithmic scale over the range 8λ × 8λ for the
linearly polarized beam, from (a) x ¼ 8λ and y ¼ 8λ, (b) 8λ × 16λ, and (c) 8λ × 32λ.

Fig. 5 Comparison of the probability distributions displayed here in logarithmic scale over the range 8λ ×
8λ and yielded by the MC simulations (with 109 “target positions” sampled) and the FDTD simulations
(grid size 8λ × 32λ) for the linearly polarized beam focused in the x -direction in increasingly absorbing
media. From (a) to (d): μa ¼ ð16λÞ−1, ð8λÞ−1, ð4λÞ−1 and ð2λÞ−1 (the corresponding values for the imagi-
nary component κ of the material’s refractive index are ð64πÞ−1, ð32πÞ−1, ð16πÞ−1, and ð8πÞ−1, respec-
tively). The curves are cross sections of the probability profiles at the focal plane x ¼ xph (MC in blue and
FDTD in green).
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FDTD simulations. In the MC method, the Poynting vector is
calculated according to Sec. 2.4, averaged over a bin of subwa-
velength size Δx × Δy. On the other hand, in the FDTD simu-
lations, the Poynting vector is determined at a certain grid point
ðx; yÞ from the resulting electric and magnetic fields at the end of
the simulation, see Eq. (9).

The results obtained by focusing a linearly polarized beam
are shown in Fig. 7. Again, very good quantitative agreement is
achieved between the two datasets. Yet, differences can be seen
in the vicinity of the focal plane, in particular in the darker
regions of the probability distribution where destructive interfer-
ences occur. In those regions, the orientation of the Poynting
vector might vary considerably over a bin, in which case the
averaging with the MC method does not yield identical results
to the FDTD simulations. In other regions where discrepancies
are not visible, the orientation of the Poynting vector remains
relatively constant over a bin, and thus the averaging produces

identical results to the FDTD simulations. Moreover, the effect
of the aforementioned Fresnel reflection included in the FDTD
calculations and neglected in the MC simulations should not
be excluded in the interpretation of the differences. Avoiding
the mismatch of the imaginary part of the refractive index in
FDTD by adjusting the refractive index in the outer regions
of the grid is a nontrivial task and would require further develop-
ment of the FDTD algorithm, which is beyond the scope of
the present feasibility study.

Additionally, results yielded by the focusing of a radially
polarized beam are shown in Fig. 8: The corresponding
Fraunhofer diffraction pattern noticeably differs from that of
the previous example. As for the Poynting vectors in Fig. 8,
the remarks on Fig. 7 still hold true. Here the observed spacial
distribution depends on the resulting electric field from both Ex

and Ey. Furthermore, the tight focusing of the radially polarized
beam leads to a strong longitudinal electric field component in

Fig. 6 Quantitative representation of the results shown in Fig. 5. The probability profiles corresponding to
the different absorbing materials are cross sections close to the illumination face (a), at x ¼ 0.01λ and
in the focal plane at x ¼ xph ¼ 4λ (b).

Fig. 7 Direction of the normalized Poynting vectors SðrÞ plotted over probability distributions displayed
here in logarithmic scale over the range 3λ × 3λ, and calculated with both MC simulations (109 “target
positions” sampled) and FDTD simulations (grid size of 8λ × 32λ). (a) The linearly polarized beam is
focused in vacuo. (b) The same beam is focused in an absorbing medium, where μa ¼ ð2λÞ−1. In
MC simulations, the binning size was kept at Δx ¼ Δy ¼ λ∕25.
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the x-direction in the focal region, and the Poynting vector
vanishes [as can be seen from the FDTD simulations of
Fig. 8(a)].30–32

4 Discussion and Conclusions
In this contribution, we have investigated the feasibility of mod-
eling the tight focusing of beams with MC simulations based on
the “direct extinction method,” where “target positions” for the
photon paths are sampled from probability distributions sepa-
rately calculated with the ASPW technique. The simulations
present an efficient tool to examine some of the wave properties
of the light (Fraunhofer diffraction pattern, polarization state,
and the direction of the energy flow) in the focal region of
a high-aperture system, and unlike the FDTD simulations, the
MC method presented here does not impose limitations on the
dimensions of the observed sample.

Naturally, the accuracy of the results depends not only on the
spatial resolution, but also on the number of sampled “target
positions” and the number of plane waves used. While the
FDTD grid has to be fine enough to avoid numerical artifacts,
the MC binning can be broadened to a limit given by the theo-
rem of Nyquist-Shannon (<λ∕2). Although we have chosen here
to model the focusing of a collimated beam with a uniform
profile in the angular domain, more intricate beam profiles
(Gaussian, Bessel, etc.,) can be easily implemented.29

Likewise, we can conclude the following from our proof of
concept in vacuo and in absorbing media: (1) the “direct extinc-
tion method” using inhomogeneous plane waves yields a very
good approximation when treating problems involving absorp-
tion; (2) the assumptions adopted in the FDTD simulations (as
explained in Sec. 3.2) work equally reasonably well as shown
by the very good agreement with the MC results despite the
numerical challenges involved. Certainly, including Fresnel
reflection phenomena and extending our model to the 3-D case
would be of particular importance in a next step.

Another significant improvement would be the treatment of
scattering processes within the medium in which the beam
is focused. A preliminary investigation has been undertaken

here by calculating the direction of the energy flow in the vicin-
ity of the focal region. This highlights a meaningful advantage
of our method: We have shown that our alternativeMC approach
can also account for waves that show longitudinal components
(nonTEM, as for example in Fig. 8). The modeling of such
longitudinal components is part of the limitations of the existing
vectorial MC programs: this necessitates the development of
new adequate models, as initiated by Azzam.33
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