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Abstract. A critical challenge in biomedical imaging is to optimally balance the trade-off among image resolution,
signal-to-noise ratio, and acquisition time. Acquiring a high-resolution image is possible; however, it is either
expensive or time consuming or both. Resolution is also limited by the physical properties of the imaging device,
such as the nature and size of the input source radiation and the optics of the device. Super-resolution (SR),
which is an off-line approach for improving the resolution of an image, is free of these trade-offs. Several method-
ologies, such as interpolation, frequency domain, regularization, and learning-based approaches, have been
developed over the past several years for SR of natural images. We review some of these methods and dem-
onstrate the positive impact expected from SR of retinal images and investigate the performance of various SR
techniques. We use a fundus image as an example for simulations. © 2014 Society of Photo-Optical Instrumentation Engineers
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1 Introduction
Computerized methods of retinal imaging began in the 1970s.
Initially there were difficulties with this technology being
adopted by eye care professionals (ophthalmologists and optom-
etrists).1 With time, however, these difficulties were overcome
through improvements in technology on one hand and a clearer
evidence-based criteria for the diagnosis of retinal diseases on
the other.1 As a result, these tools are now available at a time
when the incidence of retinal pathologies, such as diabetic reti-
nopathy (DR) and age-related macular degeneration (AMD), is
sharply increasing2 and, in the case of DR, reaching pandemic
proportions.2 Computerized retinal imaging not only provides
an enhanced analysis in clinical follow-up, but also screens
for the presence of early stages of pathology. Furthermore, tele-
medicine allows such retinal images to be obtained from remote
areas, thereby enabling diagnosis and treatment to occur when a
specialized ocular expert is not present.3 Microaneurysms, hem-
orrhages, exudates and cotton wool spots, drusen, and abnormal
and fragile new blood vessels are all indicators of retinal dis-
eases. The tasks of image analysis in the case of DR involve,
but is not limited to, early detection of red lesions (microaneur-
ysms and hemorrhages) and subsequent development of bright
lesions (exudates and cotton wool spots). In the case of AMD,
the imaging needs to detect another bright lesion (drusen) form-
ing in the macula.1 Drusen are small yellow or white concretions
that form in the retina and cause damage in the retinal layers
directly underneath them. A high-resolution (HR) image con-
tains more information and, hence, increases the accuracy in
assessing the size and form and structure of a retinal lesion.
Moreover, the ability to resolve micron scale retinal structures

allows a better understanding of the biophysics and visual
process.

The term resolution refers to the ability of an imaging instru-
ment to reveal the fine details in an object. The resolution of an
imaging device depends on the quality of its optics, recording
(sensor) and display components, and the nature of the input
source radiation. In this paper, the term resolution refers to
the spatial resolution. Spatial resolution is further divided
into axial and lateral resolution. Axial resolution is the ability
to distinguish two closely spaced points in the direction parallel
to the direction of the incident beam (Fig. 1). Medical tech-
niques such as confocal microscopy, optical coherence tomog-
raphy (OCT), and ultrasound provide images of an object in the
axial direction. The axial resolution depends mostly upon the
nature of the input source radiation. For example, the axial res-
olution of ultrasound is equal to half of the input spatial pulse
length, whereas the axial resolution of OCT is equivalent to the
coherence length of the incident light source. On the other hand,
the lateral resolution is the ability of an instrument to distinguish
two closely spaced points in the direction perpendicular to the
direction of the incident beam (Fig. 1). The lateral resolution is
determined by the width of the beam; the wider the beam, the
poorer the lateral resolution. The lateral resolution of an imaging
instrument depends mostly on its imaging optics.4 A high
numerical aperture (NA) lens can be used to generate a small
spot size that can improve the lateral resolution; however, the
resolution achieved is rather limited. Furthermore, both mono-
chromatic and chromatic aberration increases with increasing
NA.5 Therefore, it is not beneficial to increase the NA beyond
a certain limit. The spatial resolution of an imaging instrument
can be improved by modifying the sensor in two ways. First, one
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can increase the pixel numbers, but at the cost of lower signal-
to-noise ratio (SNR) and/or longer acquisition time.6 Second,
the chip size can be increased; however, the chip size necessary
to capture a very HR image would be very expensive.6 An inter-
esting alternative to all these options is to use an image process-
ing method called super-resolution (SR).7

SR imaging was first introduced by Tsai and Huang8 in 1984.
It is one of the most rapidly growing areas of research in image
processing. A survey of different SR techniques can be found in
Refs. 6 and 9 to 11. SR techniques are broadly divided into mul-
tiframe SR (classical approach) and single-frame SR. In multi-
frame SR technique, a set of low-resolution (LR) images
acquired from the same scene is combined to reconstruct a sin-
gle HR image. Multiple images can be taken using the same
imaging instrument or different instruments. The goal is to
obtain the missing information in one LR image from other
LR images. This way the information contained in all LR
images are fused to obtain an HR image.9 Several image fusion
applications have been investigated in medical imaging.12 In
single-frame SR technique, the missing high-frequency infor-
mation is added to the LR image using learning-based tech-
niques. The learning-based techniques use HR training set
images to learn the fine details and the learned information is
used to estimate the missing details of the LR images.6

Retinal fundus is the interior of the eye that includes retina,
macula, optic disc, and posterior pole. Fundus images are usu-
ally taken by a fundus camera and are used by eye care
professionals for diagnosis and tracking of eye diseases. In
fact, retina-related diagnosis is based largely on the fundus

images. In this paper, we compare the performance of various
frequently employed SR techniques and examine their suitabil-
ity for the fundus retinal imaging. To the best of our knowledge,
the SR techniques have not been fully applied to retinal images
in the past. For each technique, peak SNR (PSNR) and the struc-
tural similarity (SSIM) between the super-resolved image and its
original are computed. The PSNR is the peak SNR between the
original and super-resolved image, in decibels. PSNR is calcu-
lated from the mean square error (MSE), which is the average
error between the super-resolved image and its original. A
higher value of PSNR indicates a better image quality. The
SSIM index computes the similarity between the original and
super-resolved image. The SSIM accounts the luminance, con-
trast, and structural changes between the two images. The rest of
the paper is structured as follows. Section 2 describes the obser-
vation model for SR. The observation model relates the HR
image with the observed LR images. Section 3 presents various
multiframe SR techniques, where an HR image is obtained by
combining a set of LR images. Section 4 presents the learning-
based SR techniques. Comprehensive comparisons of various
SR techniques using retinal images are included in Sec. 5.
Finally, Sec. 6 provides the discussion and conclusion.

2 Observation Model
It is important to know the parameters that degrade a retinal
image before applying any SR method on it. Blur created either
by defocus or motion degrades the retinal image quality.
Sampling an object at a frequency less than the highest fre-
quency contained in the object produces aliasing. Also, all reti-
nal images contain some level of noise. These image
degradation factors can be incorporated into a mathematical
model that relates the HR image to the observed LR image.
To be more precise, let X be an original image, which is
degraded by motion blur (M) followed by camera blur (B)
and decimation effect (D). Furthermore, the image is deterio-
rated by the white Gaussian noise η created during the acquis-
ition process. The observation model that relates the HR image
to the observed LR image is

yk ¼ DBkMkX þ ηk; Y ¼ HX þ η: (1)

The SR methods estimate the image degradation model H
and use it to reconstruct an HR image X from a sequence of
LR images Y. Figure 2 shows a schematic diagram of the obser-
vation model. By using different values of k (i.e., different
motion parameters, blur, decimation, and noise), different LR
images can be created from an HR image. The practical values
of k for creating simulated LR images for this study are
described in Sec. 5.

Fig. 1 Illustration of axial and lateral resolution.

Fig. 2 Super-resolution observation model. The low-resolution (LR) images are the blurred, warped,
decimated, and noisy version of a high-resolution (HR) image.
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3 Multiframe SR Approaches
In this technique, an HR image is reconstructed from a sequence
of LR images. A schematic diagram is depicted in Fig. 3. There
are a number of different approaches for reconstructing a single
HR image by pooling information from multiple LR images.
This paper includes only the most common reconstruction-
based SR approaches.

3.1 Interpolation Approaches

Interpolation is one of the simplest ways of improving the res-
olution of an image. It estimates new pixels within an image’s
given set of pixels. The interpolation methods have proven use-
ful in many practical cases. Most of the commercial software,
such as Photoshop, Qimage, PhotoZoom Pro, and Genuine
Fractals, use interpolation methods to resize an image.
However, single-image interpolation methods are incapable of
integrating the information that was lost during the image
acquisition process.6 Therefore, in this paper we mainly
focus on combing a set of LR images to estimate an HR
image using nonuniform interpolation methods.

The interpolation-based SR methods involve the following
three intermediate steps: registration, interpolation, and restora-
tion. Image registration is the process of geometrically aligning
a set of LR images of the same scene with reference to a par-
ticular LR image called reference image. LR images have differ-
ent subpixel displacements and rotations from each other. So it is
very important to have accurate estimation of motion parameters
before fusing them to create an HR image. Inaccurate estimate
of motion parameters results in various types of visual artifacts
that consequently degrade the quality of the reconstructed
image. The registration is performed in either the frequency
domain or the spatial domain. The frequency domain
approaches for estimating motion parameters are described in
more detail in Sec. 3.2. There are various techniques to estimate
motion in the spatial domain as well. Keren et al.13 proposed an
algorithm based on Taylor expansion, which estimates the
motion parameters with subpixel accuracy. Bergen and col-
leagues14 proposed a hierarchical framework for the estimation
of motion models, such as planar and affine methods. Irani and
Peleg15 developed an interactive multiresolution approach for
estimating motion parameters. To estimate motion parameters,
some algorithms map the whole image, while others map only
the features that are common among the LR images.16 The HR
image and motion parameters can be simultaneously estimated
using Bayesian methods. Hardie et al.17 explain one such

approach. The Bayesian approaches are described in more detail
in Sec. 3.3.

Besides registration, the interpolation also plays an important
role for estimating an HR image. There are many different inter-
polation methods, yet the complexity of each method depends
upon the number of adjacent pixels used to estimate the inter-
mediate pixels. Commonly used interpolation methods include
nearest-neighbor, bilinear and bicubic methods.18 Nearest neigh-
bor is the most basic interpolation method, which simply selects
the closest pixel surrounding the interpolated point. The disad-
vantage of nearest neighbor is the stair-step-shaped linear fea-
tures visible in the HR image. Bilinear takes a weighted average
of the closest 2 × 2 neighborhood pixels to estimate the value of
the unknown interpolated pixel. Similarly, bicubic takes the
closest 4 × 4 neighborhood pixels to estimate the value of the
unknown interpolated pixel. In both of the latter methods, higher
weights are given to the closer pixels.18 Since the shifts among
the LR images are unequal, nonuniform interpolation methods
are required to fuse all the LR frames into one HR frame. In
1992, Ur and Gross19 developed a nonuniform interpolation
method for a set of spatially translated LR images using gener-
alized multichannel sampling theorem.19 There are many other
complex interpolation approaches that are used in resizing a sin-
gle image, such as cubic spline, new edge-directed interpolation
(NEDI),20 and edge-guided interpolation (EGI).21 In short, the
cubic spline fits a piecewise continuous curve, passing through
a number of points. This spline consists of weights and these
weights are the coefficients on the cubic polynomials. The
essential task of the cubic spline interpolation is to calculate
the weights used to interpolate the data. NEDI (Ref. 20) is a
covariance-based adaptive directional interpolation method in
which interpolated pixels are estimated from the local covari-
ance coefficients of the LR image based on the geometric duality
between the LR covariance and the HR covariance. EGI
(Ref. 21) divides the neighborhood of each pixel into two obser-
vation subsets in two orthogonal directions. Each observation
subset approximates a missing pixel. The algorithm fused
these two approximate values into a more robust estimate by
using linear minimum MSE estimation. These complex interpo-
lation methods are very efficient and preserve most of the image
information; however, their processing time and computational
cost is higher in comparison with the general interpolation
methods.

The information obtained from registration methods is used
to fuse a set of LR images. While fusing the LR frames, pixel
averaging methods are used. These methods blur the image;
hence, image restoration methods are also needed to remove

Fig. 3 A framework of reconstruction-based super-resolution (SR) technique. An HR image can be
reconstructed by pooling information from many LR images.
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the blur.6 Estimation of the blur kernel has an important role in
predicting an HR image; however, many SR approaches assume
a known blur kernel for simplicity. The known blur kernel can
help to estimate an HR image from a set of simulated LR
images; however, for real LR images, the motion blur and
point spread functions may lead to an unknown blur kernel.22

Many algorithms are proposed in Bayesian framework to esti-
mate the blur kernel. Recently, Liu and Sun22 proposed a
Bayesian approach of simultaneously predicting motion blur,
blur kernel, noise level, and HR image. The blind deconvolution
algorithm has been used when the information about the blur
kernel and the noise level are unknown.

The registration, interpolation, and restoration steps in the SR
method can be conducted iteratively to achieve an HR image
from a sequence of LR images using an iterative backprojection
(IBP) approach.15 In this method, an HR image is estimated by
iteratively minimizing the error between the simulated LR
images and observed LR images. This approach is very simple
and easy to understand; however, it does not provide a unique
solution due to the ill-posed inverse problem. Another easily
implementable SR approach is the projection onto convex set
(POCS), devised by Stark and Oskoui.23 In this method, con-
straint sets are defined to restrict the space of the HR image.
The constraint sets are convex and represent certain desirable
SR image characteristics, such as smoothness, positivity,
bounded energy, reliability, etc. The intersection of these sets
represents the space of a permissible solution. Thus, the problem
is reduced to finding the intersection of the constraint sets. To
find the solution, a projection operator is determined for each
convex constraint set. The projection operator projects an initial
estimate of the HR image onto the associated constraint set. By
iteratively performing this approach, an appropriate solution can
be obtained at the intersection of the k convex constraint sets.

3.2 Frequency Domain Approaches

Another popular approach for increasing the resolution of an
image is the frequency domain approach, initially adopted by
Tsai and Huang.8 Many researchers have subsequently
expanded this approach to formulate different SR methods.
In frequency domain methods, the LR images are first trans-
formed into the discrete Fourier transform (DFT). Motion
parameters can be estimated in the Fourier domain by measuring
the phase shift between the LR images since spatially shifted
images in the Fourier domain differ only by a phase shift.24

The phase shift between any two images can be obtained
from their correlation. Using the phase correlation method,
both the planar rotation and the horizontal and vertical shift
can be estimated precisely.24 To minimize errors due to aliasing,
only parts of the discrete Fourier coefficients that are free of
aliasing are used. After estimating the registration parameters,
the LR images are combined according to the relationship
between the aliased DFT coefficients of the observed LR images
and those of the unknown HR image. The data, after fusion, are
transformed back to the spatial domain and reconstructed. The
advantage of the frequency domain method is that it is easy and
best suited for the aliased images since aliasing is easier to
remove in the frequency domain than in the spatial domain.
The disadvantage is that the observation model is limited to
global motion, so it works only for planar shifts and rotations.24

Later, the DFT has been replaced by discrete cosine transform
(DCT)25 and discrete wavelet transform26 to minimize the
reconstruction error.

3.3 Regularization Approaches

SR is an underdetermined problem and has many solutions.
Another interesting approach for solving this ill-posed problem
is by utilizing a regularization term. The regularization approach
incorporates the prior knowledge of the unknown HR image to
solve the SR problem. Deterministic and stochastic approaches
are the two different ways to implement regularization. The
deterministic approach introduces a regularization term,
which converts the ill-posed problem to a well-posed one.

X ¼ arg min
XN

k¼1

kyk −HkXk2 þ λR; (2)

where R is the regularization term and λ is regularization con-
stant. Various regularization terms have been utilized to solve
this ill-posed problem. The constrained least square regulariza-
tion method uses smoothness, and regularized Tikhonov least-
square estimator uses l2-norm as regularization.27 The l2-norm
does not guarantee a unique solution. Farsiu et al.28 exploited an
alternative l1-norm minimization for fast and robust SR. Zomet
and colleagues29 described a robust SR method for considering
the outliers. Recently, Mallat and Yu30 proposed a regulariza-
tion-based SR method that uses adaptive estimators obtained
by mixing a family of linear inverse estimators.

The stochastic approach, especially maximum a posteriori
(MAP) approach, is popular since it provides a flexible and con-
venient way to include an a priori and builds a strong relation-
ship between the LR images and the unknown HR image. The
method proposes to find the MAP estimation of the HR image
XMAP for which a posteriori probability PðXjYÞ is a maximum.6

X̂MAP ¼ arg max
X

PðXjYÞ: (3)

Using Bayes theorem, the above equation can be written as6

X̂MAP ¼ arg max
X

flog PðYjXÞ þ log½PðXÞ�g; (4)

where PðYjXÞ is the likelihood function and PðXÞ is the priori.
Markov random field (MRF) is commonly used as the prior
model and the probability density function of noise is calculated
to determine the likelihood function.11 The HR image is com-
puted by solving the optimization problem defined in Eq. (4).
Several models, such as total variation (TV) norm,31 l1-norm

32

of horizontal and vertical gradients, simultaneous autoregressive
(SAR) norm,33 Gaussian MRF model,17,34 Huber MRF model,35

discontinuity adaptive MRF model,36 the two-level Gaussian
nonstationary model,37 and conditional field model,38 are
used for the prior image model.

All the above SR techniques assume that the blurring func-
tion is known. The blur can be modeled by convolving the image
with the point spread function; however, it requires a strong
prior knowledge of the image and blur size. The blind decon-
volution algorithm can be used when the information about the
blur and the noise are unknown. The blind deconvolution SR
methods recover the blurring function from the degraded LR
images and estimate the HR image without any prior knowledge
of blur and the original image.39,40 The blur is calculated from
another regularization term as shown in the following equation:
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EðX; hÞ ¼
Xk

k−1
kDHkX − ykk2 þ αQðXÞ þ βRðhÞ: (5)

The first term is the fidelity term, and the remaining two are
regularization terms. The regularization QðXÞ is a smoothing
term, while RðhÞ is a PSF term. The regularization is carried
out in both the image and blur domain.

4 Learning-Based SR Approaches
Learning-based SR methods extract the high-frequency infor-
mation, which is lost during image acquisition process, from
the external sources (training set images) and integrate this
information with the input LR image to acquire a super-resolved
image.41–43 The schematic diagram of learning-based SR is
depicted in Fig. 4. The training set consists of many HR images
and their simulated LR versions. The performance of the learn-
ing-based SR methods highly depends upon the training set
data. The training set images should have high-frequency infor-
mation and be similar to the input LR image.41 To reduce the
computational complexity, the learning-based methods are usu-
ally performed on the image patches. The learning-based SR
methods include the following four stages as depicted in
Fig. 5. First, the HR patches and their simulated LR version
are stored in the training set in pairs. The features of the training
set patches are extracted. A number of different types of feature
extraction models can be used such as luminance values, DCT
coefficients, wavelet coefficients, contourlet coefficients, PCA
coefficients, gradient derivatives, Gaussian derivatives,
Laplacian pyramid, steerable pyramid, feature extracted from
bandpass filter, low- and high-pass frequency components, qua-
ternion transformation, histogram of oriented gradients, etc. A
summary of various feature extraction models is found in
Ref. 41. Second, features of the input LR patches are extracted.
Third, the features extracted from the input patches and training
set patches are matched and the best matched pair from the train-
ing set is selected. In recent years, a number of learning methods
have been proposed to match the features. The most common
learning models are best matching, MRF, neighbor embedding,
and sparse representation model.41 Fourth, the learned HR fea-
tures are integrated into the input LR patch to achieve a super-
resolved patch. Finally, all super-resolved patches are combined
to generate the HR image.

The example-based (EB) SR method proposed by Kim and
Kwon43 has outperformed several state-of-the-art algorithms in
single-image SR. This method is based on the framework of
Freeman et al.,42 which collects pairs of LR and HR image
patches in the training stage. In the learning stage, each LR
patch of the input image is compared to the stored training
set LR patches, and using a nearest-neighbor search method
a nearest LR patch and its corresponding HR pair are selected.
However, this approach often results in a blurred image due to
the inability of nearest neighbor. Kim and Kwon43 modified this
approach by replacing nearest-neighbor search with sparse ker-
nel ridge regression. In their approach, kernel ridge regression is
adopted to learn a map from input LR patch to training set’s HR
and LR patch pairs. This method, however, also produces some
blurring and ringing effects near the edges, which can be
removed using postprocessing techniques.43

Over the last century, there have been extensive studies on
sparse representation algorithms. Sparse representation is the
approximation of an image/signal with the linear combinations
of only a small set of elementary signals called atoms. The
atoms are chosen either from a predefined set of functions (ana-
lytical-based dictionary), such as DCT and wavelets, or learned
from a training set (learning-based dictionary). The main advan-
tage of these algorithms is that the signal representation coeffi-
cients are sparse, i.e., they have many zero coefficients and a few
nonzero coefficients. To be more precise, consider a finite-
dimensional discrete time signal x ∈ RN and an overcomplete
dictionary D ∈ RN×K, N < K. The aim is to represent signal
x using dictionary D such that the signal representation error
kDα − xk2, where α is the sparse representation vector, is mini-
mized. The sparse representation of a signal is obtained by solv-
ing the following optimization problem.44

arg min
α

kαk0 subject to x ¼ Dα: (6)

Sparse representation has become a major field of research in
signal processing. Utilizing this approach, several researchers
have proposed learning-based SR algorithms.44–49 Sparse repre-
sentation-based SR computes the sparse approximation of inputFig. 4 An illustration of learning-based SR.

Fig. 5 Flow chart of learning-based SR.
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LR patch and uses the coefficients of approximation to estimate
an HR patch. In this method, two dictionaries Dh and Dl are
jointly trained from HR and LR patches. There is a need to
enforce the similarity of sparse coding between the LR
(j ¼ Dlβ) and HR patch l ¼ Dhα. The dictionary extracted
from the HR patch Dh is applied with the sparse representation
of the LR patch (Dhβ) to recover the super-resolved patch. The
schematic illustration of SR via sparse representation as pro-
posed by Yang et al.45 is shown in Fig. 6.

In sparse representation-based approach, the final super-
resolved image patch is generated from the combination of
sparse coefficients of the LR patch and the HR dictionary;
the performance of the method depends upon both the sparse
coefficients of LR patch and the HR dictionary. Many research-
ers have proposed new algorithms to better estimate the HR dic-
tionary and sparse coefficients of the LR image. Dong et al.46

proposed a cluster-based sparse representation model called
adaptive sparse domain selection (ASDS) to improve the

dictionary. In this approach, the image patches are gathered
into many clusters and a compact subdictionary is learned for
each cluster. For each image patch, the best subdictionary
can be selected that can reconstruct an image more accurately
than a universal dictionary. Another study by Dong et al.47 pro-
posed sparse representation-based image interpolation through
incorporating the image nonlocal self-similarities to the sparse
representation model. The term self-similarity refers to the sim-
ilarity of image pixel values or structure at different parts of the
image. The algorithm included nonlocal autoregressive model as
a new fidelity term to the sparse representation model, which
reduces the coherence between the dictionaries and, conse-
quently, makes sparse representation model more effective.
Dong and colleagues not only estimated better HR dictionary
for each image patch, but also utilized the image nonlocal
self-similarity to obtain good estimation of the sparse represen-
tation coefficients of LR image. Recently, they have proposed
two models for extracting sparse coding coefficients from the
LR image as close to the original image as possible using non-
local sparsity constraints. These are the centralized sparse rep-
resentation (CSR) model48 and the nonlocally CSR (NCSR)
model.49

5 Simulations
MATLAB® software (version R2008a) was used to code and/or
to run the programs. The MATLAB® codes were downloaded
from the websites of respective authors, and the parameters of
each method were set according to the values given in their cor-
responding papers. A computer with the operating system 64 bit
version of Windows 7, Intel (R) Pentium (R) CPU G620T
2.2 GHz processor, and 4 GB RAM, was used to run the simu-
lations. The screen resolution was 1920 × 1080. Retinal fundus
images taken with a fundus camera (Non-Mydriatic Auto Fundus
Camera, Nidek AFC-230, Gamagōri, Aichi, Japan) were used to
run the simulations. The images were taken from the right eye of

Fig. 6 Flow chart of SR via sparse representation algorithm.

Fig. 7 HR test images created by cropping three different sections of three different fundus images and
their corresponding LR version.
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one of the authors (D.T.) who has no ocular pathology. SR
approaches were applied separately for real LR images and simu-
lated LR images. Simulated LR images are viewed as the shifted,
rotated, and downsampled version of an HR image. We cropped
three important sections (256×256pixels) from three different
fundus images to run SR in different parts of the fundus
image. The cropped sections were the optic disc, macula, and reti-
nal blood vessels, and are shown in Fig. 7. Four 128 × 128 pixels
LR images were created from these HR images. The shift and
rotation parameters were adjusted manually. Horizontal and

vertical displacements were set to (0,0), ð−3; 2Þ, (2,1), and
ð−2; 3Þ) and rotation angles were set to (0, 5, 3, −2) deg, respec-
tively, to create four LR images. The downsample factor was set
to 2. Finally, Gaussian noise was added to the LR images to main-
tain a signal-to-noise ratio of 40 dB. The first LR image is the
reference LR image, which is a downsampled version of the
HR image, with the shift and rotation parameters zero. The refer-
ence LR images are shown in Fig. 7 with their original. Figure 8
shows all four LR images that were created from the cropped
optic disc image. We used these simulated LR images to recover
the original HR image (resolution 256 × 256) using various SR
methods.

Frequency domain SR approaches24 were first examined on
the simulated LR fundus images. These images were trans-
formed into the Fourier domain, and shift and rotation param-
eters between the LR and reference images were calculated
based on their low-frequency, aliasing part. Shifts were esti-
mated from the central low-frequency components in which
number of low-frequency components used were 10 and the
rotations were estimated from a disc of radius 0.8. By incorpo-
rating these motion parameters on the simulated LR images, an
HR image was reconstructed using cubic interpolation. Besides
cubic interpolation, the performances of IBP,15 robust regulari-
zation,29 and POCS23 were also examined in Fourier domain.
We employed MATLAB® software prepared by Vandewalle
et al.24 to implement these algorithms. For IBP, an upsampled
version of the reference LR image was used as an initial estimate
of HR image. The upsampling was performed using bicubic
interpolation. The IBP created a set of LR images from the ini-
tial estimate of HR image using the motion parameters estimated
in Fourier domain. The estimate was then updated by iteratively
minimizing the error between the simulated LR images and test

Fig. 8 LR images (resolution 128 × 128) obtained from an optic disc
using observation model. These images were used to run all the
multiframe SR techniques.

Fig. 9 Results from different multiframe SR approaches for LR optic disc images.
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Fig. 10 Results from different multiframe SR approaches for LR macula images.

Fig. 11 Results from different multiframe SR approaches for LR blood vessels.
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LR images based on the algorithm developed in Ref. 15. Robust
regularization further incorporates a median estimator in the
iterative process to achieve better results. We implemented
the robust regularization algorithm proposed by Zomet and col-
leagues.29 The POCS algorithm, which reconstructs an HR
image using projection on convex sets, was examined only
for the planar shift.

Similarly, Bayesian SR methods were studied, and their
robustness on the LR fundus images was tested for various
prior models. We used algorithms and MATLAB® software
prepared by Villena et al.33 for the simulation. TV,31 l1 norm
of the horizontal and vertical gradients,32 and SAR33 were
used as image prior models. The motion parameters and down-
sampled factor kept unchanged between the Fourier domain
methods and Bayesian methods for fair comparison except
for POCS in which planar rotation was not applied. The four

simulated LR images were used as input. The algorithm utilized
hierarchical Bayesian model where the model parameters,
registration parameters, and HR image were estimated simulta-
neously from the LR images. Variational approximation
was applied to estimate the posterior distributions of the
unknowns. The algorithm terminated when either a maximum
number of iterations (k ¼ 100) was reached or the criterion
½ðkxk − xk−1k2Þ∕ðkxk−1k2Þ� < 10−4, where xk is the k’th esti-
mated HR image, was satisfied. The Bayesian methods showed
the highest PSNR value compared to the other multiframe SR
methods. However, the TV norm, l1 norm of the horizontal and
vertical gradients, and SAR norm priors model led to over-
smooth nonedge regions of the image. Figures 9, 10, and 11
show the results of various multiframe SR approaches applied
to the LR images of optic disc, macula, and retinal blood vessels.
Table 1 shows PSNR and SSIM indices between the original and

Table 1 Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) indices between the original and the super-resolved images obtained
from a set of low-resolution simulated images using different multiframe super-resolution (SR) approaches, best values in bold.

Methods

Optic disc Macula Blood vessels

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic Fourier 36.67 0.8944 42.47 0.9596 42.14 0.9579

Robust regularization 39.22 0.9393 44.54 0.9727 43.69 0.9703

Iterative backprojection 39.79 0.9455 44.51 0.9712 42.90 0.9635

Projection onto convex set 39.99 0.9481 44.13 0.9681 41.29 0.9517

Total variation norm 42.57 0.9626 46.13 0.9789 45.33 0.9762

L1 norm 42.31 0.9606 45.98 0.9781 45.20 0.9757

Simultaneous autoregressive norm 42.48 0.9632 46.23 0.9795 45.51 0.9777

Table 2 PSNR and SSIM indices between the original and the reconstructed images obtained from various single-image SR approaches, best
values in bold.

Methods

Optic disc Macula Blood vessels

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 41.87 0.9592 47.06 0.9831 46.01 0.9802

Edge-guided interpolation 41.84 0.9593 46.42 0.9814 45.83 0.9797

New edge-directed interpolation 41.88 0.9609 46.50 0.9817 45.83 0.9798

Sparse maxing estimators 42.71 0.9663 47.01 0.9835 46.64 0.9828

Cubic interpolation 42.14 0.9621 46.60 0.9823 46.20 0.9812

Example based44 43.34 0.9694 47.75 0.9851 47.12 0.9838

Sparse representation25 43.35 43.35 48.24 0.9868 47.45 0.9855

Sparse interpolation 42.01 0.9598 44.28 0.9713 44.69 0.9739

Adaptive sparse domain selection 41.69 0.9549 45.43 0.9750 44.32 0.9703

Centralized sparse representation (CSR) 42.31 0.9597 46.11 0.9781 45.27 0.9752

Nonlocally CSR 43.75 0.9720 48.13 0.9865 47.64 0.9861

Journal of Biomedical Optics 056002-9 May 2014 • Vol. 19(5)

Thapa et al.: Comparison of super-resolution algorithms applied to retinal images



the super-resolved images obtained from different multiframe
SR approaches.

Single-image interpolation methods were also studied on
retinal images. The input LR image was created by direct sub-
sampling of the original image by a factor of 2. The LR retinal
image was upscaled to its double size 256 × 256 using nearest-
neighbor, bilinear, and bicubic interpolations. The interpolated
images were compared with the original image. The PSNR and
SSIM indices for bicubic method were greater than those of the

nearest-neighbor and bilinear interpolation. The complex inter-
polation methods, cubic spline,30 NEDI (Ref. 20), and EGI
(Ref. 21), were also applied to the downsampled LR images
of optic disc, macula, and retinal blood vessels. Noise was
not added to the LR image of single-image interpolation meth-
ods, so they showed better PSNR and SSIM indices. The com-
parisons between the various single-image interpolation
approaches in terms of objective quality matrices (PSNR and
SSIM) are shown in Table 2. A regularization-based SR with

Fig. 12 Results from various single-image SR approaches for LR optic disc images.
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sparse maxing estimators (SME)30 was also examined and
showed better PSNR and SSIM indices.

We examined the EB method proposed by Kim and Kwon43

on the cropped fundus images. We chose this method since it has
outperformed many state-of-the art algorithms and also because
it removes blurring and ringing effects near the edges.43 The
input LR images were created by downsampling the original
image by a factor of 2. Noise was not added to the downsampled
image. The training set was created by randomly selecting HR

generic images. The LR training images were obtained by blur-
ring and subsampling HR images. Thus, the training set consti-
tuted a set of LR and HR image pairs. The algorithm was
performed on image patches. In this method, the input LR
patch was first interpolated by a factor of 2 using cubic inter-
polation. Next, kernel ridge regression was adopted to learn a
map from input LR patch to training set image HR and LR
patch pairs. The regression provided a set of candidate images.
The super-resolved image was obtained by combing through

Fig. 13 Results from various single-image SR approaches for LR macula images.
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candidate images based on estimated confidences. The artifacts
around the edges of the reconstructed image were removed by
utilizing image prior regularization term. Better PSNR and
SSIM values are noticed in this method.

Similarly, sparse representation-based SR techniques were
examined on the LR fundus image. We extracted 5 × 5 patches
with overlap of 1 pixel between adjacent patches from the input
image. The HR dictionaries and sparse coefficients were learned
from both the training set HR images and LR test image. We

used the method and software proposed by Yang et al.44 to
run the simulation. In addition, ASDS,46 sparse interpolation,47

CSR,48 and the most recent NCSR (Ref. 49) methods proposed
by Dong et al. were also implemented on LR patches. The latter
two methods introduced the centralized sparsity constraint by
exploiting nonlocal statics. Both the local sparsity and nonlocal
sparsity constraints are combined in this approach. The central-
ized sparse representation approach approximates the sparse
coefficients of the LR image as closely as the original HR

Fig. 14 Results from various single-image SR approaches for LR blood vessel images.
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image does, which results in better image reconstruction and,
hence, better PSNR and SSIM indices. Figures 12, 13, and
14 show the results of various single-image SR approaches
applied to the LR images of optic disc, macula, and retinal
blood vessels.

Finally, multiframe SR techniques were examined on the
multiple real retinal images. A fundus camera was fixed man-
ually on the right eye of one of the authors (D.T.) and six con-
secutive images were taken. The participant’s head was fixed
using chin rest. To eliminate pupil constriction, one drop of
pupil dilating agent (Tropicamide 1%) was used in the eye.
The accommodation effects were also minimized by the dilating
agent by paralyzing the ciliary muscles. Six images were
acquired with small shifts and rotations due to the eye motions.
The images were then cropped to obtain the desired sections. We
cropped a small retinal blood vessel section of the fundus image
in this study. The sizes of the cropped sections were
128 × 128 pixels. One such section is shown in Fig. 15 (top
left corner).

In the Fourier domain, the shifts between the images were
estimated from the central 5% of the frequency and the rotations
were estimated from a disc of radius 0.6 as described by
Vandewalle et al.24 The images were registered in the Fourier
domain and then reconstructed to obtain an HR image using
cubic interpolation. The resolution was increased by a factor
of two. The robust regularization, IBP, and POCS were also
tested on the real images. The results showed that cubic inter-
polation and POCS methods estimated the blur HR images.
These images are worse than the image estimated by a sin-
gle-image bicubic interpolation method, while the HR images
estimated by IBP and robust regularization have better visual
quality.

A hierarchical Bayesian algorithm was used to estimate the
registration parameters in Bayesian methods and the blur was
assumed to be a 3 × 3 Gaussian with variance 1. We examined
TV-prior, L1-prior, and SAR-prior models, but these models led
to oversmooth nonedge regions of the image; therefore, com-
bined TV-SAR and L1-SAR prior models were used as

Fig. 15 Results from various multiframe SR approaches for real retinal images.
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described by Villena et al.33 The HR images obtained from these
methods are shown in Fig. 15. The image obtained from single-
image bicubic interpolation is also shown for comparison. The
HR images suffered from registration errors likely due to the fact
that most of the SR algorithms work only with planar motion
and rotations. The real images, especially retinal images
taken from a fundus camera, may have nonplanar motions
due to the eye motion. A more precise knowledge of motion
parameters is needed to solve this problem. The registration
error may also be minimized by taking images from dynamic
instruments. Last but not least, we examined blind deconvolu-
tion-based SR approach to combine multiple LR images to esti-
mate an HR image as described by Sroubek and Flusser.40 This
method does not assume any prior information about the blur; it
requires only the approximate size of the blur. In our case, we set
3 × 3 blur kernel size. The algorithm built and minimized a
regularized energy function given in Eq. (5) with respect to
original image and blur. The regularization is conducted in
both the image and blur domain. TV regularization was used
for our simulation. The HR image predicted by a blind decon-
volution method showed a more even spread of the brightness
and the edges are sharper and clearer. Among all the above mul-
tiframe SR techniques, blind deconvolution showed best results
for our LR images.

6 Discussion and Conclusion
In this paper, we demonstrated the possibility of resolution
enhancement of retinal images using SR techniques. Three
important sections of the fundus images were considered for
the simulations: optic disc, macula, and retinal blood vessels.
In the first part, we simulated four LR images by shifting, rotat-
ing, downsampling, and adding Gaussian noise to an HR image.
A number of important features of the fundus image are missing
or less clearly visible in the LR images. For example, the arteries
and veins emerging from the margins of the optic disc are less
clearly visible. The connections between the optic disc and some
of the blood vessels are not distinct in the LR optic disc images.
The borderlines of blood vessels are less distinct in retinal blood
vessels image. Similarly, there are several tiny arteries (ciliore-
tinal arteries) supplying additional blood to the macular region
that are also less clearly visible in LR macula images. In addi-
tion, the background of the retina is unclear, so recognition of
the cilioretinal arteries is also difficult. The foveal reflex is con-
siderably dim in LR macula images. The images were taken
from a healthy normal eye; the difference might be more distinct
in pathological eyes.

SR techniques give magnified image by fusing multiple LR
images. The features of an image are also magnified in the same
factor, so they are visually clearer in a larger image. This can be
seen in many super-resolved images shown in Figs. 9 to 14. The
features that are visually less distinct in LR images are more
distinct in super-resolved image and the connection between
the optic disc and blood vessels is comparatively clearer in
super-resolved images given by SME, EB (Ref. 43), and sparse
representation44 methods (Fig. 12). However, some SR tech-
niques, for example, sparse interpolation and ASDS, over-
smoothed the image, so the important features are lost from
the image. The cilioretinal arteries and foveal reflex in super-
resolved images given by EB,43 SME, and sparse44 methods
are as clear as in the original image, while they are significantly
smoothed in super-resolved image obtained from sparse inter-
polation and ASDS methods (Fig. 13). The other SR techniques

show intermediate performance. The super-resolved images
have recovered many image features; however, lost edges or tex-
tures during the decimation process cannot be recovered com-
pletely. The EB (Ref. 43) and sparse representation44 methods
show good results and can be used when sufficient number of
input LR images are unavailable and/or when higher resolution
factor is required. The performance of these algorithms may be
improved by using a larger set of training images and by using
more relevant learning method.

In the second part, we implemented SR techniques on cropped
version of six multiple acquisition retinal images taken with
a fundus camera. The real images were first normalized,
which reduced the effect of different levels of illumination in dif-
ferent images. The Fourier method24 was used to estimate the
registration parameters and then these parameters were used to
fuse LR images. The Fourier-based cubic interpolation method
significantly blurred the reconstructed image. The IBP, robust
regularization, and single-image bicubic interpolation method
introduced small amount of ringing effect; however, they pre-
served most of the image features. The Bayesian approaches per-
formed a joint registration and fusion tasks together. They
provided visually pleasant image; however, the HR image recon-
structed by the Bayesian approaches were oversmoothed and
many image details were lost. The blind deconvolution provided
much sharper and cleaner reconstructed image than others;
however, the HR image was not free of artifacts. Nevertheless,
the algorithm is more realistic because it does not need prior infor-
mation of the blur. In the real image SR approaches, we utilized
only six LR images to perform SR; better results can be obtained
if number of LR image is increased. Meitav and Ribak50 used
>200 retinal LR images to achieve an HR image using a weighted
average method. Furthermore, the registration methods are
restricted to the planar translational and rotational; however,
the eye movements may induce nonplanar variations between
LR images. The variations in the ocular surface, such as dynamic
nature of the tear film, accommodation and cardiopulmonary
effect of the eye, may result in different levels and types of var-
iations between the LR retinal images. Small subpixel error in the
registration may result in different estimation. Therefore, robust
motion estimation algorithm is essential to perform SR in retinal
images. Furthermore, many algorithms, including Bayesian
approaches, assume spatially uniform Gaussian blur, which is
usually impractical. To avoid damage to the eye, the retinal
images are taken in the low-light condition, and therefore,
they suffer from low SNR. Most of the SR algorithms deteriorate
when noise is present in the image; therefore, a method that is
more robust to noise but can also preserve image features is
essential.

In summary, we demonstrated resolution enhancement of
retinal images using image processing methods. While we inves-
tigated the performance of various SR techniques, we are unable
to present the details of each method. The reader is advised
to consult the related reference papers for specific implementa-
tion details. Since the codes were downloaded from the websites
of respective authors and the parameters of each method
were set according to the values given in their corresponding
papers, the differences in PSNRs and SSIMs between various
SR approaches may be due to the differences in techniques,
and/or their parameters. We refer the interested readers to
visit the webpage ∼http://quark.uwaterloo.ca/~dthapa, which
contains the MATLAB® source code for various SR techniques
developed by several groups of researchers.
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