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Abstract. A noninvasive measurement method is proposed and examined to continuously predict blood glucose
contents using near-infrared diffuse reflection difference spectra measured at the skin tissue without using multi-
variate analyses. Using the modified Beer’s law, the difference spectra are assumed to be synthesized from four
major components in the human skin (water, protein, glucose, and fat) and a scattering equivalent component
called baseline. As a result, one of the origins of the errors in blood glucose prediction using near-infrared is
found to be the similarity of the shapes of the absorption spectrum between glucose and baseline. After sepa-
rating the glucose contributions from the difference spectra at the characteristic wavelengths of baseline and fat,
an imaginary component combining baseline and fat is introduced by considering that both the change in the fat
contribution and the generation of baseline originate from the change in scattering in the skin. The imaginary
component enables us to reduce the errors in blood glucose prediction. In contrast to the methods using multi-
variate analyses, the calculation process of the blood glucose contents from the measured reflection spectra is
clear in this method, thus, it is easy to estimate the origins of the changes and contributions of the components in
the measured difference spectra. The proposed method may become a useful tool for realization of noninvasive
blood glucose prediction using near-infrared spectroscopy. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Although noninvasive blood glucose prediction using near-
infrared (NIR) spectroscopy has been studied for many years
at various companies and research laboratories in the world,
there is no medical device approved by the Food and Drug
Administration of the United States at present.1–3 One of the
technical problems is that the glucose signal contained in the
NIR reflection spectra from living tissue is significantly small
compared to the signals of other components in living tissue,
such as water, protein, fat, etc.4,5 Therefore, it is very difficult
to prevent many kinds of disturbances (caused by the changes in
the contents of the components other than glucose) from being
present in the measured spectra and also very difficult to secure
a prediction accuracy sufficient for clinical applications. It is
common that NIR spectroscopy for noninvasive blood glucose
prediction applies chemometrics, which uses multivariate analy-
ses to obtain calibration models. Generally speaking, in chemo-
metrics, a researcher should collect spectra as many as times
possible with pre-experiments, and a set of the spectra must con-
tain various disturbances covering wide ranges of their changes.
Then the set of the spectra is used for a multivariate analysis to
obtain a robust and accurate calibration model.6 However,
collecting spectra as many times as possible for that purpose

adversely impairs the building of a good calibration model
for accurate prediction. In particular, for blood glucose predic-
tion, due to the poor signal-to-noise ratios of the measured spec-
tra against the variation of glucose content, which is essentially
very small in tissues, the measureable number of disturbances
and the measurable ranges of their changes are limited. Then, to
reduce the number of disturbances, many researchers have tried
to measure spectra under constrained or controlled conditions,
such as building calibration models for individuals, improving
the reproducibility of the positioning of sensors, controlling the
skin temperature, etc.7,8

Multivariate analyses enable us to automatically and easily
build calibration models that predict an objective variable by
removing the influences of the disturbances. However, when
the calibration models built by multivariate analyses are used,
the processes to predict the blood glucose contents from mea-
sured NIR spectra are so-called black boxes. Therefore, many of
the former studies using multivariate analyses have reported
only the prediction accuracy of the blood glucose content, and
have not evaluated the results from a spectroscopic point of view
with consideration of the glucose signals or disturbances con-
tained in the measured NIR spectra. As a result, unfortunately,
trial and error studies with concepts or methods similar to those
already found to be unsuccessful by former studies have been
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repeatedly conducted. This fact might be one of the reasons for
the delayed realization of noninvasive blood glucose prediction
by NIR spectroscopy.

Arnold et al.9 applied a net analyte signal (NAS) method to
noninvasive NIR glucose prediction for evaluation of glucose
signals and disturbances contained in the measured spectra.
They obtained NIR transmission spectra by in vivo experiments
using rats and by in vitro experiments using aqueous glucose
solutions in the wavelength range from 2040 to 2380 nm and
predicted the glucose contents from the spectra. They showed
that the calculated NAS vectors agreed well with the regression
vectors obtained from the partial least squares (PLS) analysis
which correctly predicted glucose content, and they concluded
that analysis of the regression vectors could provide valuable
insights into the chemical basis of selectivity for multivariate
calibration models.

Alexeeva and Arnold10 made a heterogeneity distribution
map of the ingredients contained in rat skin tissue, i.e.,
water, collagen, fat, keratin, etc., by a microspectroscopy tech-
nique measuring NIR transmission spectra in the wavelength
range from 2040 to 2380 nm. They concluded that such a hetero-
geneity resulted in a significant disturbance for the blood glu-
cose prediction and that appropriate corrections were needed to
reduce the influence of tissue heterogeneity for accurate non-
invasive glucose prediction in the future.

Maruo et al.11,12 proposed a unique method for building a
calibration model from NIR diffuse reflectance spectra obtained
numerically by a Monte Carlo simulation using the absorption
and scattering coefficients of living tissues. Their method made
it possible to arbitrarily numerically incorporate the disturbances
into the spectra by properly adjusting the optical properties
according to the changes in the contents of tissue components
and other disturbing factors. They generated a total of 64 NIR
diffuse reflectance spectra of human skin in the wavelength
range from 1400 to 1850 nm by changing the glucose, water,
fat, and protein contents as well as the scattering coefficient and
temperature in the skin. A calibration model for noninvasive
blood glucose prediction was built by a multivariate analysis
from the 64 spectra, and the performance of this method was
examined with clinical measurements. It is suggested that the
major factors disturbing the spectra were water, fat, protein,
scattering, and temperature changes in the skin tissue.

Toward the realization of noninvasive glucose prediction, we
believe that the origins and magnitudes of the disturbances con-
tained in the measured spectra should be understood and that the
disturbances should be removed by calibration models obtained
by multivariate analysis, or by controlling the measurement
conditions, or by other methods.

The purpose of this study is to develop a method that can
clearly show the process of predicting the blood glucose con-
tents from measured spectra for understanding the origins and
magnitudes of the disturbances and which can successfully trace
and predict the changes in the blood glucose content. The blood
glucose prediction method developed in this study is similar to
the methods based on the conventional classical least squares
(CLS) method,13 and is summarized in the following.

NIR absorbance spectra are obtained periodically from the
reflectance spectra measured at the fixed measurement position
of human skin irradiated by NIR light. Then, the absorbance
difference spectra are calculated by subtracting the basis absorb-
ance spectrum, which is the first absorbance spectrum measured
at the beginning of measurement, from the measured absorbance

spectra obtained every 5 min. Using the modified Beer’s law,14

we assume that the absorbance difference spectra can be syn-
thesized by a linear combination of NIR absorption spectra
of four components in the skin tissue (water, protein, glucose,
and fat) and scattering equivalent absorption (so-called base-
line15) component, and we can obtain the temporal changes
in the contents of the components by solving the linear equa-
tions for five wavelengths characteristic to the five components.
The temporal changes in the glucose content in the skin have
been found to reflect the temporal changes in the glucose con-
tent in the blood with a time delay of about several minutes.16,17

Therefore, the temporal changes in the glucose content obtained
above are expected to trace the temporal changes in the blood
glucose content, but the results show failures. The reasons for
the failures can be partly attributed to the changes in the scatter-
ing property in the skin after attaching the probe on the skin and
to the difficulty of separating the glucose and baseline compo-
nents. In order to incorporate the gradual changes in the scatter-
ing property during measurement in real time and to separate the
glucose and baseline components, we develop a new approach
to introduce a temporally varying imaginary component, which
combines and replaces the baseline and fat components. The
obtained changes in the glucose contents successfully trace and
predict the changes in the blood glucose contents.

In Sec. 1, the background and purpose of this study are
described, and the method proposed in this study is summarized.
In Sec. 2, the prediction method, which is a simple application of
the standard CLS method based on the modified Beer’s law, is
formulated by considering the five components (water, protein,
glucose, fat, and baseline), and the experimental setup and data
acquisition are explained. Then the results using the five com-
ponents are described and the reasons for the failures of the pre-
diction are explained. In Sec. 2.2, the imaginary component is
introduced, and the results using the imaginary component are
described and show the success in prediction. Sections 3 and 4
give discussion and conclusions, respectively.

2 Methods Based on the Modified Beer’s Law

2.1 Formulation of the Blood Glucose Prediction

Based on the modified Beer’s law, we first define three dimen-
sionless quantities, i.e., the absorbance difference spectrum
(expressed as the absorbance difference or the difference spectra
for simplicity where it is understood without confusion),

Fig. 1 Absorption spectra, Ai ðλÞ, of the four components in living
tissues and baseline for synthesizing the absorbance difference
spectra.
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ΔODðλ; tÞ, the absorption spectrum of component i, AiðλÞ, and
the content index of component i, NiðtÞ, where λ and t are the
wavelength and time after the start of the measurement, respec-
tively. Appendix A gives the detailed derivations of the three
quantities and the relationship among them, Eq. (15), which
is rewritten below as Eq. (1), meaning that ΔODðλ; tÞ is
synthesized (or constructed) by the sum of the products of
AiðλÞ and the difference in NiðtÞ, ΔNiðtÞ, over the components
of concern

ΔODðλ; tÞ ¼
X
i

AiðλÞΔNiðtÞ: (1)

In this study, a total of five components (water, glucose, pro-
tein, fat, and baseline) are chosen to synthesize the absorbance
difference spectra. The methods at determining AiðλÞ of the five
components are given in Appendix B, and Fig. 1 shows AiðλÞ of
the five components. The baseline component, which is the
scattering equivalent absorption spectrum, is one of the key

components in this study. In our previous study, we created
diffuse reflectance spectra from a Monte Carlo simulation of
light propagation in the skin tissue and built a calibration model
from these spectra using a PLS analysis.11 Six components that
influenced the spectra were chosen in the simulation, and five of
them are also chosen in this study. One component that is not
used in this study is temperature. During the experiments con-
ducted in this study, the skin temperature was controlled and
kept at 35� 0.1°C by fixing the optical probe to the skin surface
by an adhesive tape as explained in Sec. 2.2, while in the
previous study, the probe was attached to the skin surface by
pushing at each spectral measurement.12 Thus, temperature is
excluded from the disturbance components to reduce the num-
ber of disturbances for a better demonstration of the method in
this study.

Equation (1) is applied at the five characteristic wavelengths
of the five components to obtain a set of simultaneous equa-
tions, Eq. (2):

2
66666664

ΔODð1450; tÞ
ΔODð1510; tÞ
ΔODð1600; tÞ
ΔODð1650; tÞ
ΔODð1727; tÞ

3
77777775
¼

2
66666664

AWð1450ÞAPð1450ÞAGð1450ÞASð1450ÞAFð1450Þ
AWð1510ÞAPð1510ÞAGð1510ÞASð1510ÞAFð1510Þ
AWð1600ÞAPð1600ÞAGð1600ÞASð1600ÞAFð1600Þ
AWð1650ÞAPð1650ÞAGð1650ÞASð1650ÞAFð1650Þ
AWð1727ÞAPð1727ÞAGð1727ÞASð1727ÞAFð1727Þ

3
77777775

2
66666664

ΔNWðtÞ
ΔNPðtÞ
ΔNGðtÞ
ΔNSðtÞ
ΔNFðtÞ

3
77777775
; (2)

where the subscripts of AiðλÞ and ΔNiðtÞ, i.e., i ¼ W, P, G, S,
and F, indicate water, protein, glucose, baseline, and fat, respec-
tively. The characteristic wavelengths of the four tissue compo-
nents are selected at their absorption peaks of 1450 nm for water,
1510 nm for protein, 1600 nm for glucose, and 1727 nm for fat,
respectively. For the baseline, that has no absorption peak, we

have selected 1650 nm for the reason that the influences of
water, protein, and fat on the measured spectral changes
would be relatively small at λ ¼ 1650 nm, where absorption
by these components is weak.

By solving Eq. (2), the unknowns, ΔNWðtÞ, ΔNPðtÞ,
ΔNGðtÞ, ΔNSðtÞ, and ΔNFðtÞ, are obtained as Eq. (3):

2
66666664

ΔNWðtÞ
ΔNPðtÞ
ΔNGðtÞ
ΔNSðtÞ
ΔNFðtÞ

3
77777775
¼

2
66666664

AWð1450ÞAPð1450ÞAGð1450ÞASð1450ÞAFð1450Þ
AWð1510ÞAPð1510ÞAGð1510ÞASð1510ÞAFð1510Þ
AWð1600ÞAPð1600ÞAGð1600ÞASð1600ÞAFð1600Þ
AWð1650ÞAPð1650ÞAGð1650ÞASð1650ÞAFð1650Þ
AWð1727ÞAPð1727ÞAGð1727ÞASð1727ÞAFð1727Þ

3
77777775

−12
66666664

ΔODð1450; tÞ
ΔODð1510; tÞ
ΔODð1600; tÞ
ΔODð1650; tÞ
ΔODð1727; tÞ

3
77777775
: (3)

There are several reasons why we do not use the measured
spectra fully over the whole wavelength range but use only the
characteristic wavelengths: (1) the relation between the differ-
ence spectra and the quantities associated with the components
is intuitively understood, (2) numerical calculation of Eq. (3) is
easy, (3) the differences between the results using the full spectra
and those using the characteristic wavelengths are found to be
very small from our experiences, and (4) using only several
wavelengths is more practical than using the full spectra toward
the realization of noninvasive blood glucose monitoring devices.

The absolute values of the contents of the components cannot
be obtained because the modified Beer’s law includes unknown
light path lengths in the skin, but the temporal changes in the
contents of the components relative to those at the beginning
can be obtained. The predicted blood glucose content, GpðtÞ, is
obtained by Eq. (4) from the change in the glucose content

index, ΔNGðtÞ, using a conversion factor, r, and the measured
(true) initial blood glucose content, Gmðt ¼ 0Þ
GðtÞ ¼ rΔNGðtÞ þ Gmðt ¼ 0Þ ½mg∕dL�: (4)

2.2 Experiments

We have developed a new diffuse reflectance spectroscopic
instrument to measure the NIR reflectance spectra from the
human skin. Figure 2 shows a schematic diagram of the instru-
ment, which consisted of a 150-W halogen lamp light source
(TYPE 6550, Philips, Netherlands), an optical fiber bundle
that included both source and detector fibers (cladding diameter
200 μm, core diameter 175 μm, NA 0.2, Fujikura, Japan), and a
compact spectrometer containing a grating and a 256-channel
linear-array photodetector (C9914GB, Hamamatsu Photonics,
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Japan). The optical signals from the spectrometer were trans-
ferred to a computer (Let’s Note, Panasonic, Japan) to be proc-
essed for prediction of the blood glucose contents. The source
and detector optical fibers were combined to make a single opti-
cal fiber bundle with a probe that had a cylindrical shape of

20 mm diameter and 8 mm length. Figure 2(a) shows the
arrangement of the optical fibers at the end plane of the
probe, where 12 source fibers surrounded one detector fiber
in a circle with a radius of 650 μm. The temperature of the inter-
face between the probe and the skin surface was proportional-
integral-differential controlled to be kept at 35� 0.1°C with
a ribbon heater and a thermocouple attached to the probe.
Light from the halogen lamp was collected by a concave mirror
and transmitted through the source fibers to irradiate the skin.
Then diffusely reflected light that reached the detector fiber was
transmitted to the spectrometer. The reflected light intensity
from a standard reflectance target, IsðλÞ defined in Eq. (10),
was measured by irradiating a standard 10% reflectance target
(Labsphere, USA) at the beginning of the experiment. The spec-
tra from 1350 to 1850 nm with a wavelength step of ∼4 nm were
used for data processing. The accumulation time of each linear-
array photodetector was 140 ms, and 288 spectra were averaged
per measurement to obtain one spectrum. The quality of the spec-
tra was also assessed by measuring spectra every 5 min over the
period of 120 min and by conducting a root-mean-square (rms)
noise analysis of 100% lines on the collected data. Results
showed that the average rms of the 100% line was 88.0 μAU,
which we predicted was sufficient for the purpose of predicting
the blood glucose contents.18

True blood glucose contents and NIR diffuse reflectance spec-
tra were measured continuously during the experiment in which
blood glucose contents were changed artificially by oral glucose
intake. True blood glucose contents were measured by using a
portable blood glucose meter (DIA meter, Arkray, Japan) from
a blood drop obtained by puncturing a fingertip every 15 min.
The optical probe for spectral measurement was attached on
the inside skin surface of the left forearm of a subject by a medical
double-sided adhesive tape, and the NIR diffuse reflectance spec-
tra were measured every 5 min during the experiment. A 200 ml
of liquid-type nutrition food (Calorie Mate, Otsuka Pharmaceut-
ical Co., Ltd., Japan) containing ∼30 g carbohydrates, 10 g pro-
tein, and 4.5 g lipid was used for oral glucose intake. Each
measurement was taken ∼1.5 h before glucose intake, and ∼2.0 h

after glucose intake. The subject was a healthy man in his fifties
and was kept seated calmly on a chair with a natural posture. His
left forearmwas horizontally placed on a soft pad without fixation,
and he was encouraged to move as little as possible. No remark-
able motion was observed during the measurement.

Fig. 2 (a) Arrangement of the source and detector optical fibers at the probe end and (b) schematic
diagram of the experimental setup.

Fig. 3 Absorbance difference spectra obtained by (a) measurement,
(b) synthesis using the five components, and (c) synthesis using the
four components including the imaginary component.
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Because the measured difference spectra were unstable
immediately after the optical probe was attached to the forearm,
spectral measurements started 30 min after attaching the probe
when the measured absorbance difference spectra became sta-
ble. The first measured absorbance spectrum was used as the
basis spectrum, OD�

1ðλ; t0Þ defined in Appendix A. Measure-
ments of the true blood glucose contents every 15 min started
immediately after attaching the probe, so the third true blood
glucose content and the first absorbance spectrum were mea-
sured at almost at the same time.

The experiment was approved by the ethical committee of
the company where the first author worked.

2.3 Results Using Five Components

Measured and synthesized difference spectra, ΔODðλ; tÞ, are
shown in Fig. 3. Figure 3(a) plots 40 spectra of ΔODðλ; tÞ mea-
sured every 5 min, and it is seen that the measured ΔODðλ; tÞ
increases with the increase in time to depart from the λ axis,
ΔOD ¼ 0. Figure 3(b) plots 40 spectra of ΔODðλ; tÞ syn-
thesized from the calculated ΔNiðtÞ of the five components
using the measured ΔODðλ; tÞ in Fig. 3(a) and Eq. (3). It is
seen that the shapes of the synthesized ΔODðλ; tÞ in Fig. 3(b)
agree well with those of the measured ones in Fig. 3(a). The
change in the glucose content index, ΔNGðtÞ, and the true blood
glucose content, GmðtÞ, are plotted in Fig. 4. From the good
agreement between the measured and synthesized ΔODðλ; tÞ,
it is expected that the profile of ΔNGðtÞ would trace that of
GmðtÞ, but it does not, as is shown in Fig. 4.

Not only in the experiment stated above, but also in other oral
glucose intake experiments, similar disagreements between the
profiles of ΔNGðtÞ and GmðtÞ were observed although good
agreements between the measured and synthesized ΔODðλ; tÞ
were obtained. Resultantly, we conclude that it is difficult to pre-
dict the blood glucose contents correctly by a simple calculation
of Eq. (3), which considers the five components of water, pro-
tein, glucose, fat, and baseline. From these results, we hypoth-
esize the following:

(1) As shown in Fig. 1, the absorption spectra of both
glucose and baseline have no clear absorption peak
with an approximately monotonic increase as the
wavelength increases. Therefore, it is difficult to sep-
arate these two components from the shapes of their
absorption spectra.

(2) The absorption spectra of both glucose and baseline
reveal strong absorption at their characteristic

wavelengths, 1600 and 1650 nm, respectively.
Therefore, they influence each other, and a good pre-
diction of ΔNGðtÞ becomes difficult.

Now we propose a method in the next section to solve the
problems described above so as to separate the glucose and
baseline contributions in the measured ΔODðλ; tÞ, and to simul-
taneously incorporate the gradual change in scattering in the
skin by introducing an imaginary component.

3 Introducing an Imaginary Component and
Results

3.1 Separation of Glucose Contributions from
the Baseline and Fat Contributions in
the Measured ΔODðλ; tÞ

Before introducing an imaginary component, the glucose
contribution in the measured ΔODðλ; tÞ at the characteristic
wavelength of baseline must be separated to solve the problem
stated above. The separation can be conducted by utilizing the
differences in the temporal response between the glucose and
baseline components.

While the probe is attached on the skin by a medical double-
sided adhesive tape with a very small contact pressure, the con-
tribution of baseline increases monotonically and slowly during
the measurement period of ∼5 h. On the other hand, the blood
glucose contents of healthy people increase during the period of
∼1 h after oral glucose intake and then decrease in the following
period of ∼1 h to return to the initial values with some variations
among individuals. This difference in the temporal response
suggests the possibility of a separation of the contributions of
glucose and baseline by temporal averaging of ΔODðλ; tÞ at
λ ¼ 1650 nm, where the absorption spectra of both glucose and
baseline have large values and influence each other. The pro-
posed averaging process is as follows.

The time series of ΔODð1650; tÞ are given by measurements
every 5 min from t ¼ t0 to t ¼ tn (¼ 5j min; j ¼ 0;1; 2; : : : ; n),
and the difference between ΔODð1650; tjÞ and ΔODð1650; t0Þ
is denoted as ΔsðtjÞ ¼ ΔODð1650; tjÞ − ΔODð1650; t0Þ. Then,
at each measurement time, t ¼ tn, the average, ΔsðtnÞ, is given
by Eq. (5):

ΔsðtnÞ ¼ ½Δsðt0Þ þ Δsðt1Þþ ··· þΔsðtnÞ�∕ðnþ 1Þ

¼
Xn
j¼0

ΔsðtjÞ∕ðnþ 1Þ: (5)

Fig. 4 Time series of the glucose content indices (left ordinate) and
the true blood glucose contents (right ordinate) when using the five
components.

Fig. 5 Time series of Δsðt nÞ, Δsðt nÞ, Δf ðt nÞ, and Δf ðt nÞ.
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Figure 5 shows an example of the time series of ΔsðtnÞ and
ΔsðtnÞ. In this experiment, the measurement started at 10∶40
and oral glucose intake was done at ∼12∶00. In the time series
of ΔsðtnÞ, there exists a rise beginning at ∼12∶00 and a drop
beginning at ∼13∶00, which are added to the monotonic
increase with time, suggesting the change in the blood glucose
content by the oral glucose intake. On the other hand, the time
series of ΔsðtnÞ does not show the rise and drop after the oral
glucose intake, but increases monotonically, suggesting that
ΔsðtnÞ mainly reflects the temporal change in the baseline com-
ponent. Thus, the contributions of the glucose and baseline com-
ponents are considered to be separated to some extent.

At the characteristic wavelength of fat, λ ¼ 1727 nm, glu-
cose also has strong absorption, and it is necessary to reduce
the contribution of glucose in the measured ΔODð1727; tÞ.
This is made by taking the difference in ΔODðλ; tÞ between
λ ¼ 1727 nm and λ ¼ 1650 nm, with denoting ΔfðtÞ ¼
ΔODð1727; tÞ − ΔODð1650; tÞ because glucose has a strong
absorption at λ ¼ 1650 nm similar to that at λ ¼ 1727 nm.
Again, ΔfðtÞ is averaged in the same manner as Eq. (5) to
further reduce the contribution of glucose by Eq. (6):

ΔfðtnÞ ¼ ½Δfðt0Þ þ Δfðt1Þþ · · · þΔfðtnÞ�∕ðnþ 1Þ

¼
Xn
j¼0

ΔfðtjÞ∕ðnþ 1Þ: (6)

The time series ofΔfðtÞ andΔfðtnÞ are also plotted in Fig. 5,
and it is seen that the contribution of glucose is reduced in
ΔfðtnÞ, which reflects the change in the fat component to
some extent, although it is not clearly as seen as ΔsðtnÞ.

3.2 Introducing an Imaginary Component with
Creation of Its Spectrum

During the measurement period of ∼5 h, it is reasonable to
assume that the fat content in the skin tissue does not change.
Therefore, we suppose that the large growth of the peak at λ ¼
1727 nm appearing in ΔODðλ; tÞ shown in Fig. 3(a), which is
assigned as a fat absorption peak, is not due to the increase in the
fat content in the skin, but due to the increase in the light inten-
sity propagating in the subcutaneous layer, which contains fat
with a larger content than in the skin. The increase in the light
intensity in the subcutaneous layer is understood to be caused by
the decrease in the scattering coefficient of the stratum corneum
and epidermis. Attaching the probe to the skin surface would

reduce evaporation of moisture from the skin surface and
would increase the water content in the stratum corneum and
epidermis. The increase in the water content causes the decrease
in the scattering coefficient because the difference in the refrac-
tive index between the cells and intercellular liquid decreases.
The decrease in the scattering coefficient in the stratum corneum
and epidermis makes more light propagate in the subcutaneous
layer. From another point of view, because baseline is an expres-
sion of wavelength dependency of scattering by the skin with the
equivalent absorption, the decrease in the scattering coefficient
in the stratum corneum and epidermis causes the decrease in
the reflected light intensity, which means the increase in the
absorption of baseline. As a result, contributions of both the fat
and baseline components, ΔNFðtÞ and ΔNSðtÞ, to ΔODðλ; tÞ
increase with the decrease in scattering in the stratum corneum
and epidermis.

Now we introduce an imaginary component with a content
index of NIðtÞ and an absorption spectrum of AIðλ; tÞ, respec-
tively. Here, AIðλ; tÞ varies with time, and at time tn, it is created
by adding the absorption spectra of baseline and fat, ASðλÞ and
AFðλÞ, to the weights of ΔsðtnÞ and ΔfðtnÞ, respectively, as in
Eq. (7):

AIðλ; tnÞ ¼ ΔsðtnÞASðλÞ þ ΔfðtnÞAFðλÞ: (7)

Equation (7) is more or less heuristically obtained, but there
are some rationales. Combining the absorption spectra of base-
line and fat comes from the fact that the changes in both the
baseline and fat components originate from the changes in scat-
tering in the skin. By combining them, it is possible to consider
only one component, which is dependent on scattering in the
skin. By weighing them with the averaged quantities of
ΔsðtnÞ and ΔfðtnÞ, it is possible to incorporate the intensity
(or significance) of the baseline and fat components in the
imaginary component at each measurement time, respectively.
Note that the absorption spectra of baseline and fat, ASðλÞ
and AFðλÞ, are independent of time, while the absorption spec-
trum of the imaginary component, AIðλ; tnÞ, is dependent on
time so that the imaginary component can reflect the gradual
change in scattering in the skin after attaching the probe on
the skin.

Using the imaginary component that combines and replaces
the baseline and fat components, Eq. (1) for the characteristic
wavelengths of the four components, i.e., water, glucose, pro-
tein, and imaginary, are obtained as Eq. (8) and solved for
the content indices of the four components as Eq. (9):

2
66664

ΔODð1450; tÞ
ΔODð1510; tÞ
ΔODð1600; tÞ
ΔODð1727; tÞ

3
77775
¼

2
66664

AWð1450ÞAPð1450ÞAGð1450ÞAIð1450; tÞ
AWð1510ÞAPð1510ÞAGð1510ÞAIð1510; tÞ
AWð1600ÞAPð1600ÞAGð1600ÞAIð1600; tÞ
AWð1727ÞAPð1727ÞAGð1727ÞAIð1727; tÞ

3
77775

2
66664

ΔNWðtÞ
ΔNPðtÞ
ΔNGðtÞ
ΔNIðtÞ

3
77775
; (8)

2
66664

ΔNWðtÞ
ΔNPðtÞ
ΔNGðtÞ
ΔNIðtÞ

3
77775
¼

2
66664

AWð1450ÞAPð1450ÞAGð1450ÞAIð1450; tÞ
AWð1510ÞAPð1510ÞAGð1510ÞAIð1510; tÞ
AWð1600ÞAPð1600ÞAGð1600ÞAIð1600; tÞ
AWð1727ÞAPð1727ÞAGð1727ÞAIð1727; tÞ

3
77775

−12
66664

ΔODð1450; tÞ
ΔODð1510; tÞ
ΔODð1600; tÞ
ΔODð1727; tÞ

3
77775
: (9)
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Here, the subscript of time, n, is omitted for simplicity, and
the characteristic wavelength of the imaginary component is
selected as 1727 nm, which is the same as that of fat. The char-
acteristic wavelength of baseline, 1650 nm, is closer to that of
glucose, 1600 nm, and better results are expected with the wave-
length of 1727 nm farther from the characteristic wavelength of
glucose.

3.3 Results Using the Imaginary Component

The changes in the content indices of the four components,
ΔNiðtÞ, are obtained using Eq. (9) from the measured data used
in Sec. 3, and the absorbance difference spectra, ΔODðλ; tÞ, are
synthesized by substituting the obtained ΔNiðtÞ into Eq. (8), as
plotted in Fig. 3(c). The time series of the change in the glucose
content index, ΔNGðtÞ, is compared with that of the true blood
glucose content, GmðtÞ, in Fig. 6. Again, the synthesized spectra
using the imaginary component in Fig. 3(c) agree well with the
measured ones in Fig. 3(a), even if the number of components is
reduced from five to four. The change in the glucose content
index, ΔNGðtÞ, traces the change in the true blood glucose con-
tent, GmðtÞ, in Fig. 6 showing the rise and fall during the oral
glucose intake, while in Fig. 4,ΔNGðtÞ did not traceGmðtÞwell.
Using Eq. (4), ΔNGðtÞ in Fig. 6 is converted to the predicted
blood glucose contents, GpðtÞ, with the conversion factor,
r ¼ 1.54 × 104 mg∕dL, and GpðtÞ is compared with GmðtÞ,
the true blood glucose content, in Fig. 7 after shifting GpðtÞ
by 5 min to earlier times due to the time delay. The value of
r was determined from the results of several experiments con-
ducted in advance. The correlation coefficient of the predicted
and true blood glucose contents is 0.93 and the standard error of

prediction (SEP) is 9.9 mg∕dL. The synthesized ΔODðλ; tÞ
using the imaginary component shown in Fig. 3(c) is only
slightly different from those without using the imaginary com-
ponent shown in Fig. 3(b). But, only a slight difference in the
synthesized spectra leads to a significant improvement in the
prediction of the blood glucose contents from Fig. 4 to Figs. 6
and 7, thus demonstrating the good performance of the approach
using the imaginary component.

Another type of the temporal development of ΔODðλ; tÞ dif-
ferent from that showing the growth at λ ¼ 1727 nm in Fig. 3 is
also examined. That type shows a large growth at λ ¼ 1450 nm,
which is the characteristic wavelength of water, and 40 mea-
sured ΔODðλ; tÞ are plotted in Fig. 8(a). While ΔODð1450; tÞ
shows a large increase,ΔODð1600; tÞ at the characteristic wave-
length of glucose shows a decrease. Figure 8(b) shows the syn-
thesized ΔODðλ; tÞ calculated from the solutions of Eq. (9)
using the four components, and the shapes of the synthesized

Fig. 7 Time series of the true blood glucose contents and predicted
ones using the four components.

Fig. 8 (a) Measured absorbance difference spectra, and (b) syn-
thesized absorbance difference spectra using the four components
including the imaginary component for the second experiment.

Fig. 9 Time series of the true blood glucose contents and predicted
ones using the four components for the second experiment. The pre-
dicted blood glucose content is matched with the true one at the time
of the beginning of the oral glucose intake.

Fig. 6 Time series of the glucose content indices (left ordinate) and
the true blood glucose contents (right ordinate) when using the four
components including the imaginary component.
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ΔODðλ; tÞ are very similar to those of the measured ΔODðλ; tÞ
in Fig. 8(a). The calculated ΔNGðtÞ are converted to GpðtÞ with
r ¼ 1.54 × 104 mg∕dL, and Fig. 9 compares GpðtÞ with GmðtÞ
after shiftingGpðtÞ for compensation of the 5-min time delay. In
this case, the true initial blood glucose content, Gmðt ¼ 0Þ, was
100 mg∕dL, which should have been used in Eq. (4). However,
the predicted glucose content,GpðtÞ, decreased rapidly from the
beginning of the spectral measurement to the time of the oral
glucose intake, while the true blood glucose content, GmðtÞ,
remained constant during that period. As a result, GpðtÞ sig-
nificantly deviated from GmðtÞ. In this case, Gmðt ¼ 0Þ
(¼ 100 mg∕dL) in Eq. (4) is replaced by Gmðt ¼ 70Þ (¼ 100þ
115 mg∕dL) so thatGpðtÞ is equal toGmðtÞ at 11:40, the time of
the oral glucose intake. As shown in Fig. 9, GpðtÞ agrees well
with GmðtÞ after the oral glucose intake. The disagreement in
the early period has to be investigated and solved in the future.
The correlation coefficient and SEP for the whole period are
0.56 and 27.7 mg∕dL.

4 Discussion
From this study, it is found that the difficulty in predicting the
blood glucose content from the reflectance measurements mainly
originates from the change in baseline (the change in scattering
in the skin) and from the similarity of the absorption spectra
between glucose and baseline. Their influences are reduced by
introducing the imaginary component. In the process of introduc-
ing the imaginary component, the difference in the time response
between the glucose content and scattering (baseline) is used to
separate their contributions to the measured ΔODð1650; tÞ. By
creating the absorption spectrum of the imaginary component,
the performance of predicting the blood glucose contents is sig-
nificantly improved. In other words, utilizing temporal informa-
tion in addition to intensity information in the measured spectra
greatly improves the prediction performance.

Because the imaginary component is created using the
absorbance difference spectra measured at the fixed position
on the skin sequentially from the start of measurement to the
time of concern, it reflects the gradual changes in scattering
in the skin irrespective of the differences in individuals, meas-
urement positions, seasons, etc. Therefore, the method using the
imaginary component is appropriate for real-time prediction of
blood glucose contents. However, the four components includ-
ing the imaginary component are not necessarily universal for
all cases as demonstrated by the failure shown in Fig. 9. There-
fore, other key components must be found by further develop-
ments of the approach proposed in this study toward the clinical
use of NIR noninvasive blood glucose monitoring.

Instead of introducing the imaginary component, which com-
bines and replaces the baseline and fat components, modifica-
tion of the absorption spectra of baseline and fat by multiplying
the temporal averages, such as ΔsðtnÞASðλÞ and ΔfðtnÞAFðλÞ,
respectively, may be another choice for separating the glucose
contributions and for incorporating the scattering changes. In
this case, the number of the components is kept at five, and
the results of the synthesized ΔODðλ; tÞ and GmðtÞ may provide
more information for improving the prediction. More appropri-
ate modifications than the method proposed in this study may be
possible and developed in future studies.

Conventional methods using multivariate analyses, such as
principal component regression and PLS, also utilize temporal
information. However, in the case where there exist some com-
ponents that occasionally correlate with the blood glucose

content, there is the possibility of a so-called chance temporal
correlation,19 because the calibration models are built after
the whole measurement data are obtained. On the other hand,
the method proposed here calculates the glucose content index
from the absorbance difference spectra at every measurement
time (every 5 min) and predicts the blood glucose content inde-
pendent of the measurements after the measurement at that time
of concern. So the possibility of chance temporal correlation is
very small in the proposed method.

Because the temporal averaging used in this study presumes
the time response of the blood glucose content for healthy peo-
ple, it will be necessary to study further for application to dia-
betes patients, who might have time responses different from
healthy people.

Better methods other than the temporal averaging used in this
study will also be possible because its purpose is to remove the
influences of the glucose contributions from the measured
ΔODð1650; tÞ and ΔODð1727; tÞ at the characteristic wave-
lengths of baseline and fat, respectively. It is well known that
the influence of baseline can be reduced by pretreatment of
the measured spectra such as differentiation and multiplicative
scatter correction. Former studies of the quantification of blood
glucose content in living bodies20 and in red blood cell prod-
ucts21 reported that the performances of the quantification were
improved by the pretreatment. Introducing the imaginary com-
ponent to replace baseline may be similar to the pretreatment in
the former studies.

In the two experiments described in this study, we used the
conversion factor, r ¼ 1.54 × 104 mg∕dL, for predicting GmðtÞ
from ΔNGðtÞ. The glucose content index is given as
NGðtÞ ¼ cGðtÞ∕cG0, and the conversion factor, r, can be deter-
mined from the measured glucose content, cGðtÞ, and the standard
glucose content, cG0. However, because it is difficult to estimate
the value of the standard glucose content, cG0, the conversion fac-
tor, r, was empirically determined by comparing the change in the
true blood glucose content with the change in the glucose content
index. Although it is difficult to determine the value of cG0, the
value is constant, and it is reasonable to use the same conversion
factor consistently. Good results of predicting the blood glucose
content after the oral glucose intake in the two experiments using
the same conversion factor illustrate the description above.

In CLS methods that are similar to our method, it is generally
understood that estimation of the number of components for
synthesizing spectra is very important, and that correct numbers
of the components provide accurate predictions, while incorrect
numbers of the components with unexpected disturbances lead
to inaccurate predictions. Therefore, the large prediction errors
from the beginning of the experiments to the oral glucose intake
in Fig. 9 are thought to be caused by unexpected disturbances
contained in the measured spectra. By attaching the probe to the
skin surface, the increase in the water content and smoothing in
the cell shape in the stratum corneum and epidermis drastically
and simultaneously take place, especially at the beginning of the
probe tip attachment. The large growth of the water absorption
peak around λ ¼ 1450 nm in ΔODðλ; tÞ shown in Fig. 8 indi-
cates that some phenomena related to water are attributed to the
large prediction errors shown in Fig. 9.

In this study, it is assumed that the effective optical path
length, l, does not depend on the wavelength, λ, but l actually
increases with the increase in the wavelength because l depends
on the scattering coefficient similar to baseline. According to
numerical simulation of light propagation in the skin, l increases
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from 1.2 to 2.0 mm as the wavelength increases from 1350 to
1800 nm when the distance between the source and detector
fibers is 0.65 mm.22 It will be possible to incorporate this wave-
length dependency of l in a future study.

In contrast to the methods using multivariate analyses, the
proposed method based on the modified Beer’s law does not
build a calibration model, which needs many premeasurement
data in advance, but needs only the absorption spectra of the
components in living tissues and baseline. This feature of the
proposed method will be very useful for the realization of prac-
tical devices for accurate blood glucose prediction although
it is necessary to discuss precision, error and detection limit, and
so on in comparison with chemometrics methods before the
proposed method is really available for clinical use.

5 Conclusions
The glucose prediction method based on the modified Beer’s
law to synthesize the measured absorbance difference spectra
from the absorption spectra of the components in living tissues
and baseline is investigated. Synthesizing the measured spectra
provides clear understanding of the process of blood glucose
prediction from the measured spectra. It is found that the
main factors of large prediction errors are the gradual changes
in scattering in the skin and the similarity in the shapes of the
absorption spectra between glucose and baseline. The prediction
errors caused by these two factors are found to be improved sig-
nificantly by introducing the imaginary component combining
and replacing the baseline and fat components after separating
the glucose contributions from the measured absorbance
differences at the characteristic wavelengths of the baseline and
fat components. The results using the imaginary component
demonstrate the possibility of simple and real-time blood glu-
cose prediction using NIR spectroscopy based on the modified
Beer’s law, although there still exist unknown disturbances that
affect the prediction accuracy.

Because the imaginary components created from the spectra
measured at the fixed position on the skin sequentially from the
start of measurement to the time of concern are free from the
differences in individuals, measurement positions, seasons, etc.,
the method using the imaginary component is appropriate for
real-time prediction of blood glucose contents. Thus, the pro-
posed method will become a useful tool for realizing non-
invasive blood glucose prediction using NIR spectroscopy with
further development for incorporating unexpected disturbances
in addition to the disturbances considered in this study.

Appendix A Relation Between the Difference
Spectra and the Contents of the Components
Based on the Modified Beer’s Law
The absorbance difference spectra at time t and wavelength λ,
i.e., ΔOD�ðλ; tÞ, is defined by the difference between the
measured absorbances at state 2 and state 1, OD�

2ðλ; tÞ and
OD�

1ðλ; t0Þ, respectively:

ΔOD�ðλ; tÞ ¼ OD�
2ðλ; tÞ − OD�

1ðλ; t0Þ

¼ − ln
I2ðλ; tÞ
I0ðλÞ

þ ln
I1ðλ; t0Þ
I0ðλÞ

¼ − ln
I2ðλ; tÞ
I1ðλ; t0Þ

¼ − ln
I2ðλ; tÞ∕IsðλÞ
I1ðλ; t0Þ∕IsðλÞ

; (10)

where I0ðλÞ is the source light intensity, I1ðλ; t0Þ and I2ðλ; tÞ
are the reflected light intensities at a reference time (state 1,
t ¼ t0) and an arbitrary time (state 2, t ¼ t), respectively, and
IsðλÞ is the reflected light intensity from a standard reflectance
target.

Theoretically, the absorbances, OD�
1ðλ; t1Þ and OD�

2ðλ; tÞ, are
given by the modified Beer’s law, which is applied to light scat-
tering media as Eqs. (11) and (12), respectively:

OD�
1ðλ; t0Þ ¼

X
i

ε�i ðλÞci1ðt0Þl1ðλ; t0Þ þ Bðλ; t0Þ; (11)

OD�
2ðλ; tÞ ¼

X
i

ε�i ðλÞci2ðtÞl2ðλ; tÞ þ Bðλ; tÞ; (12)

where subscript i indicates the tissue component, such as glu-
cose, water, fat, and protein, subscripts 1 and 2 indicate the
states 1 and 2, respectively, ε�ðλÞ is the molar extinction coef-
ficient (mm−1 M−1), c is the content of each component (M), l is
the effective optical path length (mm), and B is the attenuation
of light intensity by scattering. As the effective optical path
length l and the attenuation by scattering B essentially depend
not only on the wavelength but also on the scattering and
absorption coefficients in the skin tissue, they depend on time.
From Eqs. (10), (11), and (12), the absorbance difference,
ΔOD�ðλ; tÞ, is given as Eq. (13):

ΔOD�ðλ; tÞ ¼
X
i

ε�i ðλÞ½ci2ðtÞl2ðλ; tÞ − ci1ðt1Þl1ðλ; t0Þ�

þ Bðλ; tÞ − Bðλ; t0Þ
¼

X
i

ε�i ðλÞlΔciðtÞ þ ε�BðλÞlΔcBðtÞ: (13)

Here, ΔciðtÞ ¼ ci2ðtÞ − ci1ðt0Þ, and the effective optical path
lengths are assumed not to change by the change from state 1 to
state 2 and not to depend on the wavelength, i.e., l1ðλ; t0Þ ¼
l2ðλ; tÞ ¼ l, and the change in the attenuation by scattering is
assumed to be expressed in the same manner as the other com-
ponents in living tissue, as Bðλ; tÞ − Bðλ; t0Þ ¼ ε�BðλÞlΔcBðtÞ
when introducing the equivalent molar extinction coefficient,
ε�BðλÞ, and an equivalent content, cBðtÞ. Now, the content of
each component, ciðtÞ, is expressed as a product of each stan-
dard content, ci0, and a coefficient, NiðtÞ, i.e., ciðtÞ ¼ ci0NiðtÞ,
and the standard absorption spectrum of the component i,
including attenuation by scattering, is defined as A�

i ðλÞ ¼
ε�i ðλÞci0l. Then, Eq. (13) is simplified to Eq. (14):

ΔOD�ðλ; tÞ ¼
X
i

A�
i ðλÞΔNiðtÞ; (14)

where ΔNiðtÞ ¼ Ni2ðtÞ − Ni1ðt1Þ, and Ni is called the content
index of the component i.

An additional procedure is performed on the absorbance
difference spectrum, ΔOD�ðλ; tÞ, and the standard absorption
spectrum, A�

i ðλÞ. They are adjusted to be equal to zero at λ ¼
1400 nm and denoted as ΔODðλ; tÞ and AiðλÞ, and expressed by
Eqs. (15) and (16), respectively:
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ΔODðλ; tÞ ¼ ΔOD�ðλ; tÞ − ΔOD�ð1400; tÞ
¼

X
i

A�
i ðλÞΔNiðtÞ −

X
i

A�
i ð1400ÞΔNiðtÞ

¼
X
i

AiðλÞΔNiðtÞ; (15)

AiðλÞ ¼ A�
i ðλÞ − A�

i ð1400Þ: (16)

The idea of adjustment at λ ¼ 1400 nm came from our
preliminary experiment using liquid phantoms. The liquid
phantoms made of Intralipid solution (Fresenius Kabi) had the
reduced scattering coefficients of either 1.35 or 1.65 mm−1 and
contained glucose with five glucose contents from 100 to
800 mg∕dL simulating the range of the human blood glucose
content. The absorbance spectra of the total of 10 phantoms
in the wavelength range from 1300 to 1850 nm were measured
and analyzed. As a result, when the absorbance spectra were
adjusted to be equal to zero at λ ¼ 1400 nm, their values at λ ¼
1600 nm (a peak wavelength of glucose absorption) for all the
phantoms were plotted on one regression line as a function of
the glucose content. This means that the values at λ ¼ 1600 nm
of the adjusted (at λ ¼ 1400 nm) standard absorbance are inde-
pendent of the reduced scattering coefficient of the background
medium.23 Therefore, adjustment at λ ¼ 1400 nm was found to
reduce the effect of the disturbance by scattering the change of
predicting blood glucose contents. So in this study, we also use
adjustment at λ ¼ 1400 nm.

In the main text of this study, the adjusted absorbance differ-
ence, ΔODðλ; tÞ, is simply called the absorbance difference
spectrum, and the adjusted standard absorption spectrum, AiðλÞ,
is also simply called the absorption spectrum.

Appendix B
Determination of the Absorption Spectra
The absorption spectra, AiðλÞ, of the five components of water,
protein, glucose, fat, and baseline are calculated from the stan-
dard absorption spectra, A�

i ðλÞ, by adjusting at λ ¼ 1400 nm.
A�
i ðλÞ of the five components are determined as described in

the following.
A�
i ðλÞ of water and glucose were obtained from the transmit-

tance measurements of pure water and an aqueous glucose sol-
ution (with the glucose content of 10 g∕dL) in cells with a
thickness of 1.0 mm. The measured absorbance (− ln½I1ðλÞ∕
I0ðλÞ�) of the pure water sample was equal to A�

i ðλÞ, and the
absorption coefficient, μaðλÞ, of water was obtained by dividing
A�
i ðλÞ by the cell thickness. Note that the absorption coefficient

is given as μaðλÞ ¼ ε�ðλÞc, and A�ðλÞ ¼ μaðλÞ · l ¼ ε�ðλÞ · cl in
general. μaðλÞ of the aqueous glucose solution was also obtained
by dividing the measured absorbance by the cell thickness, and
μaðλÞ of pure glucose was obtained by subtracting μaðλÞ of pure
water from μaðλÞ of the aqueous glucose solution. Then, the
extinction coefficient, ε�i ðλÞ, of glucose was obtained by divid-
ing μaðλÞ of glucose by the concentration of the glucose,
i.e., 10 g∕dL ¼ 0.56 M.

The samples of protein and fat were collagen and beef tallow,
respectively, which are scattering media. Then the absorption
coefficients of protein and fat, μaiðλÞ (subscript i represents pro-
tein or fat), were obtained by an inverse Monte Carlo calculation
from the measured spectra of the transmittance and reflectance
using a spectrometer (UV-3100, Shimazu, Japan) equipped with

an integrating sphere.24 The cell thicknesses of the samples, li,
were 0.5 mm for collagen and 1.0 mm for beef tallow, but the
concentration of the samples, ci0, were unknown. Therefore, the
absorption coefficient of collagen and beef tallow was given as
μaiðλÞ ¼ ε�i ðλÞci0αi with arbitrary values of ci0αi. Then the stan-
dard absorption spectra were given as A�

i ðλÞ ¼ ε�i ðλÞci0li ¼
μaiðλÞli∕αi.

A�
i ðλÞ of baseline was estimated from the scattering coeffi-

cient of epidermis. As indicated in the papers of Troy and
Thennadil25 and Simpson et al.,26 the scattering coefficient of
epidermis decreases monotonically with the increase in the
wavelength. When the scattering coefficient decreases, the dif-
fuse reflectance also decreases, resulting in the increase in the
absorbance. Therefore, A�

i ðλÞ of baseline was given to increase
monotonically with the wavelength.

In general, the absorption spectrum of component i, AiðλÞ, is
expressed by Eq. (17) with the extinction coefficient normalized
by an arbitrary factor αi as εiðλÞ ¼ ε�i ðλÞ∕αi:
AiðλÞ ¼ A�

i ðλÞ − A�
i ð1400Þ ¼ αiεiðλÞci0l − αiεið1400Þci0l:

(17)
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