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Abstract. We propose an offset-sparsity decomposition method for the enhancement of a color microscopic
image of a stained specimen. The method decomposes vectorized spectral images into offset terms and sparse
terms. A sparse term represents an enhanced image, and an offset term represents a “shadow.” The related
optimization problem is solved by computational improvement of the accelerated proximal gradient method
used initially to solve the related rank-sparsity decomposition problem. Removal of an image-adapted color
offset yields an enhanced image with improved colorimetric differences among the histological structures.
This is verified by a no-reference colorfulness measure estimated from 35 specimens of the human liver, 1
specimen of the mouse liver stained with hematoxylin and eosin, 6 specimens of the mouse liver stained
with Sudan III, and 3 specimens of the human liver stained with the anti-CD34 monoclonal antibody. The col-
orimetric difference improves on average by 43.86% with a 99% confidence interval (CI) of [35.35%, 51.62%].
Furthermore, according to the mean opinion score, estimated on the basis of the evaluations of five pathol-
ogists, images enhanced by the proposed method exhibit an average quality improvement of 16.60% with
a 99% CI of [10.46%, 22.73%]. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.7.076012]
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1 Introduction
Visualization of different tissue structures in a histological speci-
men and the corresponding microscopic analysis undertaken by
pathologists is still a basic clinical workflow required for an
assessment of specimens and for diagnosing a disease. That
is, pathologists look for visual cues to distinguish between
healthy and diseased tissues. In this regard, various stains
and tags are attached to biological tissues to improve the colori-
metric difference between the tissue components (histological
structures), thereby improving their visibility.1,2 For example,
it is known that in hematoxylin–eosin (H&E)-stained slides,
color information is essential to discriminate between healthy
and diseased tissues.3,4 However, because of the variations in
the tissue preparation processes such as collection, preservation,
sectioning, staining, and illumination, the tissue color and tex-
ture can vary considerably between specimens. These nonbio-
logical experimental variations are also known as batch
effects.5,6 For example, variation in the spectral signature of
the stained tissue creates noise at image acquisition; this
noise is also known as biochemical noise.3,7 These variations
can change the quantitative morphological image features,
and this makes it difficult to reach an accurate diagnosis,5

e.g., in the field of digital pathology, i.e., computerized
image analysis8 that has entered an era of computer-assisted
diagnosis and treatment of medical conditions based on an
analysis of medical images.2,9–12 For example, accurate

segmentation of the images of H&E-stained slides is very chal-
lenging because of the weak (fuzzy) boundaries between histo-
logical structures.11 The variations discussed above create
additional difficulties in this regard. Further, the diagnosis of
hepatocellular carcinoma is based on the extraction/segmenta-
tion of the trabecula, a specific structure of liver cells, whose
extraction from an H&E-stained specimen of the liver tissue
could sometimes be difficult.13 This difficulty is attributed to
the fact that the extraction of this structure is highly affected
by the variation of color and/or texture of the tissue.13

Variability in the received colors also creates difficulties in
an automated diagnosis of gastric cancer performed on H&E-
stained gastric tissue sections.14 Thus, as emphasized in some
studies,15,16 standardization of the H&E staining process is
one of the key prerequisites of computer-aided systems to pro-
duce accurate clinical data for use by anatomical pathology
diagnosis assisting systems. Furthermore, as shown in a recent
study,17 pathology experts are sensitive to color variations.
Further, specimen-dependent variation in the color and/or tex-
ture of a tissue causes disagreement in diagnosis between path-
ologists; this disagreement can lead to a difference of up to 20%
in the diagnoses.18

The abovementioned problems related to the variations in
the quality of the staining process were the motivation for
the development of an automated image enhancement method,
particularly for enhancing the colorimetric difference between
the histological structures present in the images of a stained
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specimen. Further, in order to be practically relevant, we require
such a method to be truly unsupervised, i.e., a method that does
not require any prior information from the user and is com-
pletely data driven. Such a method would also need to demon-
strate the validity and robustness of performance on images of
different tissues stained, possibly, by various stains. Therefore,
we propose an automated image enhancement method that is
based on the decomposition of an unfolded color image of a
stained specimen into a sum of the approximately constant offset
matrix and the sparse matrix, which denotes an improved image
with an enhanced colorimetric difference between histological
structures. The proposed method can be seen as a special
(degenerative) case of the rank-sparsity decomposition (RSD)
that decomposes a matrix into a sum of low-rank and sparse
matrices.19,20 The method proposed herein decomposes vector-
ized spectral images into a sum of an approximately constant
offset vector and a sparse vector. We have named the proposed
method the offset-sparsity decomposition (OSD) method. In this
method, the offset term corresponds to the l2-norm-based regu-
larization and the sparse term corresponds to the l1-norm-based
regularization in an optimization problem related to the minimi-
zation of the difference between the vectorized spectral images
and the model. Further, because the proposed method is similar
to RSD, the accelerated proximal gradient method21–24 used for
solving the RSD problem can be used for OSD as well, since for
a vector, the nuclear norm equals the l2-norm, and the related
optimization problem in the OSD case is simpler than in the
RSD case. That is, the thresholded singular value decomposition
(SVD) required by nuclear norm (low-rank) regularization in the
RSD problem is trivial to compute for l2-norm regularization in
the OSD problem. The most often suggested application of RSD
is related to the detection of rare events from surveillance vid-
eos.19,25 Therefore, the background is contained in a low-rank
matrix and the foreground (which accounts for rare events) is
held in a sparse matrix. Another often suggested application
of RSD is related to the removal of shadows and specularities
from face images,19 thus increasing the accuracy of face recog-
nition. Herein, to the best of our knowledge, we propose for the
first time, an application of novel OSD to color microscopic
images of a stained specimen in order to enhance the perception
of details (histological structures) and to improve the colorimet-
ric difference between the histological structures contained in
the image. From this perspective, the image adaptive offset
removal by the OSD method is, to some extent, analogous to
the removal of shadows from face images by means of
RSD.19 In particular, we propose the decomposition of an origi-
nal color image by executing OSD on vectorized grayscale
intensity images that correspond to red, green, and blue
(RGB) colors. We call this method the OSD_rgb algorithm.
The OSD-based approach to image enhancement differs from
the l1-norm-based sparsity-regularized denoising, implemented
by soft thresholding (ST),26–28 in the following important
aspects: sparsity-regularized denoising is based on an additive
data model consisting of noiseless data and noise. The proposed
OSD method models data as an additive superposition of the
offset term, noiseless data, and noise. The proposed method,
together with ST and the L1-retinex algorithm,29–31 is illustrated
in Fig. 1 using an enhancement of an image of an H&E-stained
specimen of the human liver [Fig. 1(a)]. The color offset term is
shown in Fig. 1(b), whereas Fig. 1(c) shows an enhanced image
that is captured by the “sparse” term and is of actual interest.
Figure 1(d) shows the image enhanced by denoising that is

based on ST in the wavelet domain, whereas Fig. 1(e) shows
the image enhanced by the L1-retinex algorithm.29

The assumption upon which the proposed OSD_rgb
approach to image enhancement relies is that after the removal
of the image adaptive color offset, the enhanced image will be
sparser than the original image. Thus, such an image will con-
tain more information than the original image; i.e., its entropy
will be lower than the entropy of the original image. This is
attributed to the fact that the sparser the stochastic process is,
the more is its probability density function concentrated around
the mode(s). Consequently, the Fisher information, which is a
measure of the degree of disorder of a system, will increase
(the degree of disorder will be lower; i.e., the signal will be
more predictable).32 Thus, details are expected to be better per-
ceived in the enhanced image than in the original image. It is,
therefore, expected that the proposed method will reduce the
artifacts caused by the previously discussed variations and
standardize the quality of the acquired histopathological images.
Thus, the OSD_rgb method can be used as a preprocessing
method to produce images with an improved colorimetric differ-
ence between the histological structures, and this should help a
pathologist to better perceive visual cues and assess diagnoses.
The OSD_rgb method can possibly be used in computerized
image analysis systems, such as the classification and/or seg-
mentation methods discussed in Ref. 3, for a computer-assisted

Fig. 1 Flowchart of the OSD approach to the enhancement of a color
microscopic image of the stained specimen. Information on image
quality metrics such as mean opinion score (MOS), colorfulness,
sharpness, and contrast can be found in Sec. 2.3. (a) Hematoxylin
and eosin (H&E) stained specimen of human liver with metastasis
from colon cancer: MOS ¼ 4:2, colorfulness ¼ 0.446, sharpness ¼
9.38, contrast ¼ 1.77. (b) Color offset term obtained by OSD_rgb
algorithm. (c) Image enhanced with OSD_rgb algorithm: MOS ¼ 5,
colorfulness ¼ 0.619, sharpness ¼ 9.42, contrast ¼ 1.57. (d) Image
enhanced with the double-density dual-tree discrete wavelet trans-
form soft thresholding Stein’s unbiased risk estimator (DDDTDWT-
ST-SURE) algorithm: MOS¼3.8, colorfulness ¼ 0.443, sharpness ¼
7.08, contrast ¼ 1.87. (e) Image enhanced with the L1-retinex algo-
rithm: MOS ¼ 2.8, colorfulness ¼ 0.305, sharpness ¼ 13.75, and
contrast ¼ 1.05.
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diagnosis complementary to a human pathologist. However, the
ability of the OSD_rgb method to increase the classification rate
of a computerized image analysis system has not been demon-
strated in the current study. In particular, the collection of sam-
ples with annotations (diagnoses) and the selection of features
necessary to build predictive models are critical steps that
require significant effort. In this study, by using a no-refer-
ence-image measure of colorimetric information,33 we have
demonstrated that the OSD_rgb method yields an image with
an improved colorimetric difference between the histological
structures. Further, the performance of the OSD method is com-
pared with that of the L1-retinex algorithm29–31 and that of the
ST of coefficients in a domain obtained using a double-density
dual-tree discrete wavelet transform (DDDTDWT).34

DDDTDWT has improved directional selectivity and can be
used for implementing complex and directional wavelet trans-
forms in multiple dimensions. This makes it suitable for
image denoising/enhancement problems. The MATLAB code
for two-dimensional (2-D) DDDTDWT has been downloaded
from Ref. 35. Denoising has been performed by using ST coef-
ficients at the first resolution level. Further, the threshold has
been estimated adaptively by using the MATLAB function thse-
lect with an option for Stein’s unbiased risk estimator
(SURE).36,37 We call this approach to denoising/enhancement
the DDDTDWT-SURE-ST method. The L1-retinex algorithm
performs image enhancement on the value V component of
the image in the hue-saturation-value (HSV) color space.38

The MATLAB code that implements the L1-retinex algorithm,
as an alternative to the more general nonlocal retinex
method,29,30 is available in Ref. 39.

The rest of this paper is organized as follows: the details of
the OSD_rgb method are presented in Sec. 2. This is followed
by an experimental comparative performance analysis in Sec. 3
and the discussion in Sec. 4. The summary and conclusions are
presented in Sec. 5.

2 Materials and Methods

2.1 Notations and Related Works

Within this paper, we use the following notation: an underlined
upper-case bold letter, e.g., ̱X ∈ RI1×I2×3

0þ , denotes a three-
dimensional (3-D) RGB image tensor consisting of three spec-
tral images corresponding with the red, green, and blue colors,
where each image measures I1 × I2 pixels. An upper-case bold
letter, e.g., X, denotes a matrix; a lower-case bold letter, e.g., x,
denotes a vector; and an italicized lower-case letter, e.g., x,
denotes a scalar. The random variable e that follows the
Gaussian distribution with zero mean and variance σ2 is
denoted as e ∼ Nð0; σ2Þ. The standard model of the observed
image assumed by many image denoising methods is as
follows:26–28,40

bn ¼ sn þ en n ∈ f1;2; 3g; (1)

where bn ∈ R1×I1I2
0þ stands for the intensity of the observed vec-

torized spectral image at a particular color channel,
sn ∈ R1×I1I2

0þ stands for a noiseless but unknown image that
is to be estimated, and en ∼ Nð0; σ2nIÞ stands for the additive
white Gaussian noise (AWGN). Under the AWGN assumption,
an optimal estimate of sn is obtained by solving the log-like-
lihood problem that is regularized by the addition of a wavelet-
domain l1-penalty (a.k.a. sparseness constraint):

min
csn

fkcbn − csnk22 þ λkcsnk1g; (2)

where cbn and csn denote the vectors of coefficients in a wavelet
basis. The exact solution of Eq. (2) is then obtained by ST as
follows:26,27,41

csn ¼ Sλ∕2ðcbnÞ ¼ maxðcbn − λ∕2;0Þ; (3)

such that the max operator is applied entry-wise. An estimate
of sn is obtained through the inverse wavelet transform D:
ŝn ¼ Dcsn . While an optimal value of the regularization con-
stant λ in Eqs. (2) and (3) is proportional to σ2n, SURE enables
its estimate from cbn . In Eq. (2), we assume that csn is sparse,
but this depends on how well the chosen basis represents the
data (image). From this perspective, 2-D DDDTDWT,34

because of its directivity, represents a good choice for the
transformation domain. In addition to fixed transforms, we
can consider the learned ones.42,43

The retinex methodology assumes that an observed image is
a multiplication of the illumination and reflection intensity
terms, whereas the reflection term represents an enhanced
image. Therefore, the retinex method is applied to the value
V channel in the HSV color space as follows:

vði1; i2Þ ¼ iði1; i2Þrði1; i2Þ; (4)

where ði1; i2Þ denotes the pixel location; i denotes the illumina-
tion (shadow) term; and r denotes the reflection term that is of
actual interest. By taking logarithm vlog ¼ logðvÞ, etc., we can
obtain an additive impact of the illumination as follows:31

vlogði1; i2Þ ¼ ilogði1; i2Þ þ rlogði1; i2Þ; (5)

where rlog is then estimated as a solution of the optimization
problem; see also Sec. 6 [Sec. 6.1.3 and Eq. (6.13)] in Ref. 29:

r̂log¼min
rlog

fk∇wrlog−∇w;f ilogk1þαkrlogk2þβkrlog− ilogk2g;
(6)

where ∇wrlog stands for the nonlocal gradient of rlog, see also
Definition 3.7 in Ref. 29, and ∇w;f ilog stands for the nonlocal
filtered gradient of ilog, see also Definition 3.12 in Ref. 29. As
proposed in Ref. 29, in an example related to shadow removal
from an image of a natural scene, we select α ¼ β ¼ 0:5 and a
hard thresholding filter f with a threshold set to 0.015. Then,
r is estimated as r̂ ¼ imadjustfexpðr̂logÞ∕max½expðr̂logÞ�g,31,39
where imadjust represents a MATLAB image enhancement
command. A retinex-enhanced color image is then obtained
by transforming the enhanced value channel component r̂
image from the HSV back to the RGB color space.

2.2 Offset-Sparsity Decomposition

In contrast to Eqs. (1), (4), and (5), we propose the following
model for the intensity of the observed spectral images of a color
microscopic image:

bn ¼ sn þ an þ en n ∈ f1;2; 3g; (7)

where the term sn denotes the noiseless but unknown image,
while the term an represents an offset that, in the spirit of
Ref. 19, will model shadows present in the image due to various
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batch effects.5 The proposed OSD method aims to estimate
an and sn by using only bn. After matricization, fan ∈
R1×I1I2

0þ → An ∈ RI1×I2
0þ g3n¼1 and tensorisation f̱Að∶; ∶; nÞ ¼

Ang3n¼1, ̱A represents the image-adapted color offset.
̱S ∈ RI1×I2×3

0þ , formed analogously from fsn ∈ R1×I1I2
0þ g3n¼1

, rep-
resents an enhanced color microscopic image with, in compari-
son with the original image ̱B, an improved colorimetric
difference between the histological structures present in
the specimen. Under the AWGN assumption, the optimal esti-
mates of an and sn are obtained by solving the log-likelihood
problem regularized by the addition of l2- and l1-penalties
as follows:

ðân; ŝnÞ ¼ min
ðan;snÞ

�
1

2
kbn − an − snk22 þ μkank2 þ μλksnk1

�
:

(8)

Equation (8) can be considered a special case of the RSD
problem:19–21

ðÂ; ŜÞ ¼ min
ðA;SÞ

�
1

2
kB − A − Sk2F þ μkAk� þ μλkSk1

�
; (9)

where B ¼ Aþ S with the dimensions I1 × I2. Therefore, kAk�
denotes the nuclear norm of a matrix (sum of its singular values)
that is used in Eq. (9) as a convex relaxation of the nondeter-
ministic polynomial-hard rank minimization problem.23

Equation (9) is also known as robust principal component analy-
sis, in Ref. 19, which aims to recover a low-rank matrix A in the
presence of the corruption S with a sparse structure and possibly
large values. Equation (9) admits a unique solution with the
value of the regularization parameter set to λ ¼
1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðI1; I2Þ

p
.19,20 The fast proximal gradient (FPG)

optimization method is used for solving Eq. (9).21 To this
end, let us denote X ¼ ðA; SÞ, gðXÞ ¼ kAk� þ λkSk1, fðXÞ ¼
1
2
kB − A − Sk2F . Then, Eq. (9) can be written as follows:

X̂ ¼ min
X

FðXÞ ≐ fðXÞ þ μgðXÞ: (10)

A computationally efficient solution of Eq. (10) is obtained
using proximal gradient algorithms, as shown in Refs. 21–24,
that minimize the sequence of the quadratic approximations
to FðXÞ, denoted as QðX;YÞ, formed at specially chosen points
Y for Lipschitz constant L > 0:

QðX;YÞ≐ fðYÞþ h∇fðYÞ;X−YiþL
2
kX−Yk2F þ μgðXÞ:

(11)

By defining hðYÞ ≐ Y − 1
L∇fðYÞ, we can reduce the minimi-

zation of Eq. (11) to the following:21–24

argmin
X

QðX;YÞ ¼ argmin
X

�
μgðXÞ þ L

2
kX − hðYÞk2F

�
:

(12)

By setting Yk ¼ Xk þ tk−1−1
tk

ðXk − Xk−1Þ, where k denotes
the iteration index for a sequence, the tk ¼
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2k−1

q
Þ∕2 convergence of Eq. (12) is made quad-

ratic.22,44 When gðXÞ ¼ λkSk1, Eq. (12) has a closed-form sol-
ution Skþ1 ¼ Sλμ

L
ðhðYS

kÞÞ. When gðXÞ ¼ kAk�, Eq. (12) has a

closed-form solution Akþ1 ¼ USμ∕LðΣÞVT , where UΣVT stands
for the SVD of hðYA

k Þ. Rank minimization, implied by the min-
imization of a nuclear norm, is not suitable for solving Eq. (8),
which is a special case of Eq. (9), when matrices B, A, and S are
reduced to vectors. However, since for a vector kank2 ¼ kank�,
the nuclear norm minimization from Eq. (9) is reduced to the l2-
norm minimization in Eq. (8), and Eq. (8) for gðxÞ ¼ kank2 has,
like Eq. (9), a closed-form solution anðkþ1Þ ¼ uSμ∕LðσÞvT ,
where uσvT is the SVD of hðyank Þ. However, in the case of a
vector, the SVD is trivial to compute. For a row vector
hðyank Þ, u ¼ 1, σ ¼ khðyank Þk2, and vT ¼ hðyank Þ∕khðyank Þk2.
Thus, the closed-form solution of a vector equivalent to
Eq. (12) related to the minimization of kank2 is computationally
very efficient:

anðkþ1Þ ¼ Sμ∕Lðkhðyank Þk2Þhðyank Þ∕khðyank Þk2: (13)

The closed-form solution of a vector equivalent to Eq. (12)
for gðxÞ ¼ λksnk1 is a standard ST solution of the l1-norm regu-
larized least square problem:26,27

snðkþ1Þ ¼ Sλμ
L
½hðysnk Þ�: (14)

Thus, we can formulate a computationally efficient solution
of the OSD problem [Eq. (8)] by using the FPG method, used in
Ref. 21 to solve the RSD problem [Eq. (9)]. To this end,
Algorithm 2 in Ref. 21 is adopted to solve Eq. (8) such that
the SVD computation step is trivial to compute; see Eq. (13).
As in the case of the RSD problem defined in Eq. (9), the spar-
sity-related regularization constant λ in the OSD problem
[Eq. (8)] is set to λ ¼ 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1; I1 × I2Þ

p ¼ 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 × I2

p
. We

summarize the OSD FPG method in Algorithm 1.
To avoid the color artifacts, the enhancement of the color

images is preferably executed in the CIE L�a�b� color

Algorithm 1 The OSD FPG algorithm.

Input: observed vectorized spectral image bn ∈ R1×I1 I2
0þ , sparsity

regularization constant λ, regularization constant μ, Lipschitz
constant L.

1. anð0Þ ¼ 0; anð−1Þ ¼ 0; snð0Þ ¼ 0; snð−1Þ ¼ 0; t0 ¼ t−1 ¼ 1.

2. while not converge do

3. yank ←anðkÞ þ t k−1−1
t k

½anðkÞ − anðk−1Þ�; ysnk ←snðkÞ þ t k−1−1
t k

½snðkÞ − snðk−1Þ�

4. hðyank Þ←yank − 1
L ðyank þ ysnk − bnÞ.

5. anðkþ1Þ ¼ Sμ∕Lðkhðyank Þk2Þhðyank Þ∕khðyank Þk2
6. hðysnk Þ←ysnk − 1

L ðyank þ ysnk − bnÞ

7. snðkþ1Þ ¼ Sλμ
L
ðhðysnk ÞÞ

8. t kþ1←
1þ

ffiffiffiffiffiffiffiffiffiffi
4t2kþ1

p
2

9. k←k þ 1

10. end while

Output: an←anðkþ1Þ; sn←snðkþ1Þ.
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space instead of the RGB color space. In the case of the
OSD_rgb approach to color image enhancement, which oper-
ates independently on the color channels in RGB color space,
color artifacts are avoided because of the following reason:
even though the optimization problem implied by Eq. (8) is
independently solved for each channel, the data fidelity
terms, f2−1kbn − an − snk22g3n¼1, prevent enhanced spectral

images fsng3n¼1 to deviate significantly from the experimental
spectral image fbng3n¼1. Because of the same reason, the inten-
sity offsets fang3n¼1 that are independently extracted in each
spectral channel, when merged together, yield the image
adapted color offset term. In addition to Fig. 1, this can be
seen in Figs. 2 and 3 in Sec. 3. We summarize the
OSD_rgb algorithm in Algorithm 2.

Fig. 2 Images of the H&E-stained specimen of (a) and (b) human fatty liver; (c) hepatocellular carcinoma.
(d)–(f): Images enhanced with OSD_rgb algorithm corresponding to stained images (a)–(c), respectively.
(g)–(i): Color offset images obtained by OSD_rgb algorithm corresponding to stained images (a)–(c),
respectively. (j)–(l): Images enhanced with L1-retinex algorithm corresponding to stained images (a)–
(c), respectively. (m)–(o): Shadow images obtained by L1-retinex algorithm corresponding to stained
images (a)–(c), respectively. (p)–(r): Images enhancedwith DDDTDWT-ST-SURE algorithm correspond-
ing to stained images (a)–(c), respectively.
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2.3 Performance Measure

To quantify the performance of image enhancement algorithms,
appropriate measures have to be defined. In the case of a color
microscopic image of the stained specimen, the primary concern
is the improvement of the colorimetric difference between the

histological structures.2 To this end, we estimate the colorfulness
attribute, as discussed in Ref. 33, directly from the image. It
measures the amount of chrominance information that humans
perceive. This attribute plays an important role in the quality of
the color image of the stained specimen.2,17 The colorfulness
measure is defined as follows:33

Fig. 3 (a) Image of the H&E-stained specimen of human liver with hepatocellular carcinoma. (b) Image of
anti-CD34-stained specimen of human fatty liver. (c) Image of Sudan III-stained specimen of mouse fatty
liver. (d)–(f): Images enhanced with OSD_rgb algorithm corresponding to stained images (a)–(c), respec-
tively. (g)–(i): Color offset images obtained by OSD_rgb algorithm corresponding to stained images (a)–
(c), respectively. (j)–(l): Images enhanced with L1-retinex algorithm corresponding to stained images (a)–
(c), respectively. (m)–(o): Shadow images obtained by L1-retinex algorithm corresponding to stained
images (a)–(c), respectively. (p)–(r): Images enhancedwith DDDTDWT-ST-SURE algorithm correspond-
ing to stained images (a)–(c), respectively.
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colorfulness ¼ 0.02 × log

�
σ2α

jμαj0.2
�
× log

�
σ2β

jμβj0.2
�
; (15)

where α ¼ red − green color images; β ¼ 0:5 ×
ðredþ greenÞ − blue color images; and σ2α, σ2β, μα, and μβ re-
present the variance and mean along the α and β opponent
color axes, respectively. In addition to the colorfulness measure,
which is objective, we have asked five independent pathology
experts to evaluate the images of routinely stained specimens as
well as the enhanced images. The images were graded on the
scale from 1 to 5. Grade 5 refers to quality that yields the
best perception of details in histological structures. This enabled
us to obtain the mean opinion score (MOS) quality measure for
images of stained specimens as well as for enhanced images.
Even though they are not of primary concern, we have also esti-
mated the sharpness and contrast measures, as discussed in
Ref. 33, from the original and enhanced images. Sharpness is
the attribute related to the preservation of fine details (edges)
in a color image. As described in Ref. 33, the Sobel edge detec-
tor is applied to each RGB color component. Then binary edge
maps are multiplied with the original values to obtain three gray-
scale edge maps. The grayscale edge maps are used as enhance-
ment measure (EME) by measuring the Weber contrast in a
small window (3 × 3 pixels in the case of this study):

EMEsharpness ¼
2

k1k2

Xk1
i¼1

Xk2
j¼1

log

�
Imax;i;j

Imin;i;j

�
;

where k1 and k2 denote the number of blocks across image
dimensions, and Imax;i;j and Imin;i;j represent the maximal and
minimal intensity value in each window, respectively. The
sharpness measure for the color image is then obtained as fol-
lows:33

Sharpness ¼
X3
c¼1

λcEMEsharpnessðgrayedgecÞ; (16)

where the weighting coefficients for the red, green, and blue
components are as follows: λ1 ¼ 0:299, λ2 ¼ 0:587, and
λ3 ¼ 0:114. Contrast is defined as the ratio of the maximum

and the minimum intensity of the entire image.33 Therefore,
for a color image, it is calculated on the luminance component
L� in the CIE L�a�b� color space.

3 Experiments and Results
The OSD_rgb image enhancement method has been compara-
tively evaluated on 35 specimens of the human liver, 1 specimen
of the mouse liver stained with H&E, 6 specimens of the mouse
liver stained with Sudan III, and 3 specimens of the human liver
stained with the anti-CD34 monoclonal antibody. The detailed
diagnostic information is given in Table 1. Descriptions of the
experimental setup are given below.

3.1 Ethics Statements

This study was approved by the Bioethics Committee of the
Ru �der Bošković Institute (BP-2290/2-2012) and the Clinical
Hospital Dubrava Ethics Committee (October 10, 2013).

3.2 Samples of Human Liver Tissue

All tissue samples of the human liver (N ¼ 38) were obtained
from the repository of Department of Pathology and Cytology,
Clinical Hospital Dubrava, Zagreb. After surgical liver resection
or a liver needle biopsy, the tissue was routinely processed (fixed
in 4% formalin for 24 to 48 h, embedded in paraffin blocks, cut
on a microtome into 4 to 5-μm-thick tissue sections, and stained
with H&E). The pathologists then diagnostically evaluated the
samples as follows: fatty liver, hepatocellular carcinoma, liver
metastasis of colon cancer, or pancreatic adenocarcinoma (see
Table 1). The sections were deparaffinized and rehydrated
according to the standard protocols.45 Antigen retrieval was per-
formed by microwaving the sections at 750 W in a 10-mM cit-
rate buffer (pH 6.0) for 2 × 5 min, followed by the acquisition
of a color microscopic image or immunohistochemical staining.

3.3 Immunochemical Staining

Staining of the human liver section with the CD34 antigen is
used for discriminating blood vessels from other similar struc-
tures within the liver tissue. After antigen retrieval, endog-
enous tissue peroxides were quenched by immersion in
0.3% H2O2 in phosphate buffered saline (PBS) for 30 min
at room temperature, followed with three buffer washes.

Algorithm 2 The OSD_rgb algorithm for the enhancement of a color
microscopic image of the stained specimen.

Input: B ∈ R3×I1 I2
0þ unfolded color image of the stained specimen with

vectorized grayscale images fbn ∈ R1×I1 I2
0þ g3n¼1 measuring I1 × I2

pixels. Sparsity regularization constant in Eq. (8): λ ¼ 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 × I2

p
,

regularization constant in Eq. (8): μ ¼ 10−3, threshold constant in
Eqs. (13) and (14): L ¼ 2.

for n ¼ 1∶3

ðan;snÞ ¼ Algorithm1ðbn; λ; μ; LÞ.

end for

Set: A ¼
"a1
a2
a3

#
, S ¼

" s1
s2
s3

#
.

Output: S ∈ R3×I1 I2
0þ unfolded enhanced color image of the stained

specimen. A ∈ R3×I1 I2 unfolded image with the color offset term. The
enhanced color image is obtained by tensorizing S: S ∈ RI1×I2×3

0þ .

Table 1 Information on specimens used for evaluating the perfor-
mance of the OSD_rgb image enhancement method.

Stain

Human liver:
diagnosis and

number of specimens

Mouse liver:
diagnosis and
number of
specimens

H&E Total: 36 Fatty liver: 14; hepatocellular
carcinoma: 8; metastasis of
colon cancer: 12; metastasis of
pancreatic adenocarcinoma: 1

Fatty liver: 1

Sudan III Total: 6 Fatty liver: 6

Anti-CD34
antibody Total: 3

Fatty liver: 3
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Dako EnVision/DAB kit (Dako, Denmark) was used for
blocking no-specific antibody binding. The primary anti-
CD34 antibody (Clone QBEnd10, Dako, Denmark) was
applied in dilution 1:50 in PBS and incubated for 1 h in a
humidified chamber. Then the sections were washed two
times in PBS and incubated with a secondary antibody (per-
oxidase-labeled polymer conjugated to goat anti-mouse
immunoglobulins in a Tris–HCl buffer) for 1 h. The activity
of the peroxidase molecules was visualized with 3,3-dia-
minobenzidine (Dako) followed by counterstaining with
hematoxylin. The sections were analyzed under a light
microscope (Olympus BX51 with a DP50 camera, Japan;
magnification: 200× or 400×), and the images were taken
at almost the same position as the images of the H&E-stained
sections.

3.4 Animal Studies

Eight-week-old male CBA mice were purchased from animal
facilities at Ru �der Bošković Institute. Animals were maintained
in standard conditions on chow diet or on a high-fat diet con-
taining 58% fat, 16.4% proteins, and 25.6% carbohydrates
(Mucedolla, Italy) for a period of 20 weeks. At the end of
the experiment, the animals were euthanized by an overdose
of Ketamidor 10% (Richter Pharma AG, Wels, Austria). The
liver was immediately removed, fixed in Bouin’s solution (picric
acid, saturated aqueous solution—75 ml; formalin, 40% aque-
ous solution—25 ml; acetic acid, glacial—5 ml) for at least 4 h,
washed in PBS, and preserved by immersion in 30% (w/v)
sucrose (Kemika, Zagreb, Croatia) in PBS overnight. Small
pieces of the liver tissue were immersed in an OCT compound
(Sakura, Netherland), frozen in isopentane, cooled by liquid
nitrogen, and cryosectioned at 8 μm in a freezing cryostat
(Leica, Austria). After incubation in a series of tap and distilled
water and ethanol, the frozen sections were incubated in a Sudan
III working solution (0.1% Sudan III solution in 70% alcohol)
for 30 min and then washed in distilled water. The sections were
then counterstained with hematoxylin and viewed under a light
microscope.

3.5 Color Microscopic Image Acquisition and
Processing

The RGB color images of the slides were acquired at room tem-
perature in the mounting medium (10% glycerol in PBS) under
the fluorescence microscope Olympus BX51 with a DP50 cam-
era having a numerical aperture of the objective lens of 1/120, a
magnification of 200× or 400×, and Viewfinder Lite 1.0 image
acquisition software. Each acquired color microscopic image

was stored as a 3-D tensor ̱X ∈ RI1×I2×3
0þ consisting of three gray-

scale images (corresponding to red, green, and blue colors)
measuring I1 × I2 pixels (I1 ¼ 2074, I2 ¼ 2776). Prior to
processing, the images were downsampled by a factor of two
by using the MATLAB imresize command. Thus, the size of
the processed images was 1037 × 1388 pixels. For the purpose
of the image analysis, the image tensor ̱X was unfolded into a
matrix X ∈ R3×I1I2

0þ . That is, the grayscale images were vector-
ized and stored as row vectors measuring 1 × I1I2 elements. The
images were analyzed with software written in the MATLAB®
(the MathWorks Inc., Natick, MA) script language. The
OSD_rgb algorithm took 32.12 s, the L1-retinex algorithm
took 5254 s, and the 2-D DDDTDWT-SURE-ST algorithm
took 7.36 s for the processing.

3.6 Comparative Results

Here, we present the results of the comparative performance
analysis between the OSD_rgb algorithm, the L1-retinex algo-
rithm,29 and the 2-D DDDTDWT-SURE-ST algorithm.34,36

Because 2-D DDDWT requires the number of pixels along
each dimension to be a power of 2, a block measuring 1024 ×
1024 pixels had to be extracted from the original image meas-
uring 1037 × 1388 pixels. Comparative results obtained by the
three methods are shown in Fig. 2 for three images stained using
H&E, and in Fig. 3 for three images stained using H&E, anti-
CD34 monoclonal antibody, and Sudan III, respectively. In addi-
tion to the enhanced images, we show the offset images esti-
mated by the OSD_rgb method and the shadow images
estimated by the L1-retinex method. The values of the estimated
quality measures, calculated relative to the corresponding values
estimated from the original images, are reported in Tables 2 and
3. Images enhanced by the OSD_rgb method had the highest
colorfulness measure, which is crucial for increasing the colori-
metric difference between histological structures. The L1-reti-
nex method yielded very sharp images, but with extremely
low colorfulness measure. The 2-D DDDTDWT-SURE-ST
algorithm yielded enhanced (denoised) images with the highest
contrast and an increased colorfulness measure with respect to
the original images. Finally, according to the relative MOS mea-
sure, the OSD_rgb-enhanced images enabled the best perception
of details; this is in agreement with the highest value of the
colorfulness attribute for the OSD_rgb-enhanced images.

In Fig. 4, we present the relative values of colorfulness,
MOS, sharpness, and contrast measures estimated from 45
images enhanced by the OSD_rgb, L1-retinex, and 2-D
DDDTWT-SURE-ST algorithms as well as from 45 stained
images described in Table 1. In addition to images shown in

Table 2 Relative values, in percentage, of quality measures for images shown in Fig. 2. For each image, the best value for eachmeasure is in bold.

OSD_rgb L1-retinex DDDTDWT-SURE-ST

(d) (e) (f) (j) (k) (l) (p) (q) (r)

Colorful 38.6 50.24 62.92 −40.57 −49.53 −30.55 11.62 10.61 −3.66

MOS 10 13.63 13.63 −20.00 −50.00 −36.36 −15.00 −13.63 −4.54

Sharpness 0.14 0.25 0.38 68.44 71.18 28.34 −21.76 −21.11 −23.60

Contrast −9.84 −10.33 −12.43 −65.28 −39.13 −49.11 0.52 3.8 5.92
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Table 3 Relative values, in percentage, of quality measures for images shown in Fig. 3. For each image, the best value for eachmeasure is in bold.

OSD_rgb L1-Retinex DDDTDWT-SURE-ST

(d) (e) (f) (j) (k) (l) (p) (q) (r)

Colorful 39.51 107.47 62.47 −37.32 −39.86 19.88 5.12 38.43 6.9

MOS 25.00 15.00 56.25 −55.00 −70.00 −6.25 0.00 15.00 0.00

Sharpness 1.84 0.82 0.31 16.94 83.42 80.16 −21.55 −12.48 −29.84

Contrast −14.1 −8.29 −8.42 −57.05 −37.07 −39.11 10.9 0 2.97

Table 4 Mean values and 99% confidence interval (CI) of the estimated relative image quality measures. The best values are in bold.

Colorfulness MOS Sharpness Contrast

Mean (%) 99% CI (%) Mean (%) 99% CI (%) Mean (%) 99% CI (%) Mean (%) 99% CI (%)

OSD_rgb 43.86 [35.35, 51.62] 16.60 [10.46, 22.73] 1.45 ½−1.97;4.86� −10.78 ½−13.16;−8.4�

L1-Retinex −26.31 ½−33.67;−18.95� −37.40 ½−47.27;−27.54� 50.36 [41.59, 59.13] −45.73 ½−50.21;−41.25�

DDDTDWT-SURE-ST 6.84 [2.51, 11.17] −3.67 ½−6.62;−0.71� −21.56 ½−23.23;−19.89� 5.16 [2.61, 7.71]

Fig. 4 Relative values of (a) colorfulness measure, (b) MOS measure, (c) sharpness measure, and
(d) contrast measure. Forty-five images were enhanced by algorithms according to the following legend:
squares: OSD_rgb algorithm, circles: L1-retinex algorithm, and diamonds: 2-D DDDTDWT-SURE-ST
algorithm.
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Figs. 12–3, the original and the OSD_rgb-enhanced images are
shown in Figs. 5–7. Table 4 contains the mean values and the
99% confidence interval (CI), estimated from the relative values
by using the MATLAB command ttest. The OSD_rgb method
yields a statistically significant improvement of colorfulness
(mean value: 43.86% and 99% CI: [41.59%, 59.13%]) and
MOS (mean value: 16.60% and 99% CI: [10.46%, 22.73%]).
It yields a statistically insignificant improvement of sharpness
and yields a small but statistically significant decrease in con-
trast. The L1-retinex algorithm yields a statistically significant
improvement of sharpness and a large, statistically significant
decrease in colorfulness, contrast, and MOS. The 2-D
DDDTDWT-SURE-STyields a small but statistically significant
improvement of colorfulness, a small but statistically significant
decrease in MOS, and a statistically significant decrease in
sharpness. Overall, the OSD_rgb method is the only one that
significantly improves the colorfulness attribute, and this is cru-
cial for increasing the colorimetric difference between the his-
tological structures present in the image of the stained specimen.

This is indirectly confirmed by the highest value of the relative
MOS measure for the OSD_rgb method.

3.7 Description of Prognostic Information

The increased prognostic value of the OSD_rgb enhanced
images is justified by a better perception of the details of the
histological structures present in the specimen. To this end, vis-
ibility of the histological details in the OSD_rgb enhanced
images is compared with that in the microscopic images of
the liver specimens stained with H&E dye in Fig. 3(a), mono-
clonal antibody to CD34 antigen in Fig. 3(b), and Sudan III dye
in Fig. 3(c). Blue nuclei, pink cytoplasm, pale brown cell mem-
brane, gray extracellular space, and pink collagen fibers are
more clearly visible in the OSD_rgb-enhanced image in
Fig. 3(d) than in the image of the H&E-stained section in
Fig. 3(a). Likewise, the location of the monoclonal antibody
binding to the specific antigen on the endothelial cells, which
is marked by brown, is easier to determine on the OSD_rgb-

Fig. 5 (a)–(d): H&E-stained specimen of human fatty liver. (e)–(h): OSD_rgb-enhanced images corre-
sponding to images of stained specimens (a)–(d), respectively. Specimens of human fatty liver: (i) and (j):
anti-CD34-stained; (k) H&E-stained. (l) H&E-stained specimen of human liver with metastasis of colon
cancer. (m)–(p): Images enhanced with OSD_rgb algorithm corresponding to images of stained spec-
imens (i)–(l), respectively. (q) H&E-stained specimen of human fatty liver. (r) H&E-stained specimen of
human liver with metastasis of gastric cancer. (s) and (t) H&E-stained human liver with hepatocellular
carcinoma. (u)–(x): Images enhanced with OSD_rgb algorithm corresponding to images of stained spec-
imens (q)–(t), respectively.
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enhanced image in Fig. 3(e) than in the anti-CD34-stained
image shown in Fig. 3(b). Moreover, it is known that the slides
produced by a frozen section are of a lower quality than those
produced by formalin fixed paraffin embedded tissue process-
ing. Therefore, the staining of the cryosection yields a fuzzy
image such as that of the cryosection of the mouse fatty liver
stained with Sudan III, as shown in Fig. 3(c). However, in
the OSD_rgb-enhanced image shown in Fig. 3(f), it is possible
to see vacuoles with triglycerides (orange), nucleus (blue), and
extracellular space (pink).

4 Discussion
Tissue samples obtained by different methods can vary in shape,
size, and/or quality. Because of the used method and variations
in the conditions of histological processing (such as fixation,
dehydration, antigen retrieval, and sectioning), tissue color
and texture can also vary. To address the abovementioned issues,
the OSD_rgb method for an automated (unsupervised)

enhancement of the color images of a stained specimen is pro-
posed and demonstrated herein. It performs additive decompo-
sition of the vectorized color images of an RGB color image of a
stained specimen into a color offset term and a “sparse” term that
stands for the enhanced image, as shown in Fig. 1 and Eq. (7).
The proposed method is virtually free of user intervention and
yields images of the stained specimen with an improved colori-
metric difference between the histological structures as mea-
sured by the colorfulness attribute. This, according to the
MOS, contributes decisively to the quality improvement of
the OSD_rgb-enhanced images when compared with the origi-
nal images as well as with images enhanced with the L1-retinex
and the 2-D DDDTDWT-SURE-ST methods. This is expected
to lead to a better recognition of the histological structures
present in the specimen. This, in turn, is required for a quanti-
tative assessment of histology and a further diagnosis of the dis-
ease. The performance of the OSD_rgb method is demonstrated
on 36 images of the H&E-stained specimens of the human and

Fig. 6 (a)–(d): H&E-stained specimen of human fatty liver. (e)–(h): OSD_rgb-enhanced images corre-
sponding to images of stained specimens (a)–(d), respectively. (i)–(l): Sudan III-stained specimens of
mouse fatty liver. (m)–(p) OSD_rgb-enhanced images corresponding to images of stained specimens
(i)–(l), respectively. (q) H&E-stained specimen of human fatty liver. (r) H&E-stained specimen of
mouse fatty liver. (s) H&E-stained human liver with metastasis of colon cancer. (t) Sudan III-stained
specimen of mouse fatty liver. (u)–(x): Images enhanced with OSD_rgb algorithm corresponding to
images of stained specimens (q)–(t), respectively.
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mouse livers, 6 images of the Sudan III-stained specimens of the
mouse liver, and 3 images of the anti-CD34-stained specimens
of the human liver with a variety of diagnoses, as shown in
Figs. 2, 3, and 5–7. As shown in Fig. 4 and Table 4, the
OSD_rgb method yields a statistically significant and consistent
improvement of the colorfulness attribute as well as MOS. This
is important for the standardization of the staining processes that
are still frequently used in diagnostic pathology. It is conjectured
that the OSD_rgb method can be used for enhancing images
stored in various databases available for educational and learn-
ing purposes. It could also be applied in a routine clinical work-
flow and for an accurate pathology assessment of other tissues
and/or organs. Therefore, the applicability of the OSD_rgb
method to other types of staining, e.g., reticulin by silver
impregnation should be tested.46 Furthermore, it is conjectured
that the proposed OSD method can be useful in enhancing
images with a large dynamic range that, consequently, causes
a loss of important details such as edges. In such a case, the
OSD-based removal of the offset term is expected to yield
more accurate edge detection results.

5 Conclusion
We have developed a new method for the automated enhance-
ment of a color microscopic image of a stained specimen in
histopathology and have named it the OSD_rgb method. This
method was demonstrated on images of specimens stained
with H&E, Sudan III, and anti-CD34 monoclonal antibody.
The OSD_rgb method, compared to the original images of
stained specimens, improved the colorimetric difference by
an average of 43.86% with 99% CI of [35.35%, 51.62%].
On the basis of MOS, we concluded that the OSD_rgb-enhanced
images, compared with the original images of the stained spec-
imens, improved quality by an average of 16.60% with 99% CI
of [10.46%, 22.73%]. Therefore, we conclude that the OSD_rgb
method can complement pathologists in looking for visual cues
and in assessing a diagnosis.
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