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Abstract. Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT)
system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A
commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid vol-
ume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary
data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This
technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from
computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the
sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location
can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two
breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared
to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy.
The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without
distorting tissue hemodynamics. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.8.086003]
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1 Introduction
The current clinical standard for breast screening is x-ray mam-
mography, with recent evidence confirming that mammograms
offer substantial benefit for early cancer detection. However,
mammography is hampered by a significant false-positive rate,
which is especially high for women with dense breast tissue.
The dense breast population is a particularly important subset
of women because they experience higher incidence and mortal-
ity rates from the disease.1,2 Other imaging diagnostic tools
for breast cancers include x-ray computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET), and ultrasonography.3–5 Most of these imaging
methods are prohibitively expensive and generally only provide
tumor morphological information with low specificity. Moreover,
some of these techniques (e.g., CT and PET) expose patients to
ionizing radiation.6,7

The autonomic growth and spread of malignant tumors are
dependent on increased angiogenesis arising from the increased
metabolic demand.8 Since functional alternations in tumors
often appear earlier than detectable morphological changes,
functional imaging of tumor hemodynamics and metabolism is
a new strategy for early cancer diagnosis.9 Near-infrared (NIR)
diffuse optical technologies provide a noninvasive and rela-
tively inexpensive tool for functional imaging of tumor hemo-
dynamics in deep microvasculature up to several centimeters.10–13

The most commonly used NIR diffuse optical spectroscopy/
tomography (DOS/DOT) can quantify total hemoglobin concen-
tration (THC) and blood oxygen saturation (StO2) in tumors.14,15

DOS/DOT has been used over several decades to detect oxygena-
tion alternations in breast tumors.16–20 For example, THC was

found up to 2-fold higher in malignant lesions than nearby
healthy tissues.15 More recently, a novel NIR diffuse correlation
spectroscopy (DCS) technique has also been developed for
direct measurement of blood flow index (BFI) in deep tissues.21

A few pilot studies of breast tumors using DCS have found
increased blood flow inside the tumor in contrast to surrounding
normal tissues.10 Real-time monitoring of breast tumor blood
flow response to neoadjuvant chemotherapy also demonstrated
the potential of DCS for assessing cancer therapies.22,23

Despite advances in DCS technologies, there have been
limited imaging applications of diffuse correlation tomography
(DCT) for tumor detection. An early probe–tissue contact-
based DCT approach was applied to tissue phantoms24 but
was disadvantaged in vivo due in part to compression-induced
hemodynamic alterations. A few noncontact-based DCT exami-
nations have been conducted using the camera lenses positioned
between a sample and optical fibers connected to source and
detection elements.25,26 These arrangements, however, were only
tested on the brain of small animals with limited probing depth
(< 5 mm). Another limitation of these imaging studies was their
reliance on analytical solutions that assumed a simple semi-
infinite flat tissue geometry.

Our group has recently developed a novel noncontact DCT
(ncDCT) system enabling three-dimensional (3-D) imaging of
deep tissue blood flow distribution without contacting the
tissue.21,27,28 Our ncDCT system employs two sets of optical
lenses to project source and detector fibers, respectively, onto the
tissue surface. The separation of source and detector paths allows
for the arrangement of large source–detector distances, thus
enabling probing deep tissues up to centimeters. Furthermore,
a finite-element-method (FEM) based facilitation of ncDCT
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image reconstruction for arbitrary tissue geometry is pioneered
and integrated into an open software package (NIRFAST),
designed originally for DOT.29 Initial validation efforts for the
innovative ncDCT system have been made using computer sim-
ulations and tumor-like phantoms on a simple slab-shaped tissue
boundary (i.e., semi-infinite geometry).21

This paper reports our first step to adapt the ncDCT system
for in vivo imaging of blood flow distribution in human breast
tumors. We used a commercial 3-D camera (NextEngine,
California) to obtain breast surface geometry and then converted
it to a solid volume mesh for ncDCT image reconstruction.
Computer simulations were carried out to characterize the per-
formance of an ncDCT system for imaging an anomaly (tumor)
with varied flow contrasts and depths inside the tissue volumes
under different surface boundaries. The malignant tumors inside
human breasts (determined by ultrasound imaging) were then
scanned using the ncDCT probe, and high tumor-to-normal
flow contrasts were observed in the reconstructed images. To
the best of our knowledge, we demonstrate, in this report, the
first 3-D blood flow contrast imaging of human breast tumors
using the noninvasive ncDCT.

2 Materials and Methods

2.1 Noncontact Diffuse Correlation Tomography
System

2.1.1 Instrumentation

As reported previously,21 our ncDCT probe is a lens-focused
apparatus, which has two identical source paths and one detector
path configured in a linear array (Fig. 1). In each source path,
output from a multimode source fiber (WF200/220/245, Ceram-
Optec, Massachusetts) connected to a laser (825 nm) on the DCS
instrument is projected onto the tissue through lenses [Figs. 1(a)
and 1(b)]. Fifteen single-mode detector fibers (SM800-5.6-125,

Fibercore, California) are equally spanned in the detector path
connected to a detector array. The source–detector (S–D) sep-
arations vary from 10 to 30 mm, thus enabling up to ∼15 mm
penetration depth [Fig. 1(c)].21 Two long coherence lasers at
825 nm (coherence length > 5 m, CrystaLaser, Nevada) emit
light to tissue through individual source paths, alternatively.
The photons traveling through the tissue sample are collected
by the detector array of 15 avalanche photodiodes (APD,
Perkin Elmer, Canada) through the detector path. Amultichannel
autocorrelator (Correlator.com, New Jersey) takes the APD out-
puts and calculates 15 correlation functions simultaneously. A
motorized stage was integrated into the optical system, which
rotates the ncDCT probe around the nipple for scanning a region
of interest (ROI) on the breast surface [Fig. 1(b)]. The outcomes
from this scanning are the boundary data of intensity autocor-
relation functions collected at hundreds of S–D pairs on the ROI
(see the example in Fig. 4).

2.1.2 Diffuse correlation spectroscopy/diffuse correlation
tomography principle and noise model

In DCS theory, the correlation diffusion equation 24 is used to
model the propagation of electric field temporal autocorrela-
tion function, G1ðr; τÞ ¼ hEðr; tÞ ⋅ E�ðr; tþ τÞi, in biological
tissues:
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where r is the position vector, v is the light speed in the medium,
μaðrÞ is the medium absorption coefficient, μ 0

sðrÞ is the medium
reduced scattering coefficient, SðrÞ is the source term, k0 is the

Fig. 1 The schematic of the rotational probe in noncontact diffuse correlation tomography (ncDCT) sys-
tem. (a) A motorized rotational stage was used to drive the ncDCT probe to scan over a region of interest
(ROI) on the breast surface. The rotation axis was aligned through the nipple. (b) During ncDCT probe
scanning, source and detector rays were adjusted to be perpendicular to the breast surface over the ROI.
The two source pairs at first and last scanning steps were marked using a mark pen. (c) Fifteen detector
fibers and two source fibers were projected on the breast surface with the S–D separations spanning from
10 to 30 mm.
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wavenumber of the incident light, and DðrÞ ≡ υ∕3½μ 0
sðrÞ þ

μaðrÞ� ≈ v∕3μ 0
sðrÞ is the medium photon diffusion coefficient.

The normalized electric field autocorrelation function g1ðr; τÞ ¼
G1ðr; τÞ∕G1ðr; 0Þ is related to the light intensity autocorrelation
function g2ðr; τÞ measured by DCS devices through the Siegert
relation.11 The decay of the correlation function depends on
μaðrÞ, μ 0

sðrÞ, the mean square displacement hΔr2ðτÞi of the mov-
ing scatterers inside the tissue, and a unitless factor α that rep-
resents the fraction of moving scatterers (primarily red blood
cells) to total scatterers. A diffusion model hΔr2ðτÞi ¼ 6DBðrÞτ
is often employed withDBðrÞ denoting the heterogeneous “effec-
tive” diffusion coefficient. The term ð1∕3Þμ 0

sðrÞk20αhΔr2ðτÞi in
Eq. (1) is then reshaped as μda ðr; τÞ ¼ 2μ 0

sðrÞk20αDBðrÞτ, and is
considered as “effective dynamic absorption”21 due to dynamic
processes on the correlation with τ. The combined αDBðrÞ term
is referred to as BFI.12,24,30

Because of the mathematical similarity of correlation diffu-
sion equation [Eq. (1)]24 and photon diffusion equation (for
DOS/DOT),31 DCT is conceptualized as a formulation of DOT,
which computes G1ðr; τÞ instead of photon fluence rate, by
updating “static absorption” μaðrÞ to μtotala ðr;τÞ¼μaðrÞþμda ðr;τÞ,
and reconstructing μtotala ðr; τÞ instead of μaðrÞ only.21 The imple-
mentation of this concept into the FEM-based light transport
and image reconstruction modules for modeling both complex
geometries and heterogeneous media has been accomplished by
adopting NIRFAST (for DOT)29 as a shortcut.21

Figures 2 and 3 illustrate the main commands executed for
solving the forward and inverse problems, respectively, in
ncDCT using modified NIRFAST. A homogeneous background
tissue volume mesh with assigned initial optical properties of
μaðrÞ and μ 0

sðrÞ is first generated in the forward solution (see
Fig. 2). All S–D pairs corresponding to the actual or simulated
scanning of ncDCT probe are placed on the surface of the back-
ground mesh. However, only those with valid links between
sources and detectors are configured as effective pairs for image
reconstruction. An anomaly region (mimicking a tumor) inside
the background volume mesh is then defined and assigned a BFI
contrast relative to the surrounding background. Based on the
designed distributions of BFIs, μtotala ðr; τÞ is updated for each

voxel inside the entire tissue volume within a certain range of
τ. The autocorrelation functions G1ðr; τÞ for multiple τ from all
effective S–D pairs are then calculated by running the forward
model. The boundary BFI data at all effective S–D pairs are then
extracted by fitting G1ðr; τÞ to the analytical solution of Eq. (1)
under semi-infinite homogeneous geometry. It is noted that even
though the forward problem simulates the light propagation in
breast tumor models, some commands (e.g., “Run forward
model. . .”) are also executed for experimental data reconstruction.

To evaluate noise influence on image reconstruction
through simulations, randomized noise varying at different τ
is generated based on a noise model originally derived for
DCS.32,33 The noise level depends on the detected photon
count rate (i.e., light intensity) at each S–D pair, which is esti-
mated using the light intensity detected from in vivo breast tis-
sues (see Sec. 2.3). This noise is applied to the simulated
g2ðr; τÞ curves. Multiple g2ðr; τÞ curves with noise are gener-
ated for each S–D pair and then averaged to improve the signal-
to-noise ratio (SNR). This simulation mimics our in vivo mea-
surements and data averaging process in human breasts (see
Sec. 2.3). Finally, g2ðr; τÞ curves are converted to G1ðr; τÞ
curves to generate boundary BFI data.

Solving the inverse problem for image reconstruction is con-
ducted on a second mesh with a coarse finite element division
(pixel basis)29,34 (see Fig. 3). Initial values of background BFI
and optical properties [μaðrÞ and μ 0

sðrÞ] along with the selected τ
(τ ¼ τ1 was specifically noted in Sec. 2.2.1) are assigned to gen-
erate a homogeneous inverse mesh. The simulated or measured
boundary BFI data are converted to g1ðr; τÞ at the selected τ
using the semi-infinite analytical solution of Eq. (1),27,33,35,36

and further converted to G1ðr; τÞ by multiplying with G1ðr; 0Þ.
The boundary G1ðr; τÞ is then input into the inverse model to
reconstruct the μtotala ðr; τÞ distribution inside the entire tissue

Fig. 2 Flowchart outlining the sequence and commands used in the
modified NIRFAST to generate a forward model for ncDCT.

Fig. 3 Flowchart outlining the sequence and commands used in the
modified NIRFAST to solve diffuse correlation tomography inverse
problem.
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volume. The BFI distributions are finally extracted through the
definition of μda ðr; τÞ.

2.2 Computer Simulation Protocols

We conducted several computer simulations to characterize the
performance of the ncDCT system. The first simulation tested
the abilities of ncDCT in recovery of an anomaly (tumor)
beneath the surfaces of a slab and a female plastic mannequin
breast (Sec. 2.2.1). The second simulation evaluated the
reconstruction accuracies of the anomaly with varied depths and
flow contrasts in the same plastic mannequin breast. The influ-
ence of noise on ncDCT image reconstruction was also assessed
and compared with the results without noise (Sec. 2.2.2). The
last simulation applied a priori structural knowledge of the
anomaly in the inverse mesh to improve the accuracy of flow
image reconstruction (Sec. 2.2.3).

2.2.1 Reconstructions of a tumor in slab-shaped and
breast-shaped tissues

To evaluate the reconstruction of an anomaly inside a background
tissue volumewith a simple semi-infinite geometry, a slab volume
[dimension (mm): 100ðHÞ × 100ðWÞ × 40ðDÞ] was first gener-
ated in SolidWorks® (Dassault Systemes, Massachusetts) and
then segmented into finite elements using ANSYS® (ANSYS,
Pennsylvania). A total of 15,996 nodes were created with node
distances of 3 and 6 mm in the ROI and the surrounding region,
respectively [Fig. 4(a)]. Differentmesh resolutionswere employed
to reduce the total nodenumberwhilemaintaining appropriate spa-
tial resolution in theROI. The segmentedmesh nodes and elements
information were then input into MATLAB® (MathWorks,
Massachusetts) togenerateallmeshfilesneededfor thesimulations
with modified NIRFAST. The slab volume mesh represented a
healthy background tissue volume. A spherical anomaly with a
diameter of 10 mm mimicking a tumor was then placed at the
ROI center, and the anomaly centroid location was 7 mm beneath

the surfaceofbackgroundtissuevolume[Fig.4(a)].Optical proper-
ties for both tumor and background tissues were set homogeneous
throughout theentire slabasμ 0

s ¼ 6.00 cm−1 andμa ¼ 0.06 cm−1.
The blood flow indices for thebackgroundandanomalywere set as
1 × 10−8 cm2∕s and 10 × 10−8 cm2∕s, respectively, resulting in a
10-fold flow contrast between the tumor and surrounding normal
tissues [Fig. 4(c)]. The ncDCT probe with a linear S–D array
scanning rotationally over the ROI was simulated for 21 steps
with 3 deg/step to collect the boundarydata [Fig. 4(a)],where coor-
dinates were calculated with MATLAB. There were a total of 42
sources and 315 detectors distributed on the ROI. Thus, 630
(315 × 2) S–D pairs were effectively available and used for
image reconstruction. The autocorrelation functions G1ðr; τÞ
from the effective S–D pairs were calculated by the modified
NIRFAST softwarewith τ ranging from0 to 3.2 × 10−5 s (50 con-
secutive τ).Reconstructionwas conductedon the samemeshwitha
pixel basis of 20 × 20 × 25 and a τ1 ¼ 8.7 × 10−6 s. The τ selec-
tion has been discussed in our previous publication.21 The present-
ing anomaly was extracted with the full-width at half-maximum
(FWHM) criterion37 on the reconstructed DCT image. The aver-
aged BFI and the center location of the reconstructed anomaly
were computed by averaging theBFIs andnode coordinateswithin
the anomaly.

In order to assess the ability of ncDCT for imaging a tumor
inside breast, we conducted a computer simulation on a female
plastic mannequin breast. The surface geometry of the manne-
quin breast with source marks of ncDCT [Fig. 1(b)] was scanned
by a commercial 3-D camera (NextEngine, California), which
was further converted to a solid breast tissue volume using
SolidWorks. To align the sources and detectors of ncDCT on
the breast model surface for image reconstruction, a scanning
plane perpendicular to the breast surface and crossing the optical
rays of 2 sources and 15 detectors was created in SolidWorks.
The scanning plane was first aligned passing through the first
pair of source marks and then rotated step-by-step around the
rotation axis with an angle increment of 3 deg (Fig. 1), matching
our experimental procedure [Fig. 4(a)]. At each step, the sources

Fig. 4 Recovery of anomaly blood flow contrasts inside the slab-shaped and breast-shaped volume
meshes. A sphere anomaly with a diameter of 10 mm and 10-fold flow contrast was placed at 7 mm
beneath the surface of background tissue volumes. (a) and (e) show the original assigned anomalies
inside the volume meshes with sources and detectors aligned on the mesh surfaces; (b) and (f) show
the reconstructed anomalies with full-width at half-maximum (FWHM) thresholds; (c) and (g) show the
two-dimensional (2-D) cross-section views of original flow contrast distributions through the anomaly
centers; (d) and (h) show the 2-D cross-section views of reconstructed flow contrast distributions.
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and detectors along the optical rays were projected onto the
surface of the solid breast model.

Similar to the slab meshing, the solid breast volume was seg-
mented into finite elements with node distances of 3 and 6 mm
in the ROI and surrounding region. A solid volume mesh [largest
dimension (mm): 100ðHÞ × 78ðWÞ × 70ðDÞ] with total nodes of
14,717 was generated for simulations. A spherical tumor with
a diameter of 10 mm and a node distance of 3 mm was then
placed at the ROI center, and the tumor centroid location was
7 mm beneath the breast surface [Fig. 4(e)]. For comparisons,
we assigned the same optical properties and BFI contrast as those
used in slab-tissue simulation. The boundary data were also
collected in the same manner over the ROI on the breast surface.
Identical breast-shaped mesh with a pixel basis of 20 × 20 × 30
and τ1 ¼ 8.7 × 10−6 s were used for image reconstruction.

2.2.2 Quantification of tumor location and flow contrast in
the breast-shaped tissue

This simulation used the same tumor model in the breast-shaped
mesh with the same configuration and optical properties, as
assigned in Sec. 2.2.1 [see Fig. 4(e)]. The tumor was placed
beneath the surface of the breast-shaped mesh with varied cen-
tral depths from 7 to 15 mm at 1 mm increment/step. It is noted
that breast tumors with their centroid locations within the sen-
sitive region of diffuse light (i.e., the detected penetration depth
of NIR light is ∼1∕2 of the S–D separation)35,38,39 were our most
interested study population, since more reliable reconstructions can
be generated. At each depth, the tumor-to-normal flow contrast was
increased from 0- to 20-fold at 5-fold increment/step. The recon-
structed tumor depth was characterized as the shortest distance
from the reconstructed anomaly center to the breast mesh surface.
The measurement accuracy of the ncDCT system was assessed by
quantifying the discrepancies between the reconstructed and
assigned values in tumor central location and flow contrast.

To evaluate the noise influence on image reconstruction, we
added noise on the subsets of boundary data collected from the
tumor with 10-fold flow contrast throughout all varied depths.
Forty g2ðr; τÞ curves with noises were generated and averaged at
each effective S–D pair for DCT image reconstruction.

2.2.3 Reconstruction with a priori knowledge of tumor
location and volume

To improve the reconstruction accuracy of anomaly blood flow
contrast, the soft-constraint method37,40–42 in NIRFAST package
was tested in this simulation. A priori structural information of
tumor (i.e., central location and tumor volume) was included in
the inverse mesh by labeling the nodes in the inverse mesh accord-
ing to the regions of tumor or surrounding tissues. A regularization
matrix L was applied to the penalty term in the minimization func-
tion for the DCT inverse problem, which was equivalent to apply-
ing a Laplacian-type filter to minimize variation within each region.
Simulations were done with the spherical anomaly (10-fold flow
contrast and diameter ¼ 10 mm) placed at either 7 or 15 mm cen-
tral depth beneath the breast surface and with or without noise.

2.3 In-Vivo Blood Flow Imaging of Human Breast
Tumor

To explore the feasibility of an ncDCT imaging system in clini-
cal applications, two female patients with low-grade carcinoma
were recruited from University of Kentucky Comprehensive

Breast Care Center, with signed informed consent approved
by the University of Kentucky Institution Review Board. The
patient lay in a supine position and the major tumor lesion inside
the breast was determined by radiologists using ultrasound im-
aging prior to the optical measurement. The tumor mass margins
along the radio direction were marked on the ultrasound images.
The ncDCT probe was driven by a step motor to scan rotation-
ally around the breast nipple over the region of breast tumor.
The scanning procedures were similar to those described in
Sec. 2.2.1. Briefly, 15 and 21 scanning steps were taken to
cover the tumor bearing regions in the two breasts, respectively.
Forty g2ðr; τÞ curves were collected from each S–D pair for
each patient, and two source pairs at the beginning and ending
steps of scanning were visually marked on the breast surface
as the references for the alignment of sources and detectors on
the surface mesh. The surface geometry of the breast with the
source marks was then recorded by the 3-D camera for image
reconstruction. Following the ncDCT measurement, a commer-
cial frequency-domain tissue oximeter (Imagent, ISS, Illinois)43

was used to measure μ 0
s and μa of the breast tissue at three differ-

ent locations. The averaged μ 0
s and μa over the multiple sites

were used as initial inputs for flow image reconstruction.
The solid breast mesh of the patient was created in the same

way as that of the plastic mannequin breast (Sec. 2.2.1).
Boundary BFIs on the breast mesh surface were then extracted
by fitting the measured g2ðr; τÞ curves from effective S–D pairs.
These boundary BFI data were then calibrated to the BFIs
collected at the first scanning step, where the tissue underneath
the probe was outside the tumor region and thus assumed to be
homogeneous and healthy. The calibrated boundary data were
finally used for DCT image reconstruction.

3 Results

3.1 Noncontact Diffuse Correlation Tomography
Recovered an Anomaly Inside Both
Slab-Shaped and Breast-Shaped Tissue
Volumes with Similar Accuracies in Simulations

Figure 4 illustrates 3-D [Figs. 4(a), 4(b), 4(e), and 4(f)] and two-
dimensional (2-D) cross-section [Figs. 4(c), 4(d), 4(g), and 4(h)]
views of blood flow distributions in the slab-shaped (top panel)
and breast-shaped (bottom panel) tissue volumes, respectively.
Figures 4(a), 4(e), 4(c), and 4(g) show the originally assigned/
simulated anomaly inside tissue volumes and Figs. 4(b), 4(f),
4(d), and 4(h) show the reconstructed results for comparisons.
To clearly visualize the anomaly inside the tissue volume, 3-D
background meshes were presented with 30% transparency of
their original colors. The reconstructed anomalies were pre-
sented with FWHM thresholds in 3-D images [Figs. 4(b) and
4(f)] and without thresholds in 2-D cross-section views [Figs. 4(d)
and 4(h)]. Table 1 summarizes the discrepancies between the
assigned and reconstructed anomalies inside the slab-shaped and
breast-shaped tissue volumes. These results indicate that the
ncDCT system can recover the anomaly inside both slab-shaped
and breast-shaped tissue volumes with similar accuracies.

3.2 Higher Reconstruction Accuracy Achieved in
Simulations when the Anomaly Was within
the Sensitive Region of Diffuse Light

The reconstruction results with varied anomaly locations and
flow contrasts are presented in Fig. 5. The discrepancies
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[Fig. 5(b)] between the reconstructed and assigned central loca-
tions of the anomaly were smaller than the mesh node distance
(3 mm) at all depths. The reconstructed anomaly locations were
more accurate in the sensitive region of diffuse light (errors ≤
0.5 mm at central depths ≤ 10 mm) compared to those in deeper
depths.

Reconstruction errors in peak and average BFI contrast
of the anomaly at varied center location and assigned flow
contrasts are displayed in Fig. 5(c). The largest reconstruc-
tion errors in peak and average flow contrasts ranged from
31.4% to −77.0% and −23.6% to −82.9% respectively,
through all varied depths and flow contrasts. Similarly, the

reconstructed peak and average BFI contrasts were more
accurate in the sensitive region of diffuse light (peak and
average BFI underestimations ≤ 27.8% and 45.3%, respec-
tively, at central depths ≤ 10 mm) compared to those in larger
depths.

Figures 5(d) and 5(e) demonstrate the linear relationships
between the assigned and reconstructed peak and average
BFI contrasts. The relative anomaly flow contrast changes were
well reconstructed from the chosen central depths of 7 mm (peak
BFI: linear regression slope ¼ 1.03, R2 ¼ 0.99, and p < 0.001;
average BFI: linear regression slope ¼ 1.02, R2 ¼ 0.99, and
p < 0.001), 10 mm (peak BFI: linear regression slope ¼
1.01, R2 ¼ 0.97, and p < 0.01; average BFI: linear regression
slope ¼ 1.00, R2 ¼ 0.97, and p < 0.01), 13 mm (peak BFI: lin-
ear regression slope ¼ 1.07, R2 ¼ 0.98, and p < 0.01; average
BFI: linear regression slope ¼ 1.07, R2 ¼ 0.98, and p < 0.01),
and 15 mm (peak BFI: linear regression slope ¼ 1.08, R2 ¼
0.98, and p < 0.01; average BFI: linear regression slope ¼
1.08, R2 ¼ 0.98, and p < 0.01). The relationships between
the assigned and reconstructed relative anomaly flow contrast
changes from other tested depths were similar (results not
shown here).

In total, these results indicate that relatively higher accura-
cies were achieved when the entire anomaly was within the
sensitive depth of diffuse light. Also, even though the recovery
of anomaly BFI contrasts was not as accurate as its location,
the reconstructed anomaly BFI contrast changes were fairly
accurate.

Table 1 Computer simulation results in recovering an anomalya

inside slab-shaped and breast-shaped volume meshes.

Anomaly
central

depth (mm)/
% error

Anomaly
diameter
(mm)/
% error

Peak flow
contrast/
% error

Average
flow

contrast/
% error

Slab-shaped 6.4/8.6% 7.2/28% 12.8-fold/28% 9.3-fold/7%

Breast-
shaped

6.6/5.7% 7.5/25% 12.2-fold/23% 8.1-fold/19%

aA spherical anomaly with a diameter of 10 mm and 10-fold flow con-
trast was placed at 7 mm beneath the surface of background tissue
volumes.
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3.3 Noise Reduced Anomaly Recovery Accuracy in
Simulations

Figure 6 shows the ncDCT image reconstruction results with
simulated noise added to the forward problem. For comparisons,
images reconstructed from clean data (no noise) and noisy data
are plotted together. When the anomaly volume was within
the sensitive region of diffuse light (anomaly central depth ≤
10 mm), the largest discrepancy between the reconstructed
and assigned central locations of the anomaly was 1.2 mm
[Fig. 6(b)], 0.8 mm greater than that (0.4 mm) without noise.
Similarly, the largest reconstruction errors in peak and average
flow contrasts were 33.2% and 31.0% larger than those recon-
structed without noise [Figs. 6(c) and 6(d)]. Apparently, adding
noise reduced reconstruction accuracies in recovery of the
anomaly. However, the major conclusions drawn in Sec. 3.2
are still valid.

3.4 A Priori Knowledge of Anomaly Location and
Volume Improved Flow Contrast Reconstruction
in Simulations

Figure 7 demonstrates the improvements in the reconstruction of
BFI contrasts using a priori knowledge of tumor location and
volume in DCT image reconstruction. The top [Figs. 7(a)–7(e)]
and bottom [Figs. 7(f)–7(j)] panels show the reconstructed
results when the anomaly is at the central depth of 7 and 15 mm
beneath the surface, respectively. In each panel, image results
without/with a priori information and without/with noise are
plotted, respectively. The transect plots [Figs. 7(e) and 7(j)]
show the BFI distributions across the anomaly. The reconstruc-
tion accuracies in BFI contrasts were significantly improved
when a priori knowledge of anomaly structural information
was applied on data with and without noise. The peak/average
BFI contrast errors were only 0.1%/4% (without noise) and

7 9 11 13 15
5

7

9

11

13

15

assigned depth / mm

re
co

ns
tr

uc
te

d 
de

pt
h 

/ m
m

7 9 11 13 15
-5

-4

-3

-2

-1

0

1

assigned depth / mm
re

co
ns

tr
uc

te
d 

de
pt

h
 d

ev
ia

tio
ns

 / 
m

m
   

7 9 11 13 15
-80

-60

-40

-20

0

20

assigned depth / mm

re
co

ns
tr

uc
te

d 
pe

ak
 B

F
I e

rr
or

 %
   

   

7 9 11 13 15

-80

-70

-60

-50

-40

-30

-20

assigned depth / mm

re
co

ns
tr

uc
te

d 
av

er
ag

e
 B

F
I e

rr
or

 %
   

   
   

noisy
clean
assigned

(a)      (b) (c)      (d)            

Fig. 6 Noise influence on imaging accuracy of ncDCT. An anomaly was placed beneath the surface of
the breast-shaped mesh with varied central depths from 7 to 15 mm. (a) and (b) show the center location
and deviation of the anomaly at different depths, reconstructed with or without noise. (c) and (d) show
percentage deviations of anomaly peak and average BFI contrasts at different depths, reconstructed with
or without noise.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

0.09 0.9

10.0

0.04

8.3 8.8

0.9

0.4 0.9 0.4 0.9

8.7
2.2

5.4

0 20 40 60
0

3

6

9

11

 

 

clean
clean+prior
noise
noise+prior

-20 0 20 40 60
0

2

4

6

8

0

 

 

clean
clean+prior
noise
noise+prior

12.2

10

Fig. 7 Comparison of anomaly reconstructions without and with a priori structural information. The top
[(a)–(e)] and bottom [(f)–(j)] panels show the reconstructed flow contrast distributions of an anomaly
(assigned a 10-fold flow contrast) located at 7 and 15 mm central depths, respectively. (a) and
(f) show reconstructed results without the a priori structural knowledge of the anomaly; (b) and
(g) show the reconstructed results with the a priori structural knowledge; (c) and (h) show the recon-
structed results without the a priori structural knowledge and with noise. (d) and (i) show the recon-
structed results with the a priori knowledge information and with noise. The flow contrast profiles
crossing the yellow lines are shown in (e) and (j).

Journal of Biomedical Optics 086003-7 August 2015 • Vol. 20(8)

He et al.: Noncontact diffuse correlation tomography of human breast tumor



12.3%/12.3% (with noise), respectively, when using a priori
structural information for the anomaly located in the sensitivity
region of diffuse light [i.e., at the central location of 7 mm,
Fig. 7(e)]. The BFI contrast improvement at the deeper central
depth of 15 mm was also remarkable [Fig. 7(j)].

3.5 High Blood Flow Contrasts were Observed in
Human Breast Tumors

Two patients with low-grade carcinomas were imaged with our
ncDCT system [Figs. 8(b), 8(c), 8(e), and 8(f)]. The first patient
(P1) was a 59-year-old female who had ductal papilloma
and low-grade adenocarcinoma in situ. According to the ultra-
sound imaging [Fig. 8(a)], the lesion with the dimension of
10.2 × 6.65 mm2 was located at 19.2 mm beneath the skin
surface. For the comparison of ultrasound and ncDCT results,
the cross-section view of tumor flow contrast image through the
ultrasound imaging plane (along the line of ultrasound trans-
ducer) and across the overlapped two ncDCT sources (S1 and
S2) is presented in the reconstructed 3-D image [Fig. 8(b)]. The
dimension of the reconstructed tumor by ncDCT with the
FWHM threshold was approximately 15.1 × 5.8 mm2 [Fig. 8(c)],
which matched the ultrasound image [Fig. 8(a)]. However, the
reconstructed tumor central location was 10.8 mm beneath the
breast surface, which differed from the ultrasound image result
(19.2 mm). The peak and average tumor blood flow contrasts
were 8.3-fold and 5.9-fold, respectively. Note that measurement

noise caused some artifacts with μtotala ðr; τÞ lower than static μaðrÞ
in the region bordering the reconstructed tumor, leading to some
negative flow values.

The second patient (P2) was a 49-year-old female, who had
an atypical ductal hyperplasia and low-grade carcinoma in situ.
Ultrasound images [Fig. 8(d)] show that the lesion centroid was
located at 13.3 mm beneath the skin surface with the dimension
of 8.5 × 3.5 mm2. Our ncDCT imaging results show a clear
large tumor lesion with two small suspicious artificial anomalies
[Fig. 8(e)]. The dimension of the reconstructed large tumor was
approximately 12.3 × 5.1 mm2 [Fig. 8(f)] and its central depth
was 12.4 mm beneath the breast surface, which fairly matched
the ultrasound imaging result. The peak and average blood flow
contrasts were 14.0-fold and 10.6-fold, respectively. Artifacts
with negative flow values were also observed in the region
bordering the reconstructed tumor.

The in vivo imaging results are consistent with our computer
simulation results (see Secs. 3.1–3.3) in that the tumor central
location can be accurately recovered when the tumor locates
within the sensitive region of diffuse light.

4 Discussion and Conclusions
Since increased angiogenesis in breast tumor is commonly
associated with blood flow increase, imaging of blood flow
distribution in breast tissue is of great importance for tumor
detection.8 The recently developed ncDCT in our laboratory
provides a unique imaging tool for noncontact detection of

Fig. 8 Clinical examples of two low-grade carcinomas in situ. (a) Patient 1 (P1) ultrasound image taken
from radio direction shows a 10.2 × 6.65 mm2 oval mass (inside the yellow dashed circle) with circum-
scribed margins parallel to the skin. The mass center is located at 19.2 mm beneath the skin surface. A
core biopsy revealed a ductal papilloma with low-grade ductal adenocarcinoma in situ. (d) Patient 2 (P2)
ultrasound image shows an 8.5 × 3.5 mm2 mass (inside the yellow dashed circle), located at 13.3 mm
beneath the skin surface. A core biopsy revealed atypical ductal hyperplasia and low-grade carcinoma
in situ. (b) and (e) show the reconstructed three-dimensional (3-D) tumor blood flow contrasts with
FWHM thresholds for P1 and P2, respectively. The backgrounds are presented with 30% transparency
of the original color clarity. For the comparison of ultrasound and ncDCT results, an ultrasound imaging
plane along the transducer line and across the overlapped two specific sources (S1 and S2) is presented
in the 3-D reconstructed image. (c) and (f) show the cross-section views of tumor flow contrast images
through the ultrasound imaging planes, which can be directly compared to the 2-D ultrasound tumor
images [(a) and (d)], respectively.
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tumor blood flow contrasts.21 We have previously demonstrated
the ability of ncDCT for imaging blood flow contrast in tissue
phantoms with a simple semi-infinite geometry.21 The remaining
challenge of applying ncDCT for breast tumor imaging includes
translating the FEM-based imaging algorithm to breast-shaped
geometry and handling potential problems arising from the
in vivo measurements. The goal of this study is to demonstrate
the feasibility and evaluate the accuracy of ncDCT in detecting
breast tumors.

Computer simulations were used to investigate the origins
of flow reconstruction discrepancies. From the simulations,
we observed similar reconstruction accuracies in blood flow
contrasts and tumor central locations with slab-shaped and
breast-shaped boundaries (see Fig. 4 and Table 1), indicating
the ability of ncDCT for reconstructing tumor flow contrast
in human breast with irregular geometry. Further simulations
on breast-shaped geometry evaluated reconstruction accuracies
when tumors had different flow contrasts and located at different
depths. The results suggested that the reconstructed tumor loca-
tion and flow contrasts were more accurate when the tumor
volume was within the sensitive region of diffuse light (see
Fig. 5). Based on photon diffuse theory, the penetration depth
of diffuse light is ∼1∕2 of the S–D separation.35,38,39 The largest
S–D separation of ncDCT was 30 mm, allowing for a penetra-
tion depth up to ∼15 mm. As such, it was not surprising that
the reconstruction errors increased as the tumor center located
at a depth deeper than 10 mm. The S–D separation (associated
with light penetration depth) and SNR are two inter-related
parameters that affect the utility of ncDCT. Future study should
explore using source fibers with larger diameter to deliver
greater light intensity for promoting the SNR and penetration
depth.

In contrast to the recovery of tumor location, the
reconstruction of tumor blood flow contrasts was more compli-
cated. The reconstructed peak BFIs were overestimated when
the tumor located closer to the breast surface and underestimated
when the tumor located out of the sensitive region of diffuse
light [see Fig. 5(c)]. By contrast, the reconstructed average
BFIs were consistently underestimated. These observations
are similar to those in DOT for reconstruction of tumor absorp-
tion contrasts.44,45 It is known from the DOT practice that im-
aging sensitivity is higher at the shallow region beneath tissue
surface.46 Therefore, the reconstructed peak BFI from a single
node close to the tissue surface tends to be overestimated.
However, most of the reconstructed BFIs from the tumor
node are prone to be underestimated due to the nature of inverse
problem. Since the number of boundary data (S–D pairs) in
ncDCT is much smaller than the unknowns to be solved (i.e.,
BFIs at all mesh nodes), the inverse problem is unstable,47 lead-
ing to the underestimation.44 In addition, according to the
definition of μtotala ðr; τÞ ¼ μaðrÞ þ μda ðr; τÞ, BFI reconstruction
errors come from both “static” and “dynamic” absorption coef-
ficients. Therefore, dynamic flow contrast errors may be further
enlarged by attributing all reconstruction errors of μtotala ðr; τÞ to
dynamic μda ðr; τÞ while ignoring static errors of μaðrÞ.

Similar to our previous findings,21 the relative changes of
tumor flow contrasts can be accurately reconstructed in a large
range of flow contrast variations [see Figs. 5(d) and 5(e)].
The observed linear relationships with a slope of close to “1”
indicate the ability of ncDCT to capture tumor blood flow
changes, which can be potentially used to longitudinally mon-
itor tumor hemodynamic responses to interventions.

As expected, adding noise reduced the reconstruction accu-
racies (see Fig. 6). However, tumors can still be reconstructed
clearly from the boundary data with noise (see Fig. 6), indicating
the feasibility of ncDCT for in vivo breast tumor detection. More
importantly, adding a priori knowledge of the tumor volume and
location improved significantly reconstruction accuracy (see
Fig. 7), which agrees with previous observations in DOT.37,40,42

The results from the two patients with low-grade carcinoma
showed higher blood flow contrasts in the tumor regions com-
pared to the surrounding tissues (see Fig. 8). The reconstructed
positions of the two tumors on the x-y plane [see Figs. 8(c) and
8(f)] agreed well with ultrasound imaging results [see Figs. 8(a)
and 8(d)]. The reconstructed tumor central depth from the sec-
ond patient (P2) also matched the ultrasound image. For the first
patient (P1), however, the reconstructed tumor central depth was
at 10.8 mm beneath the breast surface, which did not match
the ultrasound finding (19.2 mm). This was likely due to deep
location of the tumor (P1), which was beyond the sensitive depth
of diffuse light detected by our current system. To confirm this,
we conducted computer simulations with the same location of
tumor and similar level of measurement noise, and we found that
the reconstructed tumor located at ∼ 8.5 mm beneath the breast
surface (data are not shown). The simulation result agrees well
with our in vivo measurement result.

Due to the difficulty of co-registering the 2-D ultrasound
image and 3-D ncDCT image, it was not possible in this
study to apply the a priori structural knowledge of tumors for
improving the accuracy of image reconstruction in patients.
Future study may utilize 3-D anatomical imaging modalities,
such as MRI or CT, to obtain accurate priori structural informa-
tion of the tumor.

The average tumor-to-normal flow contrasts of 5.9- and
10.6-fold observed from the two carcinomas are comparable to
previously reported flow contrasts of 2- to 10-fold in breast
tumors detected by DCS.10,11 It should be noted that the tumor
flow contrasts quantified previously by DCS may be underesti-
mated due to the partial volume effect by the healthy tissues
surrounding the tumor. In addition, the potential crosstalk
between μa, μ 0

s , and BFI may also result in over- or underesti-
mation of blood flow contrasts in both DCS and ncDCT.33,35

According to the definition of μtotala , μa, μ 0
s and αDB variations

cannot be completely separated unless they are independently
measured. When assuming homogeneous μa and μ 0

s over the
entire breast, the realistic heterogeneous μa and μ 0

s across the
tumor can generate errors in tumor BFI contrasts. To overcome
this limitation, a separate instrument enabling 3-D imaging of μa
and μ 0

s distributions in the breast is needed (e.g., a frequency-
domain or time-resolved DOT).16,48–50

In conclusion, this paper reports the first flow image
reconstruction results in human breast tumors using a novel
ncDCT system. Results from computer simulations suggest
that relatively high accuracy can be achieved when the entire
tumor was within the sensitive region of diffuse light. Image
reconstruction with a priori knowledge of the tumor volume
and location can significantly improve the accuracy in recovery
of tumor blood flow contrasts. In vivo imaging results from the
two breast carcinomas show higher blood flow contrasts in the
tumor regions compared to the surrounding tissues, which are
comparable with previous findings. The noncontact design of
the ncDCT system has the potential to be used for imaging
blood flow distributions in soft and vulnerable tissues without
distorting tissue hemodynamics.
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