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1 Introduction
It is well established that reflectance measurements acquired
from within the subdiffusion regime (i.e., source-detector sep-
arations smaller than a transport mean free path l�s ) preserve
information about the shape of the scattering phase function
PðθÞ.1–6 Along with this increased sensitivity comes the need
for improved models of light scattering that are both versatile
and contribute improved insights into tissue characterization.
However, despite the direct link between scattering and funda-
mental tissue ultrastructure, many models of light scattering
focus on the role of wavelength-dependent empirical parame-
ters, which determine the shape of PðθÞ, rather than the more
insightful physical properties. Given the wealth of information
that may potentially be extracted from within the subdiffusion
regime, we argue that the primary mandate of any extended
light-scattering model should not be to simply expand the empir-
ical parameter space for the sake of obtaining more optical prop-
erties or improved fits but also to forge a more fundamental
understanding of the tissue structure, which leads to the
observed reflectance signals.

Contrasting with the common treatment of scattering is the
admirable way in which quantification of absorption is fre-
quently applied. In absorption analysis, it is well recognized
that providing values of the spectrally resolved absorption coef-
ficient μaðλÞ are often less informative than providing the type
(e.g., hemoglobin, melanin, fat, etc.), concentration, and organi-
zation of absorbing species, which lead to that signal. With
regards to hemoglobin absorption fitting, measurement of

μaðλÞ provides a vehicle from which to extract more physical
information about microvasculature, such as blood volume frac-
tion v, hemoglobin oxygen saturation So, and blood vessel
radius Rvessel.

7–10 Should the specific value of μa at an arbitrary
wavelength become required for some computation, the under-
lying physical properties can be quickly expanded to yield an
answer.11

Taking insight from the way in which absorption analysis is
applied, we and others have proposed a scattering model, which
takes its main inspiration from considering the physical structure
of tissue.12–14 Assuming the validity of the Born approximation
(a safe assumption for most solid tissues15), the fundamental
physical tissue characteristic, which gives rise to light scattering,
is the spatial refractive index (RI) autocorrelation function,
BnðrdÞ.16–18 If BnðrdÞ is known, a series of simple mathematical
transformations can be used to first derive PðθÞ and sub-
sequently optical properties, such as the scattering coefficient
μs and anisotropy factor g as well as higher order shape param-
eters, such as γ, D, etc.10,19 Since BnðrdÞ can similarly be
defined for discrete particles (e.g., spheres,12 red bloods
cells,20 rods,18 etc.) as well as continuous random media, it
can serve as a universal mediator between all models of light
scattering. The key then becomes to find a model of BnðrdÞ that
is not only versatile and mathematically convenient but also
accurately describes most tissues.

In order to satisfy both criteria for achieving an appropriate
model of BnðrdÞ, we employ the three-parameter Whittle–
Matérn model.12,21 From a mathematical standpoint, this model
encompasses a wide range of plausible functional forms for the
shape of BnðrdÞ, including Gaussian, stretch-exponential, and
power-law distributions. As an added benefit for the optics com-
munity, one special case of the Whittle–Matérn model includes
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the commonly used modified Henyey–Greenstein model.
Furthermore, a number of recent publications demonstrate the
suitability of using the Whittle–Matérn model for characterizing
tissue mucosa.4,22–24

In this paper, we present a unified model to quantify six
physical tissue properties (three ultrastructural and three micro-
vascular) from a single spectral measurement of the spatial
reflectance profile pðr; λÞ at subdiffusion lengthscales.
Toward this end, there are four primary goals of the current
work: (1) to present a unified model (using two previously
developed models) that relates light propagation in biological
media to the underlying tissue ultrastructure and microvascula-
ture; (2) to provide a new empirical Monte Carlo-based model
that enables rapid generation of pðr; λÞ, specifically at subdif-
fusion lengthscales; (3) to demonstrate the application of a
newly developed inverse algorithm to extract physical properties
from a measurement of pðr; λÞ; and (4) to announce MATLAB
codes posted online25 for use by other researchers, who wish to
carry out the methods and analysis presented in this work.

2 Theory
In the following theory subsections, we present a model of
light–tissue interaction, which incorporates scattering from a
continuous random medium specified by the Whittle–Matérn
model21,26,27 and absorption assuming packaging of hemoglobin
within blood vessels.7–9 The full medium model is characterized
by six physical sample properties: the variance of RI σ2n, the
characteristic lengthscale of RI heterogeneity Ln, the shape
parameter of RI distribution D, the blood volume fraction v,
the oxygen saturation So, and the blood vessel radius Rvessel. As
we will demonstrate, these six “physical” properties directly
determine the wavelength dependence of four commonly mea-
sured “optical” properties: the scattering coefficient μs, the
absorption coefficient μa, the reduced scattering coefficient μ�s ,
and the anisotropy factor g. Table 1 previews the relationship
between the physical and optical properties, which will be
explored in depth in the following two subsections.

2.1 Relating Scattering Properties to σ2n, Ln, and D

Among the vast number of phase function models that have been
proposed, two families dominate within biomedical optics:
those are based on (1) the Henyey–Greenstein phase function
(HGPF) and (2) the Mie phase function (MPF).

Although originally developed for interstellar light scattering
by dust clouds,28 the HGPF has made its way into the field of
tissue optics due, in large part, to its simple one-parameter (i.e.,
the anisotropy factor g) mathematical form and its reasonable
ability to approximate tissue scattering. Unfortunately, the
HGPF provides an inherently unphysical form of the phase
function due to its lack of a dipole/Raleigh scattering compo-
nent, a fact that is confirmed by the observed mismatch between

the HGPF and goniometric measurements of cells.12,29 In order
to remedy this shortcoming, the modified HGPF30 was devel-
oped by adding a cos2ðθÞ dipole term and introducing a weight-
ing parameter that scales the relative contribution of the HGPF
and dipole term. Nonetheless, while it may provide more satis-
fying fits with measured data, the modified HGPF remains
largely empirically based and therefore provides a limited con-
nection to the underlying physical origin of the phase function.

The MPF provides a more physical understanding of the ori-
gin of tissue scattering with a rigorous solution for scattering
from spheres of all sizes. Under this model, tissue scattering is
represented as an incoherent superposition of scattering from
spheres of all sizes. In principle, the number of free parameters
(e.g., sphere number, size, and RI) is unlimited. However, for
practical reasons, a fractal (i.e., power-law) distribution of
sphere sizes as well as internal and external RI values are
assumed. Despite the attractiveness of a MPF, we argue that bio-
logical specimens are very infrequently organized in nice spheri-
cal structures throughout the entire range of structural
lengthscales that determine single light scattering (i.e., tens of
nanometers to several microns).31 Thus, the use of the MPF may
lead to an overly simplistic and perhaps misleading conceptual
understanding of tissue structure.

Given the limitations of the HGPF and MPF, let us therefore
consider the physical composition of tissue and use that as a
starting point from which to understand light scattering. Most
biological tissues are composed of a variety of arbitrarily shaped
structures ranging in size from tens of nanometers (e.g., chro-
matin fibers or ribosomes) to microns (e.g., collagen fibers) to
tens of microns (e.g., cells). Because of this continuous distri-
bution of sizes and widely varying shapes, most biological tis-
sues are best modeled as a continuous random media,4,14,21,31,32

such as the examples shown in Fig. 1. Rogers et al.12 provide a
more thorough argument for modeling light scattering as a con-
tinuous random medium. We also note an exception to this argu-
ment in biological samples, such as adipose tissue or cell
suspensions, in which it can be well argued that the spherical
geometry justifies a proper application of Mie theory.

In order to describe the distribution of RI in a continuous
random medium, we employ the versatile three-parameter
Whittle–Matérn model to define the RI correlation function
BnðrdÞ:4,14,21,27,31,32

EQ-TARGET;temp:intralink-;e001;326;272BnðrdÞ ¼ An ·

�
rd
Ln

�D−3
2

· KD−3
2

�
rd
Ln

�
; (1)

where Kνð·Þ is the modified Bessel function of the second kind
with order ν, An is the fluctuation strength of RI, Ln is the char-
acteristic length of heterogeneity, andD determines the shape of
the distribution (e.g., power-law/fractal for D < 3, decaying
exponential for D ¼ 4, Gaussian as D → ∞, etc.). We further
note that when D ¼ 3, the resulting phase function equation
is identical to the modified HGPF. In purely mathematical
terms, An is simply an amplitude factor, which stretches Bn
up and down along the y-axis, Ln stretches Bn left and right
along the x-axis, and D changes the functional form of the dis-
tribution. In large part, An is simply a normalization factor that
has limited physical meaning outside of the Whittle–Matérn
model functional form. We, therefore, convert to the more intui-
tive RI variance σ2n as12

EQ-TARGET;temp:intralink-;e002;326;73σ2n ¼ Bnðrd ¼ rminÞ; (2)

Table 1 Relation between optical and physical parameters.

μs Function of σ2n , Ln , D, and λ

g Function of Ln , D, and λ

μ�s Function of σ2n , Ln , D, and λ

μa Function of v , So, Rvessel, and λ
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where rmin is the minimum structural length-scale of fractality.
Here, we approximate rmin ¼ 2 nm, corresponding roughly to
the size of a number of fundamental biomolecules, which
compose biological tissue (e.g., amino acids, monosaccharides,
B-form DNA, etc.).33,34

Figure 2(a) shows examples of BnðrdÞ for D ¼ 2.0, 4.0, and
6.0. Figure 1 shows one possible realization of the spatial dis-
tribution of RI for each of these three distributions. Under the
first Born approximation16 (also known as the Rayleigh–
Gans–Debye theory), the power spectral density Φsð~ksÞ is the
three-dimensional Fourier transform of Bnð~rdÞ.17 Applying
the Whittle–Matérn model, which assumes spherical symmetry,
ΦsðksÞ can be found as31

EQ-TARGET;temp:intralink-;e003;63;426ΦsðksÞ ¼
AnL3

nΓ
�
D
2

�
π3∕22ð5−DÞ∕2 · ð1þ k2sL2

nÞ−D∕2; (3)

where ks equals 2kno sinðθ∕2Þ, k is the freespace wavenumber,
and no is the mean medium RI. Figure 2(b) shows examples of
Φs for varying D.

Defining scattering for arbitrary polarization, the amplitude
scattering matrix per unit volume polarizability sðθÞ can be
found by incorporating the dipole scattering pattern intoΦsðksÞ:35

EQ-TARGET;temp:intralink-;e004;63;310sðθÞ ¼ −iðknoÞ3 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦsðksÞ

p
·

�
cos θ 0

0 1

�
¼

�
s2 0

0 s1

�
.

(4)

Expanding the electric fields into intensities, the scattering phase
function for arbitrary polarization is18

EQ-TARGET;temp:intralink-;e005;326;569Pðθ;ϕÞ¼ js2ðθÞcosðϕÞEk þ s1ðθÞsinðϕÞE⊥j2RR js2ðθÞcosðϕÞEk þ s1ðθÞsinðϕÞE⊥j2 sinðθÞdθdϕ
;

(5)

where Ek and E⊥ are the orthogonal components of the electric
field. Next, the differential scattering cross-section per unit vol-
ume for unpolarized light σðθ;ϕÞ can be calculated as18,36

EQ-TARGET;temp:intralink-;e006;326;484σðθ;ϕÞ ¼ ðknoÞ4ð1þ cos2 θÞΦsðksÞ; (6)

where θ is the scattering angle and ϕ is the azimuthal angle.
Conceptually, function σðθ;ϕÞ specifies the directionality of scat-
tered light intensity for a single scattering event. We note that
since unpolarized light is rotationally symmetric about ϕ, the
right-hand side of Eq. (6) is independent of ϕ. Figure 2(c) shows
examples of σðθÞ for varyingD. For arbitrary σðθÞ, the scattering
coefficient μs is defined by integrating over all solid angles:

EQ-TARGET;temp:intralink-;e007;326;376μs ¼ 2π

Z
1

−1
σðcos θÞd cos θ; (7)

and the anisotropy factor g by calculating the first moment of
σðcos θÞ:

EQ-TARGET;temp:intralink-;e008;326;310g ¼ 2π

μs

Z
1

−1
cos θ · σðcos θÞd cos θ: (8)

Similarly, if desired, higher order parameters characterizing σ can
also be calculated. Two such parameters include the second
moment g2 and the shape parameter γ.30 These can be calculated
as
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Fig. 2 Examples of the functional forms specified by theWhittle–Matérn model forD ¼ 2.0, D ¼ 4.0, and
D ¼ 6.0: (a) the normalized Bnðr d Þ; (b) the normalized ΦsðksÞ; (c) example of σðθÞ for λ ¼ 0.633 μm,
An ¼ 1, and Ln ¼ 1 μm.
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Fig. 1 Examples of the continuous distributions of refractive index (RI) specified by the Whittle–Matérn
model for (a) D ¼ 2.0, (b) D ¼ 4.0, and (c) D ¼ 6.0.
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EQ-TARGET;temp:intralink-;e009;63;734g2 ¼
π

μs

Z
1

−1
ð3 cos2 θ − 1Þ · σðcos θÞd cos θ: (9)

EQ-TARGET;temp:intralink-;e010;63;689γ ¼ 1 − g2
1 − g

: (10)

Analytical equations for μs and g under the Whittle–Matérn
model were calculated by Rogers et al. and can be found
in Ref. 21 The reduced scattering coefficient μ�s , which is pri-
marily relevant for multiple scattering samples, is defined as
μ�s ¼ μs · ð1 − gÞ. Note that the scattering mean free path ls and
the transport scattering mean free path l�s are simply the inverse
of μs and μ�s , respectively.

Furthermore, it should be noted that the widely recognized
power-law decay in μ�s ðλÞ is not just an empirical observation
but has physical origins in the shape of BnðrdÞ. In the limit
of high kLn (satisfied in most tissues), μ�s ∝ λD−4 for D ≤ 4.
For D > 4, the value of μ�s will be constant across wavelength.
Thus, quantifying the power of the decay in μ�s ðλÞ can provide
insight into the spatial organization of ultrastructures.

The validity of applying the Born approximation in continu-
ous random media to calculate measurable optical parameters
has been explored by Çapoğlu et al. using rigorous finite-
difference time-domain analysis.15 Provided that the relationship
σ2nðkLnÞ2 ≪ 1 is satisfied, the Born approximation will yield
an accurate measure of light scattering. Conceptually speaking,
this criterion will be valid for any tissue in which it is possible to
define a value for ls. In other words, the Born approximation can
be accurately applied to all tissues for which the concept of opti-
cal properties, such as ls, μs, μ�s , etc., can be applied (i.e., most
tissues that are studied in the biomedical optics community).

2.2 Relating Absorption Properties to v , So, Rvessel

In many models of light–tissue interaction, it is assumed that the
absorbing species are uniformly distributed throughout the
medium. In some cases such as absorption in the skin due to
melanin, this assumption can be fairly accurate. However, when
looking at absorption due to the presence of hemoglobin, it
becomes necessary to consider the effect of absorption localized
within blood vessels (e.g., arteries, veins, etc.). For example, the
blood content that supplies tissue mucosa is typically packaged
in vessels ranging in size from ∼5 to 50 μm in diameter (e.g.,
capillaries, arterioles, and venules).

In the typical case where blood content is packaged within
vessels, a shading effect occurs in which the “measurable”
absorption coefficient appears smaller than the “actual” absorp-
tion coefficient located within these vessels.7–9 This occurs as a
result of the surrounding blood cells “shading” the blood cells at
the center of a vessel from the outside illumination. Conse-
quently, there is little to no contribution to the effective absorp-
tion from these inner blood cells.

In order to correct for this shading effect, the effective
absorption coefficient μ�a can be found as

EQ-TARGET;temp:intralink-;e011;63;126μ�aðλÞ ¼ CpackðλÞ · v · μaðλÞ; (11)

where Cpack is the blood vessel packaging correction factor, v is
the blood volume fraction, and μa is the absorption coefficient of
the whole blood contained with the blood vessels. The spectral
dependence of μa can be found as

EQ-TARGET;temp:intralink-;e012;326;734μaðλÞ ¼
2.303

64500
· CHb · ½So · εHbO2

ðλÞ þ ð1 − SoÞ · εHbðλÞ�;
(12)

where CHb is the concentration of hemoglobin, So is the
hemoglobin oxygen saturation, ϵHbO2

is the molar extinction
coefficient of oxygenated hemoglobin, and ϵHb is the molar
extinction coefficient of deoxygenated hemoglobin. In this
paper, we use values for ϵHbO2

and ϵHb taken from Prahl’s online
database.37 Finally, using the formalism presented by Van Veen
et al., Cpack can be calculated as

EQ-TARGET;temp:intralink-;e013;326;612CpackðλÞ ¼
1 − expð−2μa · RvesselÞ

2μa · Rvessel

; (13)

where Rvessel is the blood vessel radius.
Incorporating the effects of hemoglobin absorption into our

calculations introduces three physical properties: v, So, and the
product CHb · Rvessel. Note that within this formalism, the effect
of CHb cannot be separated from that of Rvessel without addi-
tional information. As a result, a common assumption is that
CHb ¼ 150 g∕L, allowing for the isolation of Rvessel.

9,37,38

3 Materials and Methods
In this section, we begin by summarizing the aspects of our
Monte Carlo simulations, which are relevant to the current
study.35 We next detail the implementation of three algorithms,
which allow us to (1) smooth and compress a large library of
Monte Carlo simulated pðr; λÞ results, (2) quickly and accu-
rately generate pðr; λÞ using the prerun library of simulations,
and (3) invert pðr; λÞ measurements to determine a particular
specimen’s physical properties. Each of the three algorithms
are written in MATLAB and are posted on our laboratory
website.25 We conclude this section by reviewing the measure-
ment of the spatial reflectance profile [denoted as pðrsÞ] at sub-
diffusion lengthscales using enhanced backscattering.5

3.1 Monte Carlo Simulation and pðr s; zmaxÞ Library
Population

Modeling of pðrsÞ is achieved through solution of the radiative
transfer equation (RTE).39 Given the complexity of solving the
RTE, analytical solutions rely on numerous simplifying assump-
tions, which typically result in loss of accuracy at subdiffusion
lengthscales.40 Although improved analytical solutions, such as
the phase function corrected diffusion approximation by Vitkin
et al.1 and modified spherical harmonic method by Liemert and
Kienle41, have demonstrated excellent accuracy at subdiffusion
lengthscales, these results are still limited to a scalar approxima-
tion that is only strictly applicable for unpolarized light. For this
reason, we choose to take a more brute force approach by solv-
ing for pðrsÞwith electric field Monte Carlo simulation. Though
less elegant than an analytical solution, Monte Carlo nonetheless
yields a full solution to the RTE provided enough photon
realizations are calculated. In-depth details of the Monte Carlo
algorithm and software used to accurately simulate enhanced
backscattering spectroscopy (EBS) are discussed in another
publication.35 The code for this software is open source and
can be downloaded on our laboratory website.25 Below, we sum-
marize the relevant simulation parameters.

The simulated scattering medium is a slab of statistically
homogeneous material with a total thickness of 100l�s and RI
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matching at both boundaries. Each photon is injected into the
slab orthogonal to the surface and allowed to scatter according
to the Whittle–Matérn model discussed in Sec. 2.1. All “multi-
ply scattered” photons (i.e., those having been scattered two or
more times), which are reflected from the medium in the exact
“backscattering” direction (i.e., antiparallel to the incident pho-
ton direction and with infinitely narrow solid angle), are scored
in a two-dimensional (2-D) grid according to their exit distance
relative to the entrance point (rs) and their maximum penetration
depth (zmax). For samples with finite thickness, integration over
the zmax dimension from 0 to the tissue thickness provides a way
to arrive at the measurable pðrsÞ distribution. Four different 2-D
collection grids are used to record the linear copolarization ðxxÞ,
linear cross-polarization ðxyÞ, circular helicity preserving ðþþÞ,
and orthogonal helicity ðþ−Þ polarization channels. The radial
resolution of these grids is 4 · 10−3rs∕l�s with total extent of
4rs∕l�s , while the depth resolution is 4 · 10−3zmax∕l�s with
total extent of 2zmax∕l�s . All photons, which exit outside of
the 2-D collection grid, are stored in the final grid element of
the corresponding row or column. In order to satisfy conserva-
tion of energy, all single scattered intensity is also recorded.
Each simulation is terminated when 109 photon histories
have been calculated.

In order to develop a library of pðrs; zmaxÞ for tissue relevant
optical properties, we performed a series of simulations with
varying values of g,D, and μa∕μ�s . These values are summarized
in Table 2. To achieve different values of g, we fixed
λ ¼ 0.633 μm and varied Ln. The total computation time for the
entire library was over 1 million processor-hours performed on
the Quest high-performance computing facility at Northwestern
University.

The assumption of RI matching at the boundaries simplifies
the parameter space of the model and thereby reduces the
required computation time and data storage space. Although this
limits the versatility of the model, we argue that this is an accept-
able trade-off since it simplifies the methods needed to charac-
terize the more informative internal ultrastructure at the expense
of quantifying the boundary mismatch. Moreover, we note that
in most situations, it is experimentally feasible to submerge the
sample of interest in an index matching material to satisfy the
boundary matching condition.

3.2 Smoothing and Compression of Monte Carlo
pðr s; zmaxÞ Data

After running simulations with 109 photons, the calculated
pðrs; zmaxÞ distributions retained a very low level of residual
noise. Still, regardless of how many photon histories are fol-
lowed, some small amount of noise will necessarily remain.
Therefore, further processing of the library of raw Monte Carlo
simulations was performed to smooth the data to achieve essen-
tially analytical quality curves. Moreover, this smoothing rou-
tine enabled us to compress the data by ∼50 times for much
easier portability. The general flow of this processing is
shown in Fig. 3 with further details provided later in the
paper. All processing of the data is implemented in MATLAB.
The raw pðrs; zmaxÞ data shown in Fig. 4(a) is smoothed by first
calculating the cumulative summation over rows (i.e., the rs
dimension). This process reduces the noise level for each sub-
sequent row (enabling improved fitting) and results in a 2-D
dataset with the same dimensions as the raw pðrs; zmaxÞ. Next,
each row is fit in a log–log space using a cubic spline with 40
breaks. We found that this number of breaks was large enough to
accurately fit the underlying data but small enough to avoid fit-
ting the noise. In order to return the smoothed data to its original
form, we then calculate the difference between subsequent rows
to get an intermediate smoothed version of pðrs; zmaxÞ.

The same smoothing process is then repeated over the col-
umns (i.e., the rs dimension) of pðrs; zmaxÞ. The two intermedi-
ate results of smoothing over rows and columns are then
averaged. A final smoothing and compression step is performed
by fitting each row of the 2-D data with a polynomial of order
between 3 and 20. The optimal polynomial order for each row is
chosen by minimizing the sum squared error (SSE) between the
raw data and the fit. The polynomial coefficients for each row
are then stored on the hard drive. Using this algorithm, the full
library of data specified by Table 2 can be compressed from ∼6
gigabytes to ∼70 megabytes for each polarization channel,
vastly improving data portability.

The polynomial coefficients can be quickly expanded into
the final smoothed version of the pðrs; zmaxÞ array shown in
Fig. 4(b) using matrix multiplication:
EQ-TARGET;temp:intralink-;e014;326;298

pðrs; zmax;jÞ ¼
X20
i¼0

biðzmax;jÞ · ris

¼

0
BBBBB@

b0ðzmax;1Þ b1ðzmax;1Þ · · · b20ðzmax;1Þ
b0ðzmax;2Þ b1ðzmax;2Þ · · · b20ðzmax;2Þ

..

. ..
. . .

. ..
.

b0ðzmax;LÞ b1ðzmax;LÞ · · · b20ðzmax;LÞ

1
CCCCCA

×

0
BBBBB@

1

r1s

..

.

r20s

1
CCCCCA
;

(14)

Table 2 Summary of pðr s; zmaxÞ library optical properties.

g 0.7 to 0.96 in 0.02 steps

D 2.0 to 4.0 in 0.1 steps

μa∕μ�s 0, 0.25, 0.5, 0.75, 1, 2, and 3

Fig. 3 Flowchart of smoothing and compression algorithm.
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where bi are the coefficients for the i’th polynomial and L indi-
cates the maximum zmax extent of the grid.

A qualitatively good match between the raw and smoothed
pðrsÞ for a typical simulation is shown in Fig. 4(c). In order to
quantitatively verify the accuracy of our smoothing algorithm,
we calculated the coefficient of determination (R2) by compar-
ing each point in the raw data with its corresponding point in
the smoothed data. We made this comparison for both the 2-D
pðrs; zmaxÞ grid as well as the 1-D pðrsÞ distribution obtained by
integrating over all zmax (i.e., pðrsÞ ¼ ∫ ∞

0 pðrs; zmaxÞdzmax). The
mean R2 values are summarized in Table 3. A mean R2 value of
>0.94 for pðrs; zmaxÞ for each polarization channel indicates an
accurate fit. The slight reduction in R2 from the ideal value of 1
is due to the small amount of noise present in the raw Monte
Carlo simulations.

3.3 Rapid Modeling of pðr s; λÞ from Polynomial
Library

Having discussed how the polynomial library for pðrsÞ is cal-
culated, smoothed, and stored, we now move on to a discussion
of the pðrs; λÞ model generating algorithm that enables model-
ing with nearly analytical speed and accuracy. The algorithm
inputs are the desired values of rs, λ, sample thickness, six
physical model parameters, and the polarization channel.

The process of generating pðrsÞ is depicted in Fig. 5 and is as
follows: first, we calculate the optical properties from the input

physical properties using the equations discussed in Sects. 2.1
and 2.2. We then populate a five-dimensional grid of
pðrs · μ�s ; zmax · μ�s ; D; g; μa∕μ�s Þ using a matrix expansion of the
polynomial coefficients previously stored by the smoothing and
compression algorithm discussed immediately above. We pop-
ulate this grid with a subset of curves containing the closest three
library values (in order to perform cubic interpolation) forD and
g, as well as all library values up to and including the maximum
desired ratio of μa∕μ�s . Next, we loop through each of the input
wavelengths to compute its specific pðrsÞ. In this process, we
first integrate pðrs · μ�s ; zmax · μ�s ; D; g; μa∕μ�s Þ over the zmax

dimension up to the input sample thickness yielding a four-
dimensional grid of pðrs · μ�s ; zmax · μ�s ; D; g; μa∕μ�s Þ. Finally, we
do a multidimensional cubic interpolation to find pðrsÞ for the
values of μ�s , D, g, and μa at the specified wavelength. Using a
2.5-GHz Intel Core i5-3210M processor, an entire pðrsÞ spec-
trum for a nonabsorbing sample over the range λ ¼ 0.500 μm to
0.700 μm in 0.020 μm steps can be calculated in under 150 ms.

In order to validate the accuracy of the pðrsÞ generating algo-
rithm, we performed a series of 30 simulations with randomized
σ2n, Ln, D, and μa within the range of values incorporated into
our library. We found an excellent fit between the simulations
and output of our pðrsÞ model generating algorithm, with a
median R2 value of 0.999 or greater for each polarization chan-
nel. Table 4 summarizes the R2 values between the raw and gen-
erated data. Figure 6(a) demonstrates the excellent agreement
between the simulations and output of our pðrsÞ model gener-
ating algorithm even for the trial with the lowest R2 value.

3.4 Inverse Algorithm to Extract σ2n, Ln, D, v , So,
and Rvessel

Our inverse scattering algorithm is performed by minimizing the
SSE between an experimental measurement of pðrs; λÞ and our
model for pðrs; λÞ to obtain σ2n, Ln, D, v, So, and Rvessel. Prior to
calculating the SSE, e first normalize both the experiment and
model by their respective total areas [i.e.,

RR
pðrs; λÞ drs dλ]. In

(a) (b) (c)

Fig. 4 Comparison between the raw and smoothed pðr s; zmaxÞ data: (a) raw pðr s; zmaxÞ in log10 scale;
(b) smoothed pðr s; zmaxÞ in log10 scale; (c) pðr sÞ distribution achieved by integrating pðr s; zmaxÞ over the
zmax dimension. The legend indicates integration up to zmax ¼ 0.5l�s, 1.0l�s, and ∞. Symbols indicate
points sampled from the raw data and the solid lines show the smoothed data.

Table 3 Summary of theR2 values between raw and smoothed data.

Polarization channel ðxxÞ ðxyÞ ðþþÞ ðþ−Þ
Mean R2 for pðr s; zmaxÞ 0.989 0.944 0.977 0.987

Mean R2 for pðr sÞ 0.999 0.993 0.996 0.999

Fig. 5 Flowchart of the pðr s; λÞ model generating algorithm.
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this way, the fitting is performed by comparing the relative
shapes of pðrs; λÞ across different wavelengths and is therefore
less sensitive to temporal intensity fluctuations.

In order to determine the location of the minimum SSE, we
use the built-in MATLAB function “lsqnonlin” to perform a six-
dimensional (i.e., one dimension for each physical property)
bounded nonlinear least-squares minimization. The bounds are
chosen such that each step of the optimization stays within the
physiologically relevant range of optical/physical properties and
within the bounds of our model library. The bounds are as fol-
lows: D ∈ ½2;4�, v ∈ ½0;1�, So ∈ ½0;1�, and Rvessel ∈ ½0;200� μm,
with σ2n and Ln chosen such that l�s ∈ ½0.5; 2.5� mm and
g ∈ ½0.7; 0.96�.

One of the main problems associated with optimization prob-
lems is discriminating between local and global minima. To
combat this difficulty, we implement a two-part algorithm to
first quickly find appropriate seed values and subsequently thor-
oughly fit pðrs; λÞ to arrive at the global minimum. In the first
step, we use sets of preselected seed physical parameter values
spread throughout the bounds of our pðrs; λÞ library and perform
a coarse minimization with a total of 25 iterations. We repeat this
process with six unique sets of physical properties and establish
the trial with the lowest SSE as the most likely neighborhood in
which to find the global minimum. In the second step, we use
the preliminary endpoint values as seeds for a more thorough
minimization that performs a maximum of 500 iterations to
arrive at the global minimum.

To test the accuracy and stability of our inverse algorithm, we
first generated 1200 sets of physical properties within the
bounds of our model parameter space and generated the corre-
sponding pðrs; λÞ curves. We subsequently added Gaussian
noise with zero mean to the pðrs; λÞ curves and assessed the
accuracy of the inverse algorithm with different noise variance

σ2noise levels. In performing this test, we used system parameters,
which we have the capabilities to measure using EBS: rs¼
½40;2000�μm, drs¼20μm, λ¼½0.500;0.700�μm, dλ¼0.020μm,
illumination spot diameter ¼ 4mm, and using the linear copo-
larization channel. Figure 7 demonstrates the accuracy and sta-
bility of our inverse algorithm. Figures 7(a)–7(f) show the
excellent correlations between the actual and calculated values
for each of the six physical properties using a noise level cor-
responding to that expected in a typical EBS measurement (i.e.,
σ2noise ¼ 10−13 μm−2). The calculated R2 values are >0.99 for
An, 0.97 for Ln, 0.99 forD,>0.99 for v, 0.97 for So, and 0.95 for
Rvessel. Figure 7(g) shows the degradation of algorithm accuracy
for increasing levels of additive noise variance. Within the range
of typical EBS system noise levels, all R2 values are greater than
0.53, with this minimum value occurring in the Ln parameter.
The reduced accuracy in the Ln parameter is attributed to the fact
that the shape of changes less dramatically across zmax ¼ 0.5l�s
than it does for the other five physical properties. We note that
one output of our fitting routine is σ2noise. Thus, for an experi-
mental measurement, the investigator can gauge the stability
of their results based on σ2noise and can take measures to decrease
the noise (i.e., through longer integration time or higher laser
power) to obtain more reliable results. Figure 7(h) shows a dem-
onstration of how pðrsÞ would look for differing levels of σ2noise.

Closing out the validation of our inverse algorithm, Fig. 8
provides estimates of the extracted value variability for varying
levels of system noise. In this case, we quantify the variability as
the standard deviation of the error (i.e., error ¼ actual value −
measured value) over multiple different realizations. As
expected, for increasing levels of noise, the variability of
extracted physical properties also increases. The level of vari-
ability is essentially independent of physical property value
(data not shown). For a typical experimental noise level with
σ2noise ¼ 10−13 μm−2, the standard deviation in extracted values
is 1.15 × 10−6 for An, 0.28 μm for Ln, 0.05 for D, 0.004 for v,
0.05 for So, and 6.08 μm for Rvessel.

3.5 Measuring pðxs; ysÞ Using Enhanced
Backscattering Spectroscopy

Detailed discussion of the nature of the EBS phenomenon can
be found in a number of seminal publications.42–46 Additionally,

Table 4 Summary of theR2 values between raw and generated data.

Polarization channel ðxxÞ ðxyÞ ðþþÞ ðþ−Þ
Median R2 for pðr sÞ 0.999 >0.999 0.999 > 0.999

Minimum R2 for pðr sÞ 0.9865 0.996 0.9784 0.984

(a) (b)

Fig. 6 Comparison between raw and generated data with the lowest R2 values: (a) normalized pðr sÞ,
Symbols indicate points sampled from the raw data and the solid lines show the generated data;
(b) residuals between raw and generated data.
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details about the application of EBS to biological tissue can be
found in Ref. 5, while discussion about the measurement of
pðxs; ysÞ using EBS can be found in Ref. 31 In brief, the mea-
sured angular EBS peak IEBSðθx; θyÞ is the Fourier transform of
the product of five functions.

EQ-TARGET;temp:intralink-;e015;63;235

IEBSðθx;θyÞ ¼
Z Z

∞

−∞
pðxs;ysÞ ·pcðxs;ysÞ · sðxs;ysÞ · cðxs;ysÞ

·mtfðxs;ysÞeikðxs sin θxþys sin θyÞdxs dys;

¼Ffpðxs;ysÞ ·pcðxs;ysÞ · sðxs;ysÞ · cðxs;ysÞ
·mtfðxs;ysÞg; (15)

where F specifies the 2-D Fourier transform operation, p is the
spatial reflectance profile, pc is the phase correlation function, s
is a modulation due to finite illumination spot size, c is a modu-
lation due to finite spatial coherence length, and mtf is the im-
aging system’s modulation transfer function. We remark that in
the case of EBS, function p represents all multiply scattered rays
(i.e., those undergoing two or more scattering events) that exit
the medium in a direction antiparallel to the incident direction.

Furthermore, in a number of special cases, Eq. (15) can be sim-
plified. For the polarization preserving channels (i.e., linear
copolarized and helicity preserving), function pc ¼ 1 and can
therefore be neglected. For samples in which the illumination
spot diameter is much greater than l�s , we can approximate
s ¼ 1. Finally, when spatial coherent laser illumination is
used, we can assume that the spatial coherence length is suffi-
ciently large such that c ¼ 1.

Although EBS data are measured in angular space, we return
the data to spatial coordinates by simply computing an inverse
Fourier transform:

EQ-TARGET;temp:intralink-;e016;326;169 peff ¼ p · pc · s · c · mtf ¼ F−1fIEBSg; (16)

where peff is the “effective” reflectance profile and the function
arguments have been removed for simplicity.

It is possible to take the analysis one step further and directly
extract function p by dividing function peff by the four remain-
ing modulating functions. Indeed, we have previously per-
formed such an analysis in Refs. 5 and 47. However, such a
procedure amounts to a deconvolution process that only serves
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to amplify noise. In this work, we therefore limit our solution of
the inverse problem to fitting of function peff .

3.6 Experimental Enhanced Backscattering
Spectroscopy Tissue Instrumentation and
Measurements

All measurements were taken on the EBS system detailed in
Ref. 48. In brief, broadband illumination from a supercontinuum
laser (NKT Photonics: SuperK EXW-6) passes into a variable
bandpass filter (NKT photonics: SuperK Varia) to select wave-
lengths between 0.500 and 0.700 μm in steps of 0.020 μm with
0.010 μm bandwidth. The spectrally filtered light is then
coupled into a single mode fiber, recollimated using a 100-
mm focal length lens, and truncated to a 4-mm-diameter spot
size using an iris aperture. The collimated light passes through
a linear polarizer and is directed onto the sample. Backscattered
light is detected using a 50∕50 plate beam splitter. The backscat-
tered light then passes through a copolarized linear analyzer and
is focused onto a −70°C cooled CCD camera (Princeton
Instruments, PIXIS 1024B eXcelon) using a 200-mm Fourier
lens. A full set of spectral measurements, including calibrations,
can currently be performed in under 20 min with further poten-
tial speed optimizations possible.

Ex-vivomeasurements were taken from a single sacrificed rat
within 8 h of organ extraction. All animal procedures were
reviewed and approved by the Institutional Animal Care and
Use Committee at Northwestern University. Since our model
is only strictly valid for the index matching case, all samples
were submerged in an index matching liquid during measure-
ment. Assuming a mean tissue RI of 1.38, our index matching
liquid used a mixture of 33% glycerol to 67% deionized water
by volume.1 The resulting RI of the mixture was confirmed
using a calibrated refractometer (Reichert, Abbe Mark III).
While the actual mean RI for an arbitrary tissue could differ

slightly from this value, the difference in the reflection coeffi-
cient for any range of values expected in biological tissue would
be negligible. In order to reduce speckle and obtain a smooth
ensemble average measurement, samples were slowly rotated
at ∼1 rotation∕min using an automated circular rotation stage
(Zaber, T-RSW).

4 Results

4.1 Demonstration of the Shape of pðr sÞ for Varying
Physical Properties

We now use the pðrsÞ model generating algorithm described in
Sec. 3.3 to demonstrate the effect of the six physical parameters
on the shape of pðrsÞ. Furthermore, these demonstrations serve
to illustrate the quality and speed of the pðrsÞ model generating
algorithm. Each figure in this section, therefore, includes an esti-
mate of the time needed to create all of the displayed data.

We begin by analyzing the effect on pðrs; λÞ for varying val-
ues of the D parameter. Figure 9 shows a spectrum of pðrsÞ for
λ ¼ 0.400 to 0.700 in 0.100 μm steps in a purely scattering
medium (i.e., v ¼ 0) with varying D ¼ 2.0, 3.0, and 4.0. For
each panel, the values of σ2n and Ln are fixed such that
l�s ¼ 1000 μm and g ¼ 0.9 at λ ¼ 0.600 μm. The observed
changes in the shape of pðrsÞ for varying values of D are due
to two factors. First, the value ofD determines, in part, the shape
of the scattering phase function and therefore manifests itself as
a change in reflectance at subdiffusion lengthscales (i.e.,
rs < l�s ).

19 Second, since μ�s ∝ λD−4,21 the height and width of
pðrsÞ within the diffusion regime varies more strongly for D ¼
2 than for D ¼ 4.

Next, we briefly discuss how varying Ln and σ2n would be
represented in the pðrsÞ curves. Corresponding figures are not
included in this work for the sake of brevity but can easily be
studied using the code posted on our laboratory website.25 The
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primary effect of changing Ln is to alter the shape of the scatter-
ing phase function and thereby change g and μ�s . With increasing
Ln, the scattering of light becomes more forward directed,
resulting in a higher value of g. This change in the shape of the
phase function is once again represented as modifications in the
shape of pðrsÞ at subdiffusion lengthscales (data not shown).
The parameter σ2n is directly proportional to μs and therefore
μ�s . As a result, its only effect is to scale pðrsÞ according to
the change in μ�s without changing its general shape or spectral
dependence (data not shown).

We study the effects of the three microvascular properties on
the shape of pðrs; λÞ in Figs. 10 and 11. Figure 10 shows spectra
of pðrs; λÞ for λ ¼ 0.400 to 0.700 in 0.100 μm steps for varying
v. The values of v shown in the title of Figs. 10(a)–10(c) are
chosen such that the maximum value of μa∕μ�s ¼ 0.1, 0.5,
and 1.0, respectively. The other two microvascular properties
are fixed such that So ¼ 0.5 and Rvessel ¼ 0. The ultrastructural
properties have a fixed D ¼ 3.0 and values of σ2n and Ln chosen
such that l�s ¼ 1000 μm and g ¼ 0.9 at λ ¼ 0.600 μm. With
increasing values of v, pðrsÞ is increasingly attenuated at larger
values rs. This occurs because v is directly proportional to μa
and photons exiting at larger rs travel through larger path-
lengths, which are more likely to encounter absorbers that
attenuate reflected light. The largest attenuation of pðrs; λÞ
occurs at λ ¼ 0.550 μm, a value where both oxy and deoxyhe-
moglobin are strongly absorbing.

The final demonstration of the pðrs; λÞ model generating
algorithm is shown in Fig. 11. In this figure, we show the inte-
grated intensity versus wavelength IðλÞ ¼ ∫ 2 mm

0 pðrs; λÞdrs for
varying values of So and Rvessel with 1-nm wavelength resolu-
tion. The effect of Rvessel can be seen by looking at the shading
of the curves in each of the three panels of Fig. 11. With increas-
ing values of Rvessel, the blood vessel shading effect becomes
more profound and manifests itself as more muted changes in
the hemoglobin absorption band between 0.550 − 0.600 μm of
illumination. Moving from panel a to panel c, the value of So
increases from 0 to 1, representing a shift toward more oxygen-
ated hemoglobin. Within the wavelength range from 0.500 to
0.700 μm, the difference between oxy- and deoxyhemoglobin
can be identified by observing the absorption peaks occurring
at 0.540, 0.555, and 0.576 μm. For completely deoxygenated
hemoglobin, the absorption level is highest at 0.555 μm,
which results in a corresponding minimum of IðλÞ. For com-
pletely oxygenated hemoglobin, the absorption level is highest
for two peaks occurring at 0.540 and 0.576 μm, which again
result in a corresponding minimum of IðλÞ.

4.2 Application of Inverse Algorithm to Experimental
Tissue Measurements

As a demonstration of the applicability of our inverse model to
various biological tissues, we acquired pðrs; λÞ measurements
from ex-vivo rat liver, stomach, and heart tissues using EBS.
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Fig. 12 Comparison of experimental pðr s; λÞ with inverse model fit for ex-vivo rat (a–d) liver, (e–h) stom-
ach, and (i–l) heart tissues. The first column (panels a, e, and i) shows the experimental pðr sÞ for 11
different wavelengths. The color of each line indicates the visible color of the corresponding illumination
λ. The thickness of each line indicates the standard error over 20 measurements. The second column
(panels b, f, and j) shows the IðλÞ intensity spectrum obtained by integrating pðr s; λÞ over the r s dimen-
sion. Symbols show the experiment with standard error and the solid line is the fit. The third column
(panels c, g, and k) shows the linear correlation for corresponding points on pðr s; λÞ between experiment
and the model fit. Values on the x - and y -axes have beenmultiplied by 105. The final column (panels d, h,
and l) provides image depictions of pðr s; λÞ measured experimentally (top) as well as the model fit
(bottom).
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All measurements were completed within 8 h of sacrificing the
animal. Given that the thickness of each tissue sample was
>1 cm (i.e., thickness >10 l�s ), we assumed a semi-infinite tis-
sue thickness when running the inverse algorithm.

Figure 12 shows the resulting fits of the inverse model for
measurements taken from the outside surface of an intact rat
liver (first row), stomach (second row), and heart (third row).
Figures 12(a), 12(e), and 12(i) show the experimentally mea-
sured pðrs; λÞ with the thickness of each line indicating the
standard error of 20 measurements and the color corresponding
to the illumination λ. As expected, the green and yellow
wavelengths, which are much more susceptible to hemoglobin
absorption, show a quicker decay in reflectance with increasing
rs. In order to better observe this spectral shape, Figs. 12(b),
12(f), and 12(j) show the IðλÞ spectrum obtained by integrating
pðrs; λÞ over rs. The characteristic hemoglobin absorption dip is
visible from ∼0.500 to 0.600 μm. To demonstrate the match
between experiment and model, Figs. 12(c), 12(g), and 12(k)
show the linear fit correlation between corresponding points on
pðrs; λÞ. In addition to a qualitative match between the experi-
ment and fit, we note a very high R2 value of 0.99 for each tissue
sample. Finally, Figs. 12(d), 12(h), and 12(l) provide average
image depictions of pðrs; λÞ with the comparison between
experimental (top) and model (bottom).

Summarizing the results for the three measured tissues,
Table 5 lists the extracted values of the six physical parameters
as well as the R2 value of the model fit and the experimental
noise variance σ2noise. The values are given as the mean�
standard error over 20 measurements. We note that the R2 val-
ues are excellent at >0.99 for each fit. Furthermore, the rela-
tively low levels of σ2noise indicate that our experimental
measurements fall within a range where the inverse model per-
forms admirably. The measured standard deviations are roughly
consistent with those reported in Sec. 3.4. Thus, the standard
deviations are largely representative of the system noise, as
opposed to tissue heterogeneity.

Remarking on the physical properties themselves, the
reported values of σ2n fall within the expected range for tissue
compiled by Çapoğlu et al. in Ref. 15 (i.e., σ2n ∼ 0.5 × 10−4

to 5 × 10−4). The value of Ln varies by more than an order
of magnitude between the three tissue types but falls within
the expected range of ∼0.5 μm to ∼10 μm.12 For D, we mea-
sured ultrastructures with spatial distributions corresponding
to fractals (liver and stomach) and stretched exponential (heart).
With regards to microvasculature, we measured increasing v
from stomach to heart to liver tissues. Since the tissues were
washed prior to measurement, these value reflect the blood
trapped within the tissue, as opposed to superficial surface
blood. For Rvessel, the smallest sizes corresponding to a mix
of capillaries and small arterioles/venules were found in the
heart, whereas the liver and stomach showed larger sizes corre-
sponding to medium-sized arterioles/veins. Finally, for So, we
measured values that were much more deoxygenated (i.e.,
< ∼ 0.50) than would be expected in live tissue. We attribute
this to the ex-vivo nature of the measurements.47

Although σ2n, Ln, and D provide useful parametrization of
tissue ultrastructure, it is often conceptually enlightening to
examine the full shape of BnðrdÞ as well as the corresponding
random media representations. Figure 13(a) shows the extracted
shape of BnðrdÞ for measurements of liver, stomach, and heart
tissues. The values of Bn at rd ¼ rmin ¼ 2 nm correspond
directly to the values of σ2n are shown in Table 5. Thus, the
curves for liver and heart tissues begin at roughly the same
value, while the curve for stomach is about three times higher.
The curve shapes at larger rd are then determined by Ln and D.
For the liver, the curve shape is a fractal with dimension D ¼
2.91 (corresponding roughly to the Henyey–Greenstein case at
D ¼ 3.0) until the upper lengthscale of fractality reaches
Ln ¼ 0.49 μm. Similarly, for the stomach, the curve is a fractal
with D ¼ 2.40 for lengthscales up to Ln ¼ 8.47 μm. For heart
tissue, the curve shape is stretched exponential for structural
lengthscales smaller than Ln ¼ 0.44 μm. Figures 13(b)–13(d)

Table 5 Extracted ultrastructural and microvascular properties.

Tissue σ2n (×10−4) Ln (μm) D v (%) Rvessel (μm) So R2 σ2noise μm−2

Liver 1.36� 0.22 0.49� 0.12 2.91� 0.07 15.99� 0.51 23.01� 1.43 13.84� 1.36 0.99 8.86 × 10−14

Stomach 3.32� 0.61 8.47� 3.28 2.40� 0.07 4.30� 0.48 18.16� 3.64 51.44� 4.16 0.99 2.48 × 10−13

Heart 1.05� 0.03 0.44� 0.02 3.64� 0.04 11.48� 0.39 6.22� 1.41 7.71� 2.06 0.99 1.82 × 10−13
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Fig. 13 Tissue ultrastructure representations. (a) Extracted Bnðr d Þ curves for liver, stomach, and heart
tissues. The thickness of each curve corresponds to the standard error of 20 measurements. The cor-
responding randommedia representations of (b) liver, (c) stomach, and (d) heart. The color map is scaled
the same for each image and represents the excess refractive index value.
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show the random media representations of liver, stomach, and
heart tissues, respectively. Because of the relatively higher value
of σ2n for stomach tissue, the stomach realization exhibits
a higher contrast than that of either liver or heart tissue.
Comparing the liver and heart tissue realizations, we see that
although the contrast is similar, the heart tissue possesses larger
structural features than that of liver tissue, directly mirroring the
shape of Bn in Fig. 13(a).

Having established the physical properties, which give rise to
the optical signal, we can now analytically determine the optical
properties for arbitrary wavelengths. Using the equations
derived by Rogers et al., we convert σ2n, Ln, andD into the spec-
tral dependence of μ�s , g, and γ.21 Additionally, using Eq. (12),
we convert v, Ln, and Rvessel into the spectral dependence of μa.
Figure 14 summarizes the spectral dependencies of various opti-
cal coefficients for liver, stomach, and heart tissues over the fit-
ted range of wavelengths between 0.500 and 0.700 μm.

For liver tissue, μ�s ðλÞ exhibits a power-law decay from
11.92� 0.73 (mean� standard error) cm−1 at 0.500 μm to
7.52� 0.53 cm−1 at 0.700 μm, while μa exhibits the character-
istic hemoglobin absorption spectrum with large absorption
occurring between wavelengths from 0.500 to 0.600 μm.
Comparing the effects of absorption and scattering, we note that
absorption dominates from 0.500 to 0.600 μm, whereas scatter-
ing dominates from 0.600 to 0.700 μm. Moving to the phase
function shape parameters, Fig. 14(b) shows a slowly decaying

gðλÞ from a value of 0.84� 0.01 at 0.500 μm to 0.79� 0.02 at
0.700 μm and Fig. 14(c) shows a decaying γðλÞ from a value of
1.82� 0.02 at 0.500 μm to 1.75� 0.02 at 0.700 μm. The
decaying trend in g is expected since as the ratio of λ∕Ln
becomes larger, the scattering phase function will become more
isotropic, eventually reaching the Rayleigh scattering regime
with g ¼ 0.

For stomach tissue, Fig. 14(d) shows μ�s ðλÞ decaying from
10.20�0.68cm−1 at 0.500 μm to 5.77�0.37cm−1 at 0.700 μm.
Figure 14(e) shows a very slightly decaying gðλÞ from 0.87�
0.01 at 0.500 μm to 0.84� 0.02 at 0.700 μm. Similarly,
Fig. 14(f) shows a very slowly decaying γðλÞ from 1.67�
0.03 at 0.500 μm to 1.64� 0.03 at 0.700 μm.

For heart tissue, Fig. 14(g) shows ðλÞ decaying from 17.84�
0.30 cm−1 at 0.500 μm to 13.70� 0.20 cm−1 at 0.700 μm.
Figure 14(h) shows a decaying gðλÞ from 0.95� 0.002 at
0.500 μm to 0.92� 0.004 at 0.700 μm. Finally, Fig. 14(f)
shows a very slowly decaying γðλÞ from 2.28� 0.01 at
0.500 μm to 2.19� 0.01 at 0.700 μm.

5 Discussion and Conclusions
The three main focuses of this work are (1) to summarize a uni-
fied model for calculating scattering and absorption properties
using tissue ultrastructure and microvasculature as inputs, (2) to
present an empirical Monte Carlo model for quickly generating
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Fig. 14 Expanded optical properties corresponding to the physical properties in Table 5. The first column
(panels a, d, and g) shows the spectral dependence of μ�s and μa from 0.500 to 0.700 μm. The second
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subdiffusion regime tissue spatial reflectance profiles pðrsÞ, and
(3) to apply this model toward an inverse algorithm capable of
quickly and accurately extracting tissue ultrastructural and
microvascular properties. We note that all MATLAB codes
required for accomplishing these three goals are posted on
our laboratory website.25

Toward the first and second goals, we employed a model of
scattering that represents biological tissue as a continuous ran-
dom medium described by the Whittle–Matérn family of corre-
lation functions21,26,27 and a model of absorption that assumes
packaging of hemoglobin within blood vessels.7–9 Under
these assumptions, we conducted a series of Monte Carlo sim-
ulations for a total of over 1 million processor-hours using an
open-source code previously described in Ref. 35. We sub-
sequently smoothed and compressed this vast dataset from ∼6
gigabytes down to ∼70 megabytes for easier portability and
improved loading speed. Finally, we developed an algorithm
to quickly expand and interpolate this dataset into experimen-
tally observable pðrs; λÞ curves with tissue relevant optical prop-
erties in a matter of a few seconds to a few minutes depending on
desired sample parameters.

Toward the third goal, we developed an inverse algorithm
that uses the rapidly generated pðrs; λÞ curves to extract six
physical tissue parameters from a given experimental measure-
ment. This algorithm uses a gradient search to minimize the SSE
between the model and experimental data. In order to find the
global minimum, we perform a cursory search with six different
initial seeds values and subsequently use the trial with the lowest
error to perform a more rigorous search that determines the final
values of the physical properties. Depending on the noise level
and computer processor speed, a typical pðrs; λÞ measurement
can be fit in between 3 and 7 min. Furthermore, under typical
noise levels expected while using EBS to measure pðrs; λÞ, the
inverse algorithm provides accurate quantification of physical
properties with an average R2 > 0.90 between actual and mea-
sured values.

Applying the inverse algorithm to experimental data, we
measured physical properties from ex-vivo rat liver, stomach,
and heart tissues. For each of these samples, the model fit
was excellent with R2 > 0.99. This suggests the applicability
of our model to solid tissues such as these examples. Despite
these encouraging results, it is recommended that the applicabil-
ity of the Born approximation and Whittle–Matérn model be
considered prior to implementing our inverse algorithm. For in-
stance, tissues with spherical form factors (e.g., adipose tissue)
may be better suited to the application of Mie theory. Further-
more, the user should also interpret the validity of the extracted
physical parameters based on the R2 value of the fit and the
noise level of their measurement.

A number of limitations and assumptions should be reiter-
ated. First, as stated earlier, the validity of our model relies
on assumptions that the Whittle–Matérn and hemoglobin vessel
packaging models adequately describe the tissue under investi-
gation. For most tissue types, there is evidence that these
models offer a good approximation of underlying tissue struc-
ture.8,12,22,32 However, there may be limitations for (1) tissues
with spherical scattering geometries or (2) anisotropic tissue
structures such as bone or muscle. We note that all samples pre-
sented in this work are rotated such that structural anisotropy is
averaged away. Furthermore, under the current form of the
Whittle–Matérn model, dispersion of RI is assumed to be
negligible, meaning the shape of BnðrdÞ does not change

with wavelength. A hypothesis in favor of this assumption is
that while local RI varies with wavelength, on average across
many different molecular species, the variance and distribution
of excess RI that leads to scattering remains relatively stable.
Given the practical difficulty of measuring the dispersion of
RI in biological tissue with nanoscale resolution, we use indirect
methods such as the excellent model fits demonstrated in this
work to corroborate this hypothesis. A second main assumption
is that the tissue under investigation is statistically homogeneous
and therefore does not change with depth. Although this is not
strictly true for most tissue types, we argue that the physical
properties of most tissues do not change drastically within the
superficial depths interrogated at subdiffusion transport length-
scales. Moreover, although it is possible in principle to incorpo-
rate a multilayered inverse model, in practice, it becomes very
difficult to fit for the rapidly expanding number of free param-
eters added with each new layer. A third limitation is that the
current model is only valid for media in which there is no RI
contrast at the boundary. Therefore, in order to achieve the most
accurate results, tissues must be submerged within an index
matching liquid at the time of the measurement. A fourth limi-
tation of the current model is that absorption analysis is limited
to quantification of hemoglobin. For many tissue types and
spectral measurement regimes, it is safe to assume that hemo-
globin is the dominant absorber. Still, we note that our model
can easily be extended to include the influence of other biologi-
cal absorbers, such as melanin, bilirubin, fat content, and water
content based on their respective molar extinction coefficients.11

Although a primary endpoint of many methods of optical tis-
sue characterization is determining optical coefficients (μs, μa, g,
γ, etc.) or other empirical parameters, we have argued that a
more complete understanding of tissue structure can be gained
by going one step further and extracting physical tissue proper-
ties. We have therefore provided a framework from which to
relate empirical reflectance measurements back to their under-
lying ultrastructural and microvascular properties. Despite the
noted limitations, the models and algorithms presented in this
work can be extended to other applications to help bring
improved quantification of fundamental tissue structure to the
field of optical characterization.
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