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Introduction

Abstract. Light backscattering at short source—detector separations is considerably influenced by the scattering
phase function of a turbid medium. We seek to more precisely relate a medium’s subdiffusive backscattering to
the angular scattering characteristics of its microstructure. First, we demonstrate the inability of the scattering
asymmetry g, =< cos 6 > to predict phase function influence on backscattering and reveal ambiguities related to
the established phase function parameter y. Through the use of high-order similarity relations, we introduce a
new parameter that more accurately relates a scattering phase function to its subdiffusive backscattering
intensity. Using extensive analytical forward calculations based on solutions to the radiative transfer equation
in the spatial domain and spatial frequency domain, we demonstrate the superiority of our empirically derived
quantifier ¢ over the established parameter y. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO
21.3.035002]
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Elastic light scattering is ubiquitous in an almost unlimited num-
ber of both animate and inanimate media, and therefore strongly
influences our visual perception of most objects. The common
feature for all of these media is the presence of internal refractive
index variations, which give rise to light diffraction that is mac-
roscopically denoted as light scattering. A very important exam-
ple of turbid media is human tissue. Thus, there is a potential
biomedical benefit to the study of light scattering in tissue. By
looking closely at light backscattering from tissue, it is possible
to study its microstructure which is encoded in the subdiffusive
scattering intensities. Our study aims at simplifying the decod-
ing of these subdiffusive backscattering intensities.

The propagation of light in turbid, i.e., elastically scattering,
media can be envisioned by a narrow beam of nonpolarized light
vertically incident on the flat surface of a scattering medium
with isotropic light propagation. In such a medium, the scatter-
ing coefficient p, is direction independent unlike for fibrous
media. The envisioned beam of light will give rise to a spatially
resolved reflectance (SRR) signal with radial symmetry and an
intensity decline with increasing source detector separation
(SDS) p. The slope of the decline as well as the overall back-
scattering intensities are dependent on the macroscopic scatter-
ing and absorption properties. See Fig. 1(a) for a large number of
such SRR curves.

On average, the further away photons are detected from the
incident beam, the deeper they have penetrated into the turbid
medium. In consequence, backscattering (i.e., reflectance) inten-
sities directly adjacent to a narrow beam of incident light cor-
respond on average to the most shallow penetration depth. These
proximal reflectance intensities consist of both, deeply penetrat-
ing light with a large number of scattering interactions and shal-
low photons with superficial propagation paths. We denote the
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former contribution as diffusive background. Shallow photons
which undergo a smaller number of scattering interactions
will be referred to as subdiffusive light.

It is the ambition of this work to enhance both the under-
standing and the accurate quantification of this subdiffusive
light. In particular, we are interested in how subdiffusive reflec-
tance intensities relate to the nature of single scattering events
and thus to the scattering phase function of scattering particles.
The latter quantifies the probability distribution for light to be
redirected into different scattering angles in each scattering
interaction.

To most accurately predict subdiffusive light propagation in
turbid media, Maxwell’s equations need to be solved requiring
the precise microscopic and complex-valued refractive index
distribution inside the media.' In most cases, like for biological
tissue, this very detailed information is not available nor is it
possible to computationally solve Maxwell’s equations for sec-
tions in the range of a cubic millimeter in a timely manner.
Fortunately, the accuracy related to the solution of Maxwell’s
equations is often not required for larger-sized turbid media,
especially when near-field effects and dependent scattering of
neighboring scattering particles are negligibly small.

In this study, we make use of the radiative transfer model’
that states an advanced yet empirical and well-approved
approximation to Maxwell’s theory. It treats light propagation
in scattering media as a succession of independent and localized
scattering and absorption events, rather than as the propagation
of electromagnetic waves in a medium with continuous and
complex refractive index variations. In order to solve the radi-
ative transfer equation (RTE), a scattering phase function speci-
fying single scattering events is required. For some scattering
particles like spheres, ellipsoids or cylinders, this scattering
phase function may be computed analytically using Mie theory
or similar solutions to Maxwell’s theory. In most practical cases,
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scattering particles have a rather complex and mostly irregular
shape with only roughly known refractive index distributions.
This is especially true for cellular scattering in tissue, where
each cell and cellular organelle varies in size and structure
and would give rise to a different scattering phase function.
This problem can be dealt with by averaging over an ensemble
of single scatterers through numerical simulations or by gonio-
metric phase function experiments on highly diluted scatterers.

Subdiffusive light is ultimately affected by the nature of sin-
gle scattering events based on the small number of scattering
interactions. Therefore, experimental quantification of subdiffu-
sive reflectance offers the great opportunity to derive meaningful
microstructural properties of a turbid medium. This is in contrast
to the diffusive background and reflectance at larger SDSs
which are both only weakly influenced by the scattering phase
function.

The benefit of experimentally quantifying subdiffusive light
relies on the availability of a disambiguate correspondence
between the nature of single scattering and subdiffusive light
intensities. Such a correspondence allows meaningful conclu-
sions about a media’s microstructure based on its subdiffusive
light intensities.

Bevilacqua and Depeursinge” have reported on the scattering
phase function parameter y = (1 — ¢,)/(1 — g;) as a quantifier
for subdiffusive reflectance. This parameter employs g; and g,
constituting the first and second Legendre moment of the scat-
tering phase function, respectively. Since its introduction, the
parameter y was adopted in a great number of experimental
and theoretical studies.>™'! The number of reports does not
only prove the usefulness of the parameter, but also the general
interest and attributed benefit toward quantification of subdiffu-
sive backscattering.

In two recent studies, we have focused on subdiffusive light
in the spatial frequency regime.'™!" In these studies, we demon-
strated the obtainable microstructural contrast through quantifi-
cation of y'! and revealed major ambiguities related to y.'” We
have reported that false or imprecise assumptions on a model
phase function can lead to considerable uncertainties in the
derived y-values.'” This states a major limitation to the signifi-
cance of derived y values as the actual scattering phase function
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of a turbid medium needs to be known for proper selection of a
model phase function.

In Sec. 2, we will review the current approach for quantifi-
cation of subdiffusive backscattering. In this context, we will
demonstrate the inability of the scattering asymmetry parameter
g1 to independently predict subdiffusive backscattering and
review the uncertainties related to the established parameter
y. In Sec. 3, we will build upon y making use of higher-
order similarity relations and introduce a new subdiffusive quan-
tifier. In doing so, we overcome some of the uncertainties related
to y and demonstrate the accuracy of the new quantifier in
Sec. 4. We finally conclude on the benefits and consequences
of our work for the experimental study of subdiffusive backscat-
tering in Sec. 5.

2 Asymmetry g, and Phase Function
Parameter y

We start our analysis on subdiffusive backscattering by pre-
senting a large number of analytical forward calculations.
Figure 1(a) exemplifies SRR computed for a large number
of scattering phase functions assuming a Gaussian beam of
light with FWHM of 300 pum vertically incident on an ideally
flat, semi-infinite and homogeneously scattering medium. The
curves illustrate the backscattering intensity integrated over the
entire detection half-sphere versus SDS p from the point of
incidence [see inset of Fig. 1(a)]. For all forward computations,
the assumed reduced scattering intensity is #/ = 1 mm~' and
the absorption value was set to g, = 0.01 mm~! with mean
refractive indices n = 1.38 and n = 1.00 inside and outside
of the turbid medium, respectively.

The large number of curves in Fig. 1(a) makes individual
curves indistinguishable. Different coloring of the curves how-
ever clearly reveals the large phase function influence both at
very small, but also at intermediate SDSs. We find backscatter-
ing intensities at the point of incidence (p = 0 mm) to vary by
more than a factor of ten, and even at p = 10 mm intensities are
found to differ by up to 10% (not shown). At a SDS of
p =~ 0.8 mm, we observe a local minimum of the phase function
influence on SRR which has previously been reported by
Calabro and Bigio."?
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Fig. 1 Analytical forward calculations of (a) SRR and (b) SFDR for 1000 different scattering phase func-
tions (see Table 1). The model calculations assume (a) a vertically incident Gaussian beam or (b) a
spatially modulated projection, and a numerical detection aperture of one (see insets). The color for
each of the 1000 curves relates to the o value of the underlying phase function. The parameter o
will be introduced in Sec. 3. The vertical dashed lines indicate p and f values further considered in

Figs. 2, 3, and 6.
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For Fig. 1(a), 1000 different phase functions were succes-
sively assumed and the details of the selected phase functions
are stated in Table 1. The emphasis of the phase function selec-
tion lies at modeling of biological tissue while we deliberately
added more diversity through Mie functions with high-refractive
index mismatch and other more exotic phase function models.
The same phase function selection presented in Table 1 will be
used throughout this study. Please note that some of the outer
refractive index values in the Mie function models are meant to
roughly match that of water and do not equal the assumed mean
refractive index value of the medium of n = 1.38.

Similar to Fig. 1(a), Fig. 1(b) depicts the phase function in-
fluence on reflectance intensities in the spatial frequency
domain for the same phase function range. The point source
is in this case replaced by a spatially extended and laterally
structured sinusoidal projection pattern [see inset of Fig. 1(b)].">
The plotted spatial frequency domain reflectance (SFDR) in
Fig. 1(b) is a direct measure of the unitless amplitude retention
in the backscattering signal. The advantage of SFDR over SRR
is the ability to limit the light propagation depth through selec-
tion of a spatial frequency. High-spatial frequencies are more
surface sensitive and thus the relative influence of scattering
phase functions on SFDR can be observed to increase with spa-
tial frequency [see Fig. 1(b)].

Our forward calculations are based on analytical solutions to
the RTE derived by Liemert and Kienle.'®!7 These models
assume semi-infinite and homogeneously scattering media
with ideally flat surfaces neglecting roughness induced surface
scattering or specular reflections. All analytical solutions are
verified by Monte Carlo (MC) simulations and within noise lim-
its provide identical yet much faster and noise-free computation
of reflectance patterns. In consideration of computation time, the
computation order N for calculation of SRR and SFDR was set
to N =17 and N = 25, respectively.

The ambition in the search for subdiffusive quantifiers is a
maximum reduction of the complexity of a scattering particle’s
phase function p(@) without loosing the information that is
relevant to subdiffusive light. We denote p as a function of
the polar angle 6 omitting the dependence on the azimuthal
angle @. This states a frequent approximation that is especially

valid for orientation randomized scatterers. For nonpolarized
light scattering on homogeneous spheres, p is independent of ¢.

Given the complexity of a real scattering phase function, it
is impossible to exactly describe subdiffusive backscattering
with only a single generalized parameter. However, a study
by Turzhitsky et al.'® using principal component analysis could
demonstrate accurate modeling of subdiffusive backscattering
intensities for biologically relevant phase functions by very
few principal components.

Several analytical studies have derived equations for compu-
tation of effective scattering functions corresponding to the
angular light distribution after two or more scattering
interactions.'”? These reports demonstrate not only the com-
plexity in deriving such effective scattering functions, but give
illustrative conclusions on how oscillatory features or strong
forward peaks in p(6) get canceled through multiple scattering.
While these analytical models help to calculate and predict
subdiffusive light intensities,?> they do not hint at simple quan-
tifiers for subdiffusive backscattering.

The notion of phase function dependent light propagation
through independent scattering interactions is based on the radi-
ative transfer model. This model is often applied through the use
of MC simulations. Analytical solutions to the RTE express the
scattering phase function in terms of Legendre moments g,,, with

g, =21 / " P, (cos 0) p(6) sin 6 do. 1)
0

P, is the n’th order Legendre polynomial. Based on this
Legendre moment decomposition, it seems natural to probe
the significance of g, as quantifiers for subdiffusive backscatter-
ing. For an N’th order approximation to the RTE solution, N + 1
such Legendre moments are required. Diffusion theory thus
relates to a first order (N = 1) approximation to the RTE and
requires the Legendre moments gy and g;. While g, = 1 states
the normalization constraint, g, is usually expressed in terms of
the reduced scattering coefficient u; = p,(1 — g;), with scatter-
ing coefficient y,. This has led to a widely spread belief, that the
asymmetry parameter g; =< cos @ > states a reasonable first

Table1 Employed phase functions and corresponding parameter ranges for RTE-based analytical forward calculations presented throughout our

study.

Type Number of simulations Parameter range Reference

Mie 200 Ny, = 1.40, ng, = 1.33, 1 = 600 nm, discrete radii in the range 20 nm < 13
r <5 um (200 logarithmic steps)

Mie 200 1.00 < n;, £ 1.60 (20 linear steps), ny,t = 1.30, 4 = 600 nm, discrete 13
radii in the range 0.1 um < r < 2.5 um (10 linear steps)

Fractal Mie 100 3.3 <a <5.5 (100 linear steps), n;, = 1.40, ny, = 1.33, 1 = 600 nm, 6
each step corresponds to a discrete distribution of 500 spheres with
linearly spaced radii in the range 0.5 nm < r <5 um

Reynolds-McCormick 200 0.01 < a <2.5 (20 linear steps), 0.01 < g’ <(0.99 — 0.02a) (10 linear 14
steps), the a-dependence of g’ was implemented to avoid slow
convergence for extremely high-asymmetry values

Modified Henyey Greenstein 100 0.01 < g <0.95 (10 linear steps), 0.01 <« <0.99 (10 linear steps) 2

Modified powers of cosines 200 0.01 < <0.99 (10 linear steps), 0.01 < N < 100 (20 logarithmic steps) 2
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order approximation to the phase function influence on
backscattering.

Even though ¢; has strong influence on the effective light
scattering intensities in the diffusion regime through modifica-
tion of the parameter u/, we find that it has almost no relevance
as an independent subdiffusive parameter. Mourant et al.>* have
already demonstrated through MC analysis that large differences
in subdiffusive backscattering exist for Mie and Henyey-
Greenstein phase functions with equal asymmetries g;. We
seek to provide a more general conclusion on the relevance
of g; as an independent parameter for subdiffusive backscatter-
ing. To this end we reuse the reflectance data presented in Fig. 1.

Figures 2(a) and 2(b) depict both SRR and SFDR for all 1000
phase functions against their corresponding asymmetry values
g1- SRR in Fig. 2(a) is given for the four SDSs p = 0,0.5, 1.5
and 3 mm and Fig. 2(b) provides reflectance intensities for four
spatial frequency values with f = 0.1,0.2,0.4 and 0.8 mm™!
(see dashed lines in Fig. 1). Every data point in Fig. 2 thus cor-
responds to reflectance at a certain radius (a) or frequency (b) for
forward computations using one of the 1000 different scattering
phase functions of Table 1.

Both SRR and SFDR data in Fig. 2 clearly demonstrate the
inability of g; to quantify subdiffusive reflectance at any of the
investigated SDSs (a) or spatial frequencies (b). This observa-
tion is based on the very weak correlation of each point cloud
comprising 1000 data points with respect to the parameter g;.
Indeed, different phase functions, which deviate in their g; val-
ues by more than 0.8, are shown to produce similar reflectance
intensities.

In spite of the demonstrated inability of g; to describe SRR
and SFDR, it is worth mentioning that experimental quantifica-
tion of g; has been shown to be possible in a backscattering
geometry. Samatham and Jacques®?® have demonstrated sensi-
tivity toward the asymmetry parameter using a reflectance mode
confocal microscopy setup. The g;-sensitivity of their system is
achieved by the added depth control for detection owing to the
confocality of their system.

The phase function parameter y was derived by use of sim-
ilarity relations,” which is a concept that has been introduced by
van de Hulst*’ and that was further developed by Wyman et al.?
thereafter. The similarity relations are N + 1 constraints for two

SRR (mm %)

0 0.2 0.4 0.6 0.8
9

(a)

SFDR

sets of optical parameters (i.e., two sets of y,, u, and p(6)) to
produce the identical radiance in an unbounded medium within
the context of a computational order N. In consequence, the
exact solution (i.e., N — oo) requires an infinite number of sim-
ilarity relations to be fulfilled, essentially forcing the first and
second set of parameters to be identical. This provides the
important insight that every phase function gives rise to its
unique light propagation.

In first order approximation (N = 1), the two similarity rela-
tions are given by’

Hiy = Has @

wy(1=g7) = ps(1 = g1), 3)

where the asterisk marks the second set of optical parameters.
For higher computation orders (N > 1) the additional similarity
relations can be written as

l—gn _1-9n
l—gi 1-g

n=1[23,...,N]. )

For n = 2, both sides of Eq. (4) correspond to the parameter y.
Thus two sets of optical properties with equal y, and u, values
and equal y parameter give rise to the same reflectance inten-
sities for computational order N = 2. It has been shown by
Kienle et al.?° that the use of y as an additional fit parameter
for SRR can considerably decrease the phase function related
errors in the determination of p, and ..

Figure 3 plots our previously calculated SRR and SFDR data
versus y and demonstrates its general significance in describing
subdiffusive backscattering. For the three larger p values in
Fig. 3(a) strong correlation of SRR with y can be found. At
p = 0, this correlation is strongly reduced. In the spatial fre-
quency domain [Fig. 3(b)], we find the y-reflectance point
clouds to be much less correlated for all four spatial frequencies.
However, a comparison of Figs. 2 and 3 clearly reveals the supe-
riority of y over g; in describing subdiffusive backscattering.
Nevertheless, the strong dispersion of data points, especially
in the spatial frequency domain [Fig. 3(b)], states a considerable

035
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Fig. 2 Analysis of subdiffusive reflectance intensities (a) for four different SDSs and (b) for four spatial
frequencies versus the phase function asymmetry value g4. The data equal that of the forward calcu-
lations presented in Fig. 1. Every data point corresponds to a different phase function listed in Table 1.
The observable patterns in each point cloud relate to the different phase function models and their param-
eterization. Small correlation is found in either graph with respect to g;. As a guide to the eye for non-
colored print, data symbols in (b) for frequency f = 0.4 mm-" are slightly enlarged.

Journal of Biomedical Optics

035002-4

March 2016 « Vol. 21(3)



Bodenschatz et al.: Quantifying phase function influence in subdiffusively backscattered light

SRR (mm™2)

25

SFDR

Fig. 3 SRR for four different (a) SDSs and (b) SFDR for four spatial frequencies versus the phase func-
tion parameter y. Both graphs rely on the data already presented in Figs. 1 and 2. Every data point
corresponds to one of the phase functions listed in Table 1. y shows decent correlation with (a) SRR
for three out of the four presented p values while large uncertainties exists in the quantification of

(b) SFDR for all four frequencies.

drawback for the experimental quantification of subdiffusive
reflectance.

3 Introducing the Subdiffusive Quantifier ¢

In trying to more precisely describe subdiffusive backscattering,
it appears as a natural step to make use of higher-order similarity
relations. However, not only does a higher number of similarity
parameters beyond y [i.e., s = (1—g3)/(1—g1),e = (1 —q4)/
(1 =gy),...] increase the overall complexity,”® but also do the
added parameters carry little independent structural information.
It is therefore our goal not to increase the number of subdiffusive
parameters, but to combine all similarity parameters in a single
yet less ambiguous quantifier to describe subdiffusive light
propagation. We arrive at this goal by an empirical approach
which builds upon the findings of Bevilacqua and Depeursinge
and their established parameter y.

As a first step, it is instructive to study typical photon paths in
the subdiffusive scattering regime. Figures 4(a)—4(c) each con-
tain a two-dimensional projection of 20 photon paths for differ-
ent light propagation constraints. In all three graphs, the given
photon paths correspond to MC simulations in a semi-infinite
scattering medium (n = 1.38, u, = 0.01 mm~!, and g/
1 mm™"). The simulation imitates tissue scattering by assuming
a scattering phase function that corresponds to a fractal distri-
bution of Mie scatterers with fractal dimension @ = 4.5 (asym-
metry g; = 0.90). Light is obliquely incident from air in the
x—z-plane at an angle of 15 deg with photons entering the turbid
media at (x,y,z) = (0,0,0), as indicated by the arrows in
Figs. 4(a)—4(c). To mimic typical experimental detection geom-
etries, we show only photon trajectories that exit the medium
within an aperture angle of 10 deg at a SDS smaller than a set
radius r.

To specifically select photons corresponding to different
scattering regimes, the detection radius r as well as the allowed
photon penetration depth z.;, differs among the three sets of
photon paths. In Fig. 4(a), »r = 0.1 mm with depth constraint
Zmin = —0.5 mm. In Fig. 4(b), photons are detected within r =
0.3 mm and are allowed to travel to a depth of z,,;, = —1.5 mm.
Both dimensional constraints are lifted for the simulation
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corresponding to Fig. 4(c). Please note the different axes scaling
of Figs. 4(a)-4(c).

The three different MC simulations where designed to
correspond to light propagation with a minimum (a), an inter-
mediate (b), and a maximum (c) share of diffusive light content.
By diffusive light we refer to the unbiased and randomized pho-
ton paths whose scattering angles statistically reflect the
probability distribution of the scattering phase function.
Correspondingly, the distinct feature of subdiffusive light lies
in the directional bias of its photon paths. This bias can be
well studied in Figs. 4(a) and 4(b) which contain photon trajec-
tories with mostly forward and large angle backward scattering.
As the diffusive influence increases [Figs. 4(b) and 4(c)], there is
an increasing number of paths featuring also intermediate scat-
tering angles.

In Figs. 4(d)-4(f), we do a statistical analysis to confirm the
visually perceived angular scattering bias. In this analysis we
evaluate all scattering angles of detected photons for all three
MC simulations. Figures 4(d) and 4(e) relate to the first two sim-
ulations and 4000 scattering interactions where evaluated each,
corresponding to 970 and 395 detected photons, respectively.
For Fig. 4(f), only 200 photon paths where evaluated corre-
sponding to 46,250 scattering interactions in the unconstrained
third simulation. In all three graphs, we display the ratio given
by the number of encountered scattering angles pyc for one of
20 angular bins divided by the expected occurrence of scattering
events py,. for each bin. pg,. corresponds to the angular scat-
tering probability of the assumed fractal phase function scaled
by the number of detected photons.

The statistics in Fig. 4(d) clearly reveal over-proportional
scattering at high-scattering angles for the most constrained MC
simulation. Indeed, high-angle backscattering is found to occur
one hundred times more frequent than statistically expected
from the scattering phase function. At the same time, intermedi-
ate scattering angles are under-represented due to the unlikeli-
ness for photons to reach the detector within the boundary
constraints after more randomized scattering interactions.

This directional bias is considerably decreased for the second
simulation [Fig. 4(e)] due to a slightly stronger influence of
more directionally randomized photon paths.

March 2016 « Vol. 21(3)
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Fig. 4 MC analysis of both subdiffusive and diffusive light propagation. The three columns in the upper

part of the figure relate to MC simulations with different constraints for the detection radius r and the

allowed penetration depth z.,,. (a)-(c) 20 photon paths for each simulation exemplify the nature of

each scattering regime. (d)-(f) Statistical evaluation of all scattering interactions of detected photons

reveals (d)-(e) a strong bias toward high-angle scattering as compared to the expected angular scatter-

ing distribution. This bias is almost canceled in the diffusion regime [(c) and (f)]. (g) All simulated light

propagation and detection constraints give rise to a more or less pronounced sensitivity toward subdif-

fusive and diffusive light.

In the last simulation with neither lateral detection nor axial
propagation constraint, the angular scattering bias is almost
completely lost [Fig. 4(f)]. The incidence and detection geom-
etry nevertheless sustain a small bias toward very high-angle
scattering by allowing subdiffusive light to still be part of the
detection signal.

Figure 4(g) sketches the relationship of the three MC simu-
lations, indicating the difficulty to clearly distinguish between
the diffusive and subdiffusive regime due to the smooth transi-
tion of the relative weight of biased and unbiased photon paths.

Further MC analysis beyond that shown in Fig. 4 reveals that
the studied angular scattering bias has some dependency on the
source—detection geometry and is very sensitive to the imple-
mented depth constraints. These constraints might seem as a
random limitation but actually reflect the sampling characteris-
tics in spatial frequency domain imaging. Deeply penetrating
light is prevented from contributing to high-spatial frequency
reflectance through a demodulation approach. '3

Similar to Figs. 4(d)-4(f), we also observe a qualitatively
comparable angular scattering bias for different scattering
phase functions. However, we find the intensity of the angular
scattering bias to scale with the phase function asymmetry g;.

As a conclusion from this MC analysis, it seems reasonable
that accurate quantification of subdiffusive backscattering
should somehow account for the demonstrated high weight of
scattering at large angles. We seek to use higher order Legendre
moments for quantification of subdiffusive light. In this regard
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one needs to be aware of the change in sign of the Legendre
polynomials P; at angles close to € = 180 deg for subsequent
orders (see inset of Fig. 5 for illustrations of P,, P3, and P, with
positive function values represented by solid blue and negative

3.5

P,

180

Fig. 5 Angular weight curves for the expression defined in Eq. 5 for
different values c. The solid blue curve (¢ = 0) corresponds to the
angular weight assigned to y and the solid black curve (c = 0.5) to
that of the newly defined subdiffusive quantifier 5. The inset depicts
the Legendre polynomials P,, P3, and P, with their change in sign for
angles close to 180 deg (solid blue curves for positive, and dashed red
curves for negative function values).
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values by dashed red curves). Correspondingly, we find through
a large number of forward calculations using different scattering
phase functions and different computational orders that the
effect of subsequent similarity parameters (i.e., y,d,¢€,...) on
backscattering is also inverted. Furthermore, increasingly
high-Legendre moments correspond to the high-frequency oscil-
lations of scattering phase functions and thus have a diminishing
impact on the overall subdiffusive backscattering intensities.

Based on these observations we propose the following for-
mula to quantify subdiffusive backscattering

— L —y—cb+cle-c3+... —... ®)
1:2 l_gl

The positive number ¢ with ¢ <1 determines the decreasing
weight of higher order similarity relations beyond y.

In order to understand the physical relevance of this empiri-
cal equation and to demonstrate its suitability, Eq. (5) can be
rewritten as

: [Z e 29,-], ©)
=2

1 TN .
= {ZEA Z (=¢)"=*P;(cos 8) p(0) sin(0) d

i=2

=angular weight

1+c)’ )

We are particularly interested in the quantity marked as
“angular weight” in Eq. (7). This quantity provides some insight
on the relative weight of the entire expression toward the differ-
ent phase function angles. We seek to compare the angular
weight of the presented formula with our previous statistical
analysis on angular scattering bias. Figure 5 displays the formu-
la’s weight for different constants c. The blue colored dashed
curve for ¢ = 0 corresponds to the angular weight of y display-
ing equal emphasis on the forward and backward scattering
direction. This does not quite correspond to the angular weights
obtained through our statistical analysis in Fig. 4. However, as ¢
is increased, the backscattering direction progressively gains in
angular weight.

For ¢ > 0, we compare the angular weight curves in Fig. 5
with the statistically found angular weight histograms in Figs. 4
(d) and 4(e). Accordingly, the observed high-angular weight of
large angle scattering is reflected by Eq. (7) which also attributes
less weight to intermediate scattering angles as desired. For
absolute comparison, the scaling factor 1/(g; — 1) and the offset
1/(14¢) of Eq. (7) have to be considered as well. While
1/(g; — 1) scales the overall weight intensities, 1/(1+ c)
reduces the weight at all angles and may thus reduce the dis-
played relative weight of forward scattering depending on the
actual phase function. Consequently, by using Eq. (5) with ¢ >
0 one may establish a rather good correspondence with the
actual angular weights found for subdiffusive light. Moreover,
the formula’s built-in scaling property of the asymmetry value
reflects the previous finding of our MC analysis.
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We have tested the significance of Eq. (5) on a large number of
analytical'®!” forward calculations for different scattering phase
functions and various source—detector geometries. Resulting from
these calculations, we find on average best quantification of
subdiffusive backscattering for ¢ = 0.5 and thus introduce the
parameter ¢ with

_°° i 9i
_Z -0.5) 21_ ) (8)

i=

Based on the distinct angular weights attributed to a scattering
phase function, this new parameter ¢ exceeds the precision of
y and thus more uniquely quantifies subdiffusive light propaga-
tion. In Sec. 4, we put o to an extensive test and demonstrate the
gain in accuracy over the established parameter .

4 \Verification and Accuracy of ¢

As a first step to demonstrate the significance of o, we make use
of the calculated SRR and SFDR data of Sec. 2 which was pre-
viously presented with respect to g; and y in Figs. 2 and 3,
respectively. The same data is now displayed versus o in
Fig. 6 showing both SRR (a) and SFDR (b). By comparing
the dispersion of the 1000 data points for all four SDSs in
Fig. 6(a) to those in Fig. 3(a), we observe that ¢ describes SRR
intensities more uniquely for three out of the four displayed
SDSs. At p = 0.5 mm, SRR is well described by both y and
o, yet data points are slightly more widespread in the graph ver-
sus o. A noticeable gain in accuracy using o is especially found
for p = 0 mm, but also for p = 1.5 mm and p = 3 mm.

Improvements in quantifying subdiffusive backscattering are
most evident in the spatial frequency domain [compare Figs. 3
(b) and 6(b)]. For all four displayed spatial frequencies o states a
much more unambiguous quantifier than y.

In order to add some quantitation to the predictive ability of
g1, 7» and o, a fifth degree polynomial was fitted to all SRR and
SFDR point clouds in Figs. 2, 3, and 6 (not shown). We then
calculated the root mean square deviation (RMSD) for each sub-
diffusive quantifier with respect to this polynomial. A relative
overall error metric is obtained for the spatial domain and spatial
frequency domain by, respectively, averaging the RMSDs over
the four SDSs or four frequencies and division by the parameter
ranges in g, y or o. Table 2 summarizes these averaged relative
errors 8¢, Oy, and do. Accordingly, relative RMSDs in y are
found to be 1.5 and 3.5 times as large as that of ¢ for the spatial
domain and spatial frequency domain, respectively. This error
metric should, however, be considered solely as a rough indica-
tor which is largely dependent on the phase function selection
and the assumed source and detection geometry.

To also demonstrate the significance of ¢ beyond both the
four SDSs and the four frequency values analyzed in Fig. 6,
all SRR and SFDR curves in Fig. 1 of the original data were
colored according to their corresponding ¢ value (with darker
curves corresponding to lower o values).

The perpendicular illumination and high-aperture detection
assumed for the presented data in Fig. 6 have some similarity
with the constraints found in reflected-light microscopy yet they
do not represent typical diffuse optical imaging constraints.
Oblique projection of light is a typical feature of experimental
approaches toward SRR or SFDR. Detection is often camera
based featuring a limited and mostly small detection aperture.
In order to verify and thereby establish ¢ as a meaningful param-
eter relevant also to experimental geometries, we performed
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Fig. 6 Analytical forward calculations of (a) SRR for four different SDSs p and (b) SFDR for four spatial
frequencies f. The shown reflectance data is equal to that presented in Figs. 1-3 but is plotted against the
new subdiffusive parameter o this time. Every data point corresponds to a different scattering phase
function. ¢ is observed to have a stronger correlation with subdiffusive SRR and SFDR than y when

compared to Fig. 3.

extensive forward calculations of subdiffusive reflectance for
four different geometries of the source, the detection and the
sample.

The following computations were performed for SFDR,
owing to the much higher-computation speed of analytical
solutions in the spatial frequency domain. This allows to per-
form computations at a higher-computation order N for better
verification of o. High-computation orders are especially
required for narrow detection apertures and high-spatial
frequencies where oscillatory phase function features start to
have a meaningful influence on reflectance intensities. In our
forward calculations we again set the macroscopic optical prop-
erties to p/ =1 mm™" and u, =0.01 mm~'. The selected
absorption value has little significance due to the in most
cases negligible influence of absorption on subdiffusive light
propagation.'® Through scaling of spatial frequencies, the com-
putational results hold true also for higher or lower reduced scat-
tering values and thus give a generally meaningful analysis for
the subdiffusive regime. This is similarly true for the previously
presented SRR data, where proper scaling of both p and SRR
corresponds to scaled values of p; and .

In the following computations we consider the four spatial
frequencies f = 0.1,0.2,0.4 and 0.8 mm~' for all phase func-
tions listed in Table 1, as before.

Figures 7(a), 7(d), 7(g), and 7(j) sketch the modeled geom-
etries of source, detection and the sample. In the first forward
modeling (first row of Fig. 7) we assume oblique incidence at an
angle of 30 deg and a detection aperture of 0.34 [see Fig. 7(a)].

Table 2 Relative error metrics for gy, y, and ¢ as averaged over the
data of Figs. 2, 3, and 6.

The second geometry has oblique incidence at 20 deg and a
smaller aperture of 0.17 [Fig. 7(d)]. In the third row of Fig. 7
we assume a two-layer geometry where the scattering layer is
only 100 um thick resting on a highly absorbing bottom
layer with u, = 10 mm~" and g} = 0.01 mm~'. This geometry
restricts light propagation to within the depth of 100 ym leading
to an almost pure ballistic (i.e., strongly subdiffusive) reflec-
tance content. For this geometry, projection is at 20 deg and
the detection aperture is set to 1 [Fig. 7(g)]. Finally, Fig. 7(j)
shows the last forward modeling which assumes the same
source—detection and sample geometry as in Fig. 7(g) with
the bottom layer optical properties set to x, = 0.01 mm~' and
u! =2 mmL.

The second and third column of Fig. 7 display the computed
reflectance values for all model geometries plotted versus y and
versus o, respectively. Every data point again corresponds to a
single forward calculation using one of the scattering phase
functions listed in Table 1. The four point clouds in each
graph thus correspond to the four different spatial frequencies.

We always find the computed reflectance values in Fig. 7 to
be more scattered when plotted versus y (second column) as
compared to the corresponding o plots (third column). This
is confirmed by the relative error §y and do presented in and
averaged over each graph. Thus, for all four model geometries
o states a more unambiguous parameter and shows stronger cor-
relation with subdiffusive reflectance intensities.

With decreasing detection aperture and increasing spatial fre-
quency the uncertainties related to both parameters are shown to
increase. This is caused by the increased sensitivity toward small
angular phase function features such as Mie resonances. Indeed,
the most deviating points in the data graphs of Fig. 7 correspond
to scattering functions with a rather distinct or oscillatory peak
in backward direction. Such phase function behavior is unlikely
to be found for biological tissue but observable for single Mie
scatterers or “modified powers of cosines”? phase functions.

Parameter SDR SFDR The third model geometry corresponds to the reflectance
594 17% 17% from a very thin slice of turbid medium and reveals an almost

linear relationship of reflectance intensities versus o. The small
2 3.1% 3.5% layer thickness states an even stronger constraint to the light
5o 1% 1.0% propagation depth than the selected spatial frequencies and

thus reflectance intensities are almost identical for all frequency
Journal of Biomedical Optics 035002-8 March 2016 « Vol. 21(3)
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Fig. 7 Results of RTE-based analytical forward calculations of SFDR to demonstrate the accuracy of the
phase function parameter ¢. The sketches in the left column depict the assumed geometries for source,
detection and sample for the four different sets of forward calculations. For each model geometry, two
plots are given in the central and right column showing the computed reflectance values with respect to y
and o, respectively. Every data point corresponds to the forward calculation using one of the phase func-
tions stated in Table 1 for one out of four spatial frequencies (f = 0.1,0.2,0.4 and 0.8 mm™").

values. We therefore show SFDR for only a single spatial fre- All source geometries in Fig. 7 feature oblique projection of
quency (f = 0.1 mm™") in Figs. 7(h) and 7(i) representative for spatial frequencies which induces phase shifts in the reflectance
all four frequency values. pattern. In spite of not illustrating these phase shifts we included

The rather unnatural bottom layer optical properties in the them in our computational analysis. Similar to the depicted
layered forward models [Fig. 7(g) and 7(j)] are meant to dem- reflectance amplitudes, we observe that ¢ relates to a much
onstrate general applicability of ¢ for layered sample geometries more unambiguous description of the phase than y for all studied
with unmatched optical properties. geometries and frequencies.
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The correctness of the presented analytical data is ensured by
numerous verifications using MC simulations with phase func-
tion look-up tables. In addition, we ensure numerical stability of
all data points by repeated forward computations at different
computational orders.

5 Conclusion

We demonstrated that the use of the asymmetry parameter g; as
an independent subdiffusive quantifier is inappropriate. The
established phase function parameter y is much more useful
but also carries large uncertainties. Through analysis of subdif-
fusive photon paths we arrived at the new parameter ¢ which
builds upon y and makes use of higher order similarity relations.
This empirically derived parameter greatly enhances the accu-
racy in quantifying subdiffusively backscattered light.

Our findings have important consequences for the experi-
mental study of subdiffusive light. The parameter ¢ mostly
lifts the necessity of finding proper model phase functions to
best mimic investigated media. This is especially useful for
the study of biological tissue with mostly unknown scattering
phase functions.

From our study, we conclude, that it is not the phase func-
tion model and its precise shape of angular scattering that mat-
ters, but rather the correct ¢ regime. Our verification studies
indicate a high significance of ¢ independent of the source
and detection geometry and for both the spatial domain and
the spatial frequency domain. This hints at general applicabil-
ity to various experimental approaches such as differential path
spectroscopy,’*? single or multiple fiber reflectance spectros-
copy,”** SRR,** SFDR,!"! and to other modalities without
polarization constraints.>>-3¢

As expected, we find the accuracy of o to decrease with
decreasing SDS (i.e., increasing spatial frequency) as small
angular phase function features become more relevant. The
same is true for decreasing detection apertures.

A second benefit of 6 comes with the enhanced replaceability
of phase functions in forward models. Within the uncertainties
displayed in Figs. 6 and 7 there exists a general ability to replace
phase functions for forward modeling of subdiffusive (and dif-
fusive) reflectance. Heavily oscillating or extremely strong for-
ward peaked scattering phase functions with slowly decreasing
Legendre moments can produce numerical instabilities in ana-
Iytical forward models. In MC simulations, both low phase func-
tion asymmetry values, as well as phase function invertibility
boost computation speed. Through s-equivalent phase function
replacement, it is possible to lower the asymmetry value of a
model function without altering subdiffusive backscattering
intensities much. The possible extend of such asymmetry low-
ering can be understood from Fig. 2.

Our study revealed that subdiffusive backscattering inten-
sities are mostly determined by the high-angle scattering prob-
ability of individual scatterers scaled by the asymmetry value of
their scattering phase function. The parameter o reflects this
angular weight distribution. As a derived version of the estab-
lished parameter y, o, is likely to relate to similar physical and
microsctructural interpretation.®

Similar to the measurement of y, and y/, experimental quan-
tification of ¢ requires forward modeling to allow for fitting of
optical properties and thus solving of the inverse problem. In
biomedical optics, the Reynolds—McCormick function may
be a model of choice for performing ¢ forward calculations.
Along with its simplicity it performs well in modeling o values
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below o~ 1.26. Very small ¢ values even below ¢ = (0.2 are
possible if the second input parameter g’ of the model function
(see Table 1) is allowed to become negative. In the same sense,
Henyey—Greenstein may be used for ¢ values up to o = 1.11.
The “modified powers of cosines” function allows for modeling
of the entire ¢ range presented, but achieves this in part through
rather unnatural probability distributions. Consequently, the o
and y uncertainties for this phase function type are among
the largest along with those for discrete Mie scatterers.

We conclude that every experimental geometry as well as
every scattering regime corresponds to a different relative influ-
ence of high-order Legendre moments and thus to a different
ideal value for c. The subdiffusive quantifier ¢ along with
the empirically selected constant ¢ = 0.5 provides an accurate
compromise for many imaging constraints. This allows for
meaningful comparison across different studies on subdiffusive
backscattering.
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