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Abstract. Dynamic fluorescence molecular tomography (DFMT) is a valuable method to evaluate the metabolic
process of contrast agents in different organs in vivo, and direct reconstruction methods can improve the tem-
poral resolution of DFMT. However, challenges still remain due to the large time consumption of the direct
reconstruction methods. An acceleration strategy using graphics processing units (GPU) is presented. The pro-
cedure of conjugate gradient optimization in the direct reconstruction method is programmed using the compute
unified device architecture and then accelerated on GPU. Numerical simulations and in vivo experiments are
performed to validate the feasibility of the strategy. The results demonstrate that, compared with the traditional
method, the proposed strategy can reduce the time consumption by ∼90%without a degradation of quality.©2016
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1 Introduction
As a rapidly developing technique for pharmacokinetics stud-
ies,1,2 dynamic fluorescence imaging reflects the absorption, dis-
tribution, and excretion characteristics of contrast agents in the
body. The reconstructed pharmacokinetic images of dynamic
fluorescence molecular tomography (DFMT) can provide
noninvasive and three-dimensional (3-D) monitoring of the met-
abolic process of fluorophores in vivo.3–5 Therefore, it is prom-
ising for tumor detection, drug development, and metabolic
research.6,7

Generally, two kinds of methods can be used to solve DFMT
problems: indirect methods and direct methods. Indirect
methods3 have been developed from the conventional static
fluorescence molecular tomography (FMT) procedures. It is
assumed that the concentration of the fluorophores is constant
during the data acquisition process of each circle. Therefore, the
individual FMT image of each circle is reconstructed first, and
then the metabolic parameters of each voxel can be obtained
with curve fitting. Some methods have been previously pro-
posed for FMT reconstruction. L2 regularization8 is commonly
implemented because it is simple and can be efficiently solved,
while L1-based regularization9,10 can improve the resolution of
the reconstruction images especially for spars problems.
However, the spatial resolution and accuracy of the images
obtained with the indirect methods are relatively low because
the static assumption is not suitable for the DFMT problems,
especially when the concentration of the fluorophores varies
fast over time. To overcome this problem, direct reconstruction
methods4,5 have been proposed to map the metabolic parameters
into the acquired datasets and directly reconstruct the dynamic
images from the boundary measurements in one step. By using

the direct methods, the quality of the reconstructed images is
improved. However, the time consumption of the direct methods
is significantly increased. In a typical DFMT implementation
with about 10,000 boundary measurement points, 5000 finite-
element nodes, and 200 iterations, the direct methods take
more than 8 h to obtain the reconstructed images.

Some methods can be used to accelerate the direct methods.
Principal components analysis (PCA) has been proposed to
reduce the dimension of weight matrix.11 Wavelet12,13 and
Fourier14 transforms have been employed to reduce the scale
of the boundary measurements. However, these methods may
reduce the accuracy of the reconstructed images due to the infor-
mation lost by using data compression.

Parallel computation using graphics processing units (GPU)
is a fast-developing technology. The computing ability of
GPU is much more powerful than that of general-purpose
central processing units (CPU). Combined with deeply opti-
mized processing pipelines, hierarchical thread structures and
extremely low memory latency, GPU constitutes an excellent
shared memory parallel computing platform.15 However, pro-
gramming on GPU had been difficult until the compute unified
device architecture (CUDA) was introduced in 2006. CUDA is
a parallel computing platform and programming model and
provides a software environment where developers can use a
high-level programming language, such as C. CUDA-enabled
GPU has been utilized in the field of fluorescence imaging,
such as the acceleration of Monte Carlo algorithm,15 modeling
of time-resolved photon migration,16 and acceleration of early-
photon FMT.17

In this work, a fast computing strategy using GPU is pro-
posed to accelerate the direct reconstruction algorithm of
DFMT. In this strategy, the most time-consuming part of the
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algorithm, i.e., iterative regularization using conjugate gradient
(CG) optimization, is accelerated using CUDA. Meanwhile, to
fully use the parallel computing ability of GPU, vectors of fluo-
rophore concentration are assembled into a distribution matrix
according to the order of the projection sequences in each circle.
Then the forward prediction measurements are calculated in the
form of matrix–matrix multiplication.

Numerical simulations and in vivo mouse experiments are
carried out to evaluate the performance of the proposed strategy.
The results demonstrate that the proposed strategy can signifi-
cantly accelerate the direct DFMTalgorithm almost without any
quality degradation.

2 Method

2.1 Data Acquisition System

A hybrid FMT/x-ray computed tomography (XCT) system18 is
used to obtain the DFMT boundary measurements. As shown in
Fig. 1, a free-space and full-angle FMT system is used to acquire
the fluorescence datasets, while an XCT system is used to obtain
the anatomical information of the small animal, which provides
structural priors for the reconstruction algorithm. For dynamic
FMT problems, to monitor the metabolic process of the fluoro-
phores, the small animal is fixed on the stage and continuously
rotated forK circles, and the charge-coupled device (CCD) cam-
era acquires S projections in each circle. Therefore, a total of
P ¼ KS projections are obtained during the whole DFMT
acquisition process.

2.2 Direct Reconstruction Method for Dynamic
Fluorescence Molecular Tomography Problems

For FMT problems, the propagation of the excitation and emis-
sion light in biological tissues can be reasonably approximated
by two coupled diffusion equations.19,20 Using Green’s function
theory, the fluorescence signal Φmðrd; rsÞ detected at a point rd
due to a excitation source at rs can be written as21

EQ-TARGET;temp:intralink-;e001;63;345Φmðrd; rsÞ ¼ Θ
Z

Gmðrd; rÞnðrÞGxðr; rsÞd3r; (1)

where the Green’s function Gxðr; rsÞ stands for the light propa-
gation from the source point rs to an arbitrary position r inside

the medium at the excitation wavelength x. The Green’s func-
tion Gmðrd; rÞ describes the light propagation from a position r
inside the medium to the detector point rd at the emission
wavelength m, and nðrÞ denotes the fluorescent yield to be
reconstructed.

In DFMT problems, a two-compartment model is commonly
used to describe the metabolic process of the fluorophores inside
different organs.22 The concentration of fluorophores nðr; tÞ at
time t can be obtained using23

EQ-TARGET;temp:intralink-;e002;326;653nðr; tÞ ¼ −AðrÞ exp½−αðrÞt� þ BðrÞ exp½−βðrÞt�; (2)

where AðrÞ and BðrÞ determine the zero-time concentration at
position r, αðrÞ, and βðrÞ denote the uptake and excretion rates
of the fluorophores.23

When the imaged 3-D volume is discretized into N voxels,
the parametric images in the discrete domain can be defined as

EQ-TARGET;temp:intralink-;e003;326;567X ¼ ½x1; x2; x3; x4� ¼ ½A; B; α; β�; (3)

where each parametric image xuðu ¼ 1;2; 3;4Þ is given by
xu ¼ ½xuðr1Þ; : : : ; xuðrNÞ�T , and rjðj ¼ 1; : : : ; NÞ is employed
to denote the spatial locations of voxels in the discretized
domain.

As demonstrated in Sec. 2.1, the measurement acquisition
consists of K circles, and S projections are performed in
each circle. For projection sðs ¼ 1; : : : ; sÞ, the surface of the
imaged object is orthographically projected to the fluorescence
image, which is obtained from CCD camera. The CCD pixels
inside the projection area are considered to be the measurement
points, and the number of the measurement points isMs. Thus, a
total of P ¼ KS projections and M ¼ P

s
s¼1 Ms measurement

points are obtained. Let tp ¼ ðp ¼ 1; : : : ; PÞ denote the individ-
ual discrete time of projections. By combining Eqs. (1) and (2),
the pharmacokinetic parameters can be mapped directly to the
boundary measurements as follows:4

EQ-TARGET;temp:intralink-;e004;326;360

Φmðrdi ; KSs; tpÞ ¼
XN
j¼1

Wsði; jÞnðrj; tpÞ

¼
XN
j¼1

Wsði; jÞf−AðrjÞ exp½−αðrjÞtp�

þ BðrjÞ exp½−βðrjÞtp�g; (4)

where Ws is the submatrix of the weight matrix W at projection
sðs ¼ 1; : : : ; SÞ, and its entries are defined as24

EQ-TARGET;temp:intralink-;e005;326;235Wsði; jÞ ¼ ΔVΘGmðrdi ; rjÞGxðrj; KSsÞ; (5)

where is the volume of each individual voxel.
Let fðXÞ denote the forward model. The boundary measure-

ments predicted by the forward model is given as

EQ-TARGET;temp:intralink-;e006;326;170fðX; tpÞ ¼ ½Φmðrdi ; KSs; tpÞ; : : : ;ΦmðrdMs
; KSs; tpÞ�; (6)

EQ-TARGET;temp:intralink-;e007;326;136fðXÞ ¼ ½fðX; t1ÞT; : : : ; fðX; tPÞT �T: (7)

To reconstruct the parametric images in one step, by combin-
ing Eq. (7) and the conventional Tikhonov regularization
method, a new objective function is obtained for the direct
reconstruction method5

Fig. 1 Schematic of the hybrid FMT/XCT system. The FMT system is
used to acquire the DFMT measurements, while the XCT system
obtains the anatomical information of the small animal.
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EQ-TARGET;temp:intralink-;e008;63;752

ΨðXÞ ¼ ky − fðXÞk22 þ λ1kLAk22 þ λ2kLBk22 þ λ3kLαk22

þ λ4kLβk22 ¼ ky − fðXÞk22 þ
X4
u¼1

kLxuk22; (8)

where y ¼ ½yðt1ÞT; yðt2ÞT; : : : ; yðtpÞT �T denotes the whole
boundary measurement matrix assembled using measurement
vectors of all the frames. λuðu ¼ 1;2; 3;4Þ is the regularization
parameter, and L is the Laplacian-type regularization matrix25

constructed using the structural priors obtained with the XCT
system. The minimization of ΨðXÞ can be solved using a CG
scheme.26

2.3 Proposed Graphics Processing Units
Acceleration Strategy

2.3.1 Flow chart of the acceleration strategy

The flow chart of the direct reconstruction method and the accel-
eration strategy are shown in Fig. 2. The entire procedure of the
algorithm consists mainly of three parts, i.e., the construction of
Laplacian-type regularization matrix25 (part 1 in Fig. 2), the low
dimensional estimation of the initial of parameters27 (part 2 in
Fig. 2), and the CG optimization (part 3 in Fig. 2). The most
important and time-consuming part is the CG optimization.
In the CG optimization, four dynamic parameters (A, B, α,
and β) are iteratively optimized until the end conditions are sat-
isfied. The iteration number of the CG optimization is usually
set to be more than 100, and the iterations take more than 99% of
the whole reconstruction time. Therefore, the CG optimization
needs to be accelerated.

As shown in Fig. 2, the whole procedure of the optimization
is programmed using CUDA, while the rest parts of the algo-
rithm are programmed in MATLAB® 2012 (The MathWorks,
Inc., Natick, Massachusetts). For each metabolic parameter,
the gradient g½ΨðxÞ� and the conjugate searching direction
d½ψðXÞ� of the objective function ψðXÞ as shown in Eq. (8) are

first calculated, and then the optimal step length is determined
using golden search. These steps are all parallel computed using
GPU. All the datasets and parameters are transferred to and
stored in GPU memories before the GC scheme is started, and
the reconstructed results are read out after it is finished. The
whole optimization procedure is independently and automatically
operated in GPU. This design can avoid frequent data transfer
between CPU and GPU, which is significantly time-consuming
especially when the size of the dataset is large.

2.3.2 Parallel computing strategy

CUDA is a parallel computing platform and programming
model invented by NVIDIA Corp. (Santa Clara, California).
It is capable of sending C codes straight to GPU without com-
plicated manipulation of the underlying GPU hardware. When
using CUDA, the parallel computing functions are programmed
as kernel functions, which could be operated on a GPU.
However, it requires a lot of practice and experience to develop
high-effective kernel functions. To solve this problem, NVIDIA
provides a cuBLAS library, which is a high-effective implemen-
tation of basic linear algebra subprograms (BLAS).

In this study, the GPU method is programmed using CUDA
C, and compiled using nvcc and mex compilers. The generated
mex file can be invoked by MATLAB® program. Some basic
linear algebra calculations, such as matrix–matrix multiplica-
tion/addition, matrix–vector multiplication, and vector–vector
dot product, are programmed using cuBLAS libraries. Take
matrix–matrix multiplication for example, a parallelly tiled
multiplication method is used in cuBLAS library. The diagram
of the tiled multiplication is shown in Fig. 3(a). The matrixes A,
B and C ¼ A × B are divided into several submatrixes. When
calculating the submatrix Csub ¼ Asub × Bsub, the submatrixes
Asub and Bsub are synchronously read into the shared memories,
and the elements are multiplied and accumulated parallelly in
GPU threads. The block size of the submatrixes is selected
based on the number of the GPU cores and the size of the GPU
shared memories. The block size is set to be 16 in this study, and
the number of elements for each submatrix is 16 × 16 ¼ 256.

For the functions that the cuBLAS cannot support, self-
defined kernel functions are used to realize parallel computing.
For example, when calculating the exponential values of a

Fig. 2 Flowchart of the acceleration strategy. The whole procedure of
CG optimization (part 3) is programmed and accelerated using CUDA.

Fig. 3 Diagram of the parallel computing strategy. (a) Diagram of
the tiled multiplication method for matrix–matrix multiplication. The
matrixes are divided into submatrixes, and the elements of the sub-
matrixes are parallelly calculated. (b) Diagram of the parallel comput-
ing for the exponential value of the vector. The vector is divided into
Nd blocks, and each block contains Nt threads.
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vector, the vector of size Nv is divided into Nd blocks, and each
block contains Nt GPU threads, as shown in Fig. 3(b). In this
study, the threads number of each block is 512. Therefore, the
vector is divided into Nd ¼ Nv∕512 blocks. For each block, 512
elements of the vector are read synchronously to the shared
memory, and the exponential values of the elements are calcu-
lated parallelly in the GPU threads.

2.3.3 Predicted boundary measurements acceleration

The CG optimization is composed of gradient calculation and
golden search. During the process of golden search, the predicted
boundary measurements fðXÞ in Eq. (7) are calculated repeatedly
to minimize the objective function ΨðXÞ in Eq. (8). As shown in
Fig. 3, K circles and S projections per circle are acquired in the
measurements, ns;kðs ¼ 1; : : : ; S; k ¼ 1; : : : ; KÞ is theN × 1 flu-
orophore concentration distribution vector at the s’th projection in
the k’th circle, and Ws is the submatrix with a size of Ms × N.
Thus, one predicted boundary measurement fðXÞ needs KS
matrix–vector multiplications. In a typical implementation, calcu-
lation of fðXÞ is repeated over 7000 times, which takes more than
70% of the total reconstruction time.

Note that in Fig. 4(a), the concentration distribution vectors
at the s’th projection in different circles share the same subma-
trixWs. To fully utilize the advantage of parallel computation of
CUDA, the KS fluorophore vectors are assembled to S fluoro-
phore matrixes with a size of N × K according to the sequence
order of the submatrix Ws. Therefore, KS matrix–vector multi-
plications are transformed into S matrix–matrix multiplications
as shown in Fig. 4(b).

2.4 Comparison Principal Components Analysis
Acceleration Method

PCA is a widely used method to accelerate the reconstructions
of FMT problems by reducing the dimensions of the measure-
ment datasets and the weight matrixes.11 It linearly transforms
an original set of variables into a substantially smaller set of
uncorrelated variables, which can represent most of the

information in the original set of variables. The cumulative per-
cent of variance (CPV) is used to determine the number of
retained principal components.11 An appropriate CPV should
be carefully selected to balance the calculation speed and the
reconstruction accuracy.

Fig. 4 Schematic of the predicted boundary measurements acceler-
ation strategy. (a) The traditional method requires KS matrix–vector
multiplications to obtain the predicted boundary measurements.
(b) The acceleration strategy assembles the fluorophore vectors to
S matrixes and requires only S matrix–matrix multiplications to obtain
the predicted boundary measurements.

Fig. 5 Numerical simulations. (a) The 3-D Digimouse model used in
the simulations. The mouse torso from the neck to the bottom of the
kidneys is selected as the investigated region, with a total length of
3.1 cm. (b) ICG concentration curves simulating the metabolic proc-
ess of ICG in different organs.

Table 1 Optical properties and pharmacokinetic parameters setups
in different regions.

Regions μa (cm−1) μ 0
s (cm−1) A (a.u.) B (a.u.) α (min−1) β (min−1)

Heart 0.350 23 1.7 1.7 0.330 0.023

Liver 0.500 13 1.0 1.0 0.435 0.011

Lungs 0.250 30 0.8 0.8 0.296 0.020

Kidneys 0.175 20 1.2 1.2 0.254 0.016

Background 0.300 10 0.5 0.5 0.348 0.009

Table 2 Original and PCA compressed data sizes for simulations.

Voxels N

Measurements M

Compression ratioOriginal PCA

Group 1

Case 1 5651 15,620 2229 7.0

Case 2 6968 15,620 1933 8.0

Case 3 9096 15,620 1440 10.8

Case 4 12,768 15,620 1030 15.2

Group 2

Case 5 10,793 7730 696 11.1

Case 6 10,793 9443 803 11.8

Case 7 10,793 11,476 997 11.5

Case 8 10,793 12,861 1047 12.2

Average 10.9
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For FMT problems, the optimal CPV can be reasonably set to
be about 0.9 according to the previous study.11 However, for
DFMT problems, the optimal CPVs vary dramatically among
different experimental cases. To obtain a proper balance
between the time consumption and the reconstruction quality,
the CPVs for the numerical simulations and the in vivo
experiments are empirically selected to be 0.7 and 0.995,
respectively.

2.5 Evaluation Method

The time consumptions of the traditional method, the proposed
GPU method, and the PCA method are compared and the
acceleration ratios are calculated. The relative difference
(RD) is calculated to evaluate the differences between the results
reconstructed by the acceleration methods and the traditional
method, and it is defined as11,13,17

EQ-TARGET;temp:intralink-;e009;326;668RD ¼ sqrtðkXfast − Xtraditionalk∕XtraditionalÞ; (9)

where Xtraditional is the entire 3-D parametric images recon-
structed using the traditional method. Xfast denotes the 3-D
reconstruction results obtained from the GPU- or PCA-based
acceleration method.

The traditional method, the proposed GPU acceleration strat-
egy, and the PCA acceleration method are all performed in
MATLAB® 2012 (TheMathWorks, Inc., Natick, Massachusetts)
on a PC workstation with Intel® Core™ i7-4770 CPU at
3.40 GHz and 12 GB RAM. The PC workstation is embedded
with an NVDIA GTX 750 Ti graphics card with 640 CUDA
cores and 2 GB video memories.

3 Experiments and Results

3.1 Numerical Simulations

3.1.1 Simulation setups

Numerical simulations are performed to validate the performance
of the acceleration strategy. A Digimouse atlas28 shown in
Fig. 5(a) is employed to construct a 3-D simulation model,
which includes four kinds of organs: heart, lungs, liver, and
kidneys. Different optical properties are assigned to these organs
to constitute a heterogeneous model, as presented in Table 1.29

The Digimouse model is discretized into N mesh voxels using
COMSOL Multiphysics 3.5 (COMSOL Inc., Stockholm,
Sweden).

Table 3 Time consumptions and acceleration ratios of the GPU and
PCA methods for simulations.

Time (s)
Acceleration

ratio

Traditional GPU PCA GPU PCA

Group 1

Case 1 22,135 1485 2861 14.9 7.7

Case 2 25,996 1867 3032 13.9 8.6

Case 3 33,225 2491 3453 13.3 9.6

Case 4 42,448 3646 4176 11.6 10.2

Group 2

Case 5 18,135 1826 3393 9.9 5.3

Case 6 22,057 2060 3498 10.7 6.3

Case 7 26,557 2343 3654 11.3 7.3

Case 8 29,682 2566 3708 11.6 8.0

Average 12.2 7.9

Table 4 RDs of the results obtained with the GPU and PCA methods for simulations.

GPU PCA

A B α β A B α β

Group 1

Case 1 0.003 0.002 0.003 0.002 0.038 0.003 0.006 0.003

Case 2 0.009 0.001 0.002 0.001 0.020 0.003 0.021 0.003

Case 3 0.053 0.003 0.012 0.004 0.048 0.002 0.013 0.003

Case 4 0.011 0.003 0.003 0.004 0.042 0.002 0.007 0.004

Group 2

Case 5 0.017 0.002 0.011 0.001 0.047 0.003 0.014 0.003

Case 6 0.003 0.003 0.013 0.002 0.031 0.003 0.014 0.006

Case 7 0.005 0.002 0.008 0.003 0.013 0.001 0.006 0.002

Case 8 0.004 0.001 0.008 0.001 0.009 0.002 0.007 0.003

Average 0.013 0.002 0.008 0.002 0.031 0.003 0.011 0.003
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Figure 5(b) shows indocyanine green (ICG) concentration
curves, which simulate the metabolic processes of ICG in differ-
ent organs and tissues. The curves are obtained according to
Eq. (2), and the corresponding pharmacokinetic parameters are
listed in Table 1.5

In the simulations, the atlas model is suspended on a rotation
stage and continuously rotated for 60 circles. Each circle takes
1 min and acquires 24 projections with an angular increment of
15 deg. During the process of the measurement, the ICG con-
centrations of different organs vary in each projection according
to the metabolic curves shown in Fig. 5(b).

Two parameters determine the size of the datasets and the
time consumption of the reconstruction, i.e., the number of
the discretized voxels N and the number of the boundary mea-
surements M. Two groups of datasets are made to evaluate the

effect of these two parameters on the reconstruction speed, and
each group contained four cases. In group one, M is constant
andN varies in different cases, while in group two,N is constant
and M varies. The parameter setup in each case is listed in
Table 2. To compare with the GPU method, the PCA method
is implemented to reduce the size of the measurements M,
and the compression threshold CPVs are set to be 0.7 for all
the simulation cases.

3.1.2 Simulation results

The original and the PCA compressed data sizes of the numeri-
cal simulations are listed in Table 2. For the eight simulation
cases, the original data sizes of the measurements range from
7730 to 15,620, while the compressed data sizes are between

Fig. 6 Cross-sectional parametric images for simulation case 4 in the region of liver corresponding
to the red dashed line in Fig. 5(a). (a)–(d) The results reconstructed with the traditional method.
(e)–(h) The results reconstructed with the GPU method. (i)–(l) The results reconstructed with the
PCA method.
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696 and 2229. The maximum and minimum compression
ratios are 7.0 and 15.2, respectively. According to the results,
using PCA compression, the data sizes of the measurements
are reduced on average to about 10% of the original data
sizes.

The time consumptions of the traditional, GPU, and PCA
methods are listed in Table 3, and the acceleration ratios are cal-
culated. The time consumption of the traditional method ranges
between 18,135 and 42,448 s, which is considered to be too
long, especially when the reconstruction is operated repeatedly
to obtain the optimal regularization parameters. The time costs
of the GPUmethod are between 1485 and 3646 s, while the time
costs of the PCA method are between 2861 and 4176. The aver-
age acceleration ratios of the GPU and PCA methods are 12.2

and 7.9, respectively. It indicates that the acceleration perfor-
mance of the GPU method is better than the PCA method.

The RDs of the parametric images obtained from the
GPU and PCA methods are listed in Table 4. The maximum
average RD for the GPU and PCA methods are 0.013 and
0.031, respectively. According to the results demonstrated in
Tables 3 and 4, a comparison can be made between the GPU
and PCA methods for the numerical simulations. When the CPV
value is set to be 0.7, the computational speed of the GPU
method is faster than that of the PCA method, while the
reconstruction quality of the GPU method is better than that
of the PCA method.

Figure 6 shows the cross-sectional images of the
reconstruction results obtained by the traditional, GPU, and

Fig. 7 Cross-sectional parametric images for simulation case 4 in the region of kidneys corresponding to
the black dashed line in Fig. 5(a). (a)–(d) The results reconstructed with the traditional method. (e)–(h) The
results reconstructed with the GPU method. (i)–(l) The results reconstructed with the PCA method.
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PCA methods in simulation case 4, and the images are taken
from the liver region of the Digimouse corresponding to the
red dashed line in Fig. 5(a). Figure 7 shows the cross-sectional
images in the kidney region corresponding to the black dashed
line in Fig. 5(a). There are no obvious differences between the
reconstructed results. The same findings can be obtained in all
other cases in the simulations (not shown).

3.2 In Vivo Experiment

3.2.1 Experimental setups

In vivo experiments are conducted based on a hybrid FMT/XCT
system described in Sec. 2.1. A 300 W Xenon lamp (MAX-302,
Asahi Spectra, Torrance, California) is employed as the excita-
tion source. A fiber is attached to the lamp to generate a line-
shaped excitation source with a length of 4 cm. The excitation
light is filtered through a 770� 6-nm bandpass excitation filter
(XBPA770, Asahi Spectra, Torrance, California), and the power
density of the excitation light is 0.03 mW∕cm2. On the opposite
side of the excitation source, the emitted ICG fluorescence
is filtered with an 840� 6-nm bandpass emission filter
(FF01-840/12-25, Semrock, Rochester, New York) and detected
by a 512 × 512 pixel, −70°C cooled CCD camera (iXon DU-
897, Andor Technologies, Belfast, Northern Ireland, United
Kingdoms). The exposure time of the CCD camera is 1 s, and
the CCD binning is set to be 512 × 512.

A healthy BALB/c nude mouse with an age of about 8 weeks
is fixed on the rotation stage and anesthetized. A bolus of ICG
(0.1 mL, 50 μg∕mL) is injected via the tail vain. During the
DFMT measurements acquisition, the mouse is continuously
rotated for 50 circles (K ¼ 50) with an angular increment of
15 deg. Therefore, 24 projections (S ¼ 24) are obtained in each
circle, and a total of 1200 projections (P ¼ KS ¼ 50 × 244) are
acquired for the entire DFMT measurement.

After the fluorescence data acquisition is finished, a hepato-
biliary contrast agent for XCT imaging, Fenestra LC (Advanced
Research Technologies, Montreal, California), is injected at a
dose of 15 mL∕kg body weight through the tail vein. One hour
after the injection, the XCT images are collected to provide
structural prior information. The x-ray tube works at 45 kVp
and 1 mA during the scan, and the XCT images are collected by
a complementary metal oxide semiconductor flat-panel detector
(C7921-02, Hamamatsu, Japan).

In the mouse experiments, a total of 12,968 measurements
are acquired. As shown in Fig. 8(a), a chest region with a height
of 2.5 cm of the mouse is used to reconstruct the parametric
images, and the reconstructed region is discretized into 6062
voxels. The transversal XCT images indicated by the green and
red dashed lines in Fig. 8(a) are shown in Figs. 8(b) and 8(c).
The XCT images are manually segmented into four regions:
liver, lungs, kidneys, and the background. The Laplacian-
type25 regularization matrix is constructed according to the seg-
mentation results. Figures 8(d) and 8(e) depict the segmented
results corresponding to Figs. 8(b) and 8(c). The structural priors
are used to create a heterogeneous model by assigning different
optical properties to relevant regions, as shown in Table 1.
Additionally, the PCA-based acceleration method is compared
with the proposed GPU method, and the CPV is set to
0.995.

3.2.2 Experimental results

As shown in Table 5, the number of the measurements M is
reduced from 12,968 to 2507 with PCA, and the compression
ratio is about five times. The time consumptions of the tradi-
tional, GPU, and PCA methods are listed in Table 6. The accel-
eration ratios of the GPU and PCA methods are 9.8 and 9.4,
respectively. The acceleration performances of the GPU and
PCA methods are very close.

The RDs obtained with the GPU and PCA methods are
shown in Table 7. The RDs of four parameters reconstructed
with the PCA method are all larger than those with the GPU
method. With a CPV value of 0.995, the reconstruction quality

Table 5 Original and PCA compressed data sizes for the mouse
experiments.

Voxels N

Measurements M

Compression ratioOriginal PCA

6062 12,968 2507 5.2

Table 6 Time consumptions and acceleration ratios of the GPU and
PCA methods for the mouse experiments.

Time(s) Acceleration ratio

Traditional GPU PCA GPU PCA

32,512 3326 3466 9.8 9.4

Table 7 RDs of the results obtained with the GPU and PCA methods
for the mouse experiments.

A B α β

GPU 0.018 0.009 0.010 0.012

PCA 0.053 0.035 0.021 0.027

Fig. 8 XCT results of the mouse experiments. (a) Coronal XCT image
in the chest region of the mouse. (b) and (c) Transversal XCT images
indicated by the green and red dashed lines in (a), respectively. (d)
and (e) Manually segmented organs corresponding to (b) and (c).
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of the GPU method is better than PCA, while the acceleration
performances of these two methods are close.

The cross-sectional parametric images obtained with the tra-
ditional, GPU, and PCA methods for the mouse experiments are
shown in Fig. 9, and the images are taken from the lung region
of the mouse corresponding to the red dashed line in Fig. 8(a).
Figure 10 shows the cross-sectional images in the kidney region
of the mouse corresponding to the green dashed line in Fig. 8(a).
For all the reconstruction images, no visual differences can be
observed.

4 Discussions
DFMT is a promising technique that can be used in tumor detec-
tion, drug development, and metabolic research.3 The previously
proposed direct reconstruction method can improve the quality
of the DFMT result.5 However, the implementation of the direct
reconstruction method is limited due to the large time consump-
tion. Generally, several hours are needed to reconstruct the
DFMT images. Therefore, it is necessary to accelerate the direct
method.

In this study, an acceleration strategy using GPU for DFMT
is presented. The results of the numerical simulations and in vivo
experiments demonstrate that this strategy can efficiently reduce
the time cost of the reconstruction, with nearly no quality
degradation.

As previously mentioned, the performances of the GPU and
PCA methods are compared. For the GPU method, an appropri-
ate CPV should be carefully selected to balance the calculation
speed and the reconstruction accuracy.11 A smaller CPV
achieves faster computational speed, while a larger CPVobtains
better reconstruction quality. In addition, the selection of CPV
also depends on the specific data used. In this paper, the
CPV was empirically selected to be 0.7 and 0.995 in the sim-
ulations and in vivo experiments, respectively. The GPU method
does not need such a data-dependent parameter, and it may be
convenient to use once it is implemented. On the other hand,
information is lost to some extent in the PCA method, which
could reduce the quality of the reconstruction results, especially
when the CPV is set to be too small. On the contrary, all the
measurement information can be retained when using the
GPU method.

Furthermore, the PCA- and GPU-based methods are two dif-
ferent approaches to acceleration of FMT reconstruction and can
be combined together to further increase the computational
speed. Simulation case 1 is used to study the performance of the
combination of the PCA and GPU methods, and the CPV is set
to be 0.7. The time consumption of the combination method is
452 s, i.e., the acceleration ratio is increased to 48.9. The maxi-
mum RD is 0.043, which is slightly larger than that of the PCA
method (0.038). The results demonstrate that, by combining
the PCA and GPU methods, the computational speed can be

Fig. 9 Cross-sectional parametric images for the mouse experiments in the region of lung corresponding
to the red dashed line in Fig. 8(a). (a)–(d) The results reconstructed with the traditional method.
(e)–(h) The results reconstructed with the GPU method. (i)–(l) The results reconstructed with the
PCA method.
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significantly improved, and the loss of the image quality is
acceptable.

5 Conclusion
In conclusion, the direct DFMT reconstruction algorithm is
accelerated using a GPU-based strategy. The feasibility of
this method is confirmed by numerical simulations and in vivo
experiments. According to the results, the time consumptions
are reduced to ∼10% of the traditional method. The average
RD of simulations and in vivo experiments is less than 2%,
which means the errors between the acceleration method and
the traditional method are negligible.
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