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Abstract. The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to
thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate
classes of samples and to propose new vibrational markers for explaining various phenomena like disease mon-
itoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely
discussed in applied sciences. In this context, this work presents a detailed discussion including the various
steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as
well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote
proper understanding of the application of various statistical tools in these spectroscopic methods used for the
analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman
spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of
data analysis is executed in a free software that can be used by the scientific community involved in these
studies. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.7.075010]
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1 Introduction
Understanding in vivo systems is the main focus of the life and
applied sciences. Biological systems show dynamic behavior
and have a diversified biochemical constitution. These systems
often interact with various exogenous agents like the inter-
actions of the biochemicals that are being monitored with other
compounds present in the body (other biochemicals common to
the tissue in question, drugs, and so on) and the interactions with
the various external environmental parameters like humidity,
temperature, and sunlight. These interactions will add to their
complex nature. Despite the complexity, which is a character-
istic inherent of these systems, various in vivo applications cor-
roborate as effective and early diagnostic tools to explain the
mechanisms of action of these external agents.

In the field of in vivo research, spectroscopic techniques have
an important role to play owing to their fast and nondestructive
analysis of biological data. Many studies have reported that
the Raman spectroscopy is a powerful tool in biological, diag-
nostic, forensic, and pharmaceutical areas.1–5 Raman spectros-
copy provides a highly sensitive approach to analyze the subtle
molecular (biochemical) changes6 taking place in these in vivo
systems. Advances in Raman spectroscopy allow the use of
more versatile equipments for in vivo analysis without loss of
quality information.7

Nowadays, the techniques used for in vivo applications
have high sensitivity and this characteristic can lead to many
difficulties in the interpretation of results. For example, samples

of urine, plasma, saliva, or biological tissues when analyzed
using spectroscopic techniques provide many variables that refer
to the complex biochemical composition of each sample. Other
difficulties are related to spectral overlapping, interference, and
presence of a large number of biochemical compounds to ana-
lyze. To overcome these difficulties, the chemometric approach
is often used with various multivariate statistical tools like
principal component analysis (PCA),8,9 partial least squares
(PLS),10,11 orthogonal signal correction (OSC),12,13 orthogonal
PLS (OPLS),14 discriminant analysis (DA),15,16 and hierarchical
cluster analysis (HCA)17,18 in the vibrational spectroscopic tech-
niques19 for the interpretation of experimental data.

Some of these in vivo works combine Raman spectroscopy
with these multivariate analyses. Kendall et al.20 used a model of
discriminant classification for the prediction of tissue pathology
from the measurements of Raman spectra. Similar analyses were
used to study prostate cancer,21 brain tissue,22 and skin lesions.23

The use of PCA with Raman spectroscopy to differentiate vari-
ous kinds of cancer cell populations was proposed by Krishna
et al.,24 and a similar approach was used to study the composi-
tion of human tear fluid by Filik and Stone.25 Various applica-
tions of Raman spectroscopy with the chemometric approach
were reported in the literature.26–31 However, in all these previ-
ously reported studies, the statistical methodology that was used
to interpret the spectra was not given its due importance and
often restricted to a mere mention of the names of various stat-
istical tests used.

Among the various biological systems, human skin presents
a lot of variations owing to its complex nature. In addition to

*Address all correspondence to: Thiago de Oliveira Mendes, E-mail:
eadthiago@gmail.com; Airton Abrahão Martin, E-mail: amartin@univap.br 1083-3668/2016/$25.00 © 2016 SPIE

Journal of Biomedical Optics 075010-1 July 2016 • Vol. 21(7)

Journal of Biomedical Optics 21(7), 075010 (July 2016)

http://dx.doi.org/10.1117/1.JBO.21.7.075010
http://dx.doi.org/10.1117/1.JBO.21.7.075010
http://dx.doi.org/10.1117/1.JBO.21.7.075010
http://dx.doi.org/10.1117/1.JBO.21.7.075010
http://dx.doi.org/10.1117/1.JBO.21.7.075010
http://dx.doi.org/10.1117/1.JBO.21.7.075010
mailto:eadthiago@gmail.com
mailto:eadthiago@gmail.com
mailto:amartin@univap.br


this, the complexity is further increased with the use of the con-
focal Raman technique as this technique allows the analysis of
various skin layers in a single study. Furthermore, the interpre-
tation of the Raman data of human skin has not yet been com-
pletely understood. In view of this, the search for vibrational
markers that discriminate groups of samples in confocal Raman
spectroscopy is not trivial. For this, we present certain methods
that can be implemented in the studies applying confocal Raman
spectroscopy for biological samples.

Therefore, the main focus of this work is to avail various stat-
istical approaches to explore vibrational markers related to skin
aging for an in vivo human skin study applying confocal Raman
spectroscopy. This work presents even minute details of these
statistical approaches including step-by-step explanation of uni-
variate (parametric and nonparametric) and various multivariate
analytical tools like HCA, PCA, and PLS-DA to understand the
vibrational markers related to skin aging. This paper mainly
contributes to the discussions in the area of human skin research
by confocal Raman but can be extended to a large research com-
munity that uses other kinds of biological samples. In order to
have a proper understanding of the application of these methods,
Appendix material is attached which explains complete routine
of data analysis using free R software.32

2 Materials and Methods

2.1 Samples: Selection of Volunteers

For this study, volunteers with skin phenotypes I and II accord-
ing to Fitzpatrick classification33 were selected. Volunteers with
presence or history of irritation, sensitivity to cosmetics, derma-
tological diseases, and those who used cream cosmetics over the
past 48 h preceding this examination were excluded from the
study. Prior approval from the Research Ethics Committee was
obtained for this study (report number 132.812).

This study involves confocal Raman measurements of skin of
30 female participants segregated into three groups on the basis
of age and presence of diabetes mellitus type II as young healthy
(YH), elderly healthy (EH), and elderly diabetic (ED). YH con-
tains the volunteers in the age group of 20 to 30 years, whereas
EH and ED groups include the volunteers in the age group of
56 to 81 years. This article aims to determine the vibrational
markers indicating intrinsic skin aging by comparing the sets
of samples of young and elderly volunteers. The process of
skin aging can be studied from the changes in the biochemical
composition of the dermis layer of the skin, as it is mainly
represented by the degradation of collagen present in this
dermis layer.

The ED group was included in this study as diabetes mellitus
causes an acceleration in the aging process due to the glycation
process. Therefore, the changes due to intrinsic aging would be
enhanced in this group. In this research group, there is an
advanced glycation end products (AGEs) overload in skin
tissue, degrading the framework formed by the amino acids
of type I collagen such as proline (P) and hydroxyproline
(HP).34,35 These diabetic people have three times more Amadori
products (precursors of AGEs) and twice more AGEs than nor-
moglycemic people. Furthermore, independent authors use this
group of volunteers to assess extreme conditions in aging of
adipose tissue36 and other diagnostics.37 Therefore, in the
volunteers with diabetes mellitus, the variability is expected to
be high owing to the rapid rate of skin aging caused by the
glycation process.

2.2 Study Conditions

The instrumental technique described here is noninvasive and
presents no risk of causing any damage to the volunteer. Before
starting the skin measurements, the volunteers were acclimat-
ized to 23� 2°C temperature and 51� 5% relative humidity
for 60 min. After acclimatization, the volunteers were seated
with the forearm positioned on an aluminum plate, which con-
tains an optical window. Before collection of Raman spectra,
the forearm sites used for the measurements were cleaned
with cotton soaked in 1.0 mL of ethyl alcohol 97%.

2.3 Instrumentation

The acquisition of confocal Raman spectra of human skin was
performed using a confocal Raman system (River Diagnostics,
Model 3510 skin composition analyzer) coupled to a laser with
exciting radiation of wavelength 785 nm. The laser light is
focused on the skin with a microscope lens (40×) located under
a quartz window. The Raman signal is collected by a charge
coupled device (CCD) and recorded on a computer connected
to this system. The calibration of wavelength was performed by
using lines of a neon–argon lamp. The laser power utilized for
skin analysis was 27 mW.

2.4 Study Design

The measurements were performed on the forearm of the
volunteers. The specific and selected regions of forearm were
exposed to the laser light from the objective. The scattered
laser light was collected by the same objective and sent to the
spectrophotometer after being filtered. The data were collected
in a spectral range 400 to 1800 cm−1 with spatial resolution of
2 cm−1 and two accumulations by spectra. The objective used is
coupled to a piezoelectric system that controls the depth of the
focal plane. Raman spectra were acquired from the surface of
skin up to a depth of 122 μm. Confocal Raman spectra were
recorded in different tracks with varying step sizes. Steps of
2 μm for the first 20-μm depth, then with a step size of 4 μm
in the region from 20- to 60-μm depth, and finally with a step
size of 2 μm in the region from 60- to 122-μm depth. In total, 52
spectra were recorded from each volunteer. The exposure time
for the first two tracks, i.e., from surface to 20 μm and 20 to
60 μm, was 10 s. For the higher depths greater than 60 μm, the
exposure time was increased to 60 s. This is due to the fact that
the number of photons that reaches the detector will be reduced
in these higher depths. In the preliminary tests, with this expo-
sure time, spectra of the dermis region were obtained with good
quality and high signal-to-noise ratio.

2.5 Preprocessing of Data

To minimize the influence of noise, the spectra were smoothed
by Labspec software (Horiba JobinYvon, France) using
Savitzky–Golay filter (grade 2, size 3). Using the same software,
fluorescence present in the data was eliminated by subtracting a
baseline using the line segments between the wavenumbers:
400, 470, 552, 588, 633, 794, 798, 994, 1144, 1495, and
1717 cm−1. The specific noise coming from cosmic rays (CRs)
was eliminated through a specific feature of this software. CRs
occasionally affect CCD detectors, introducing large spikes
with very narrow bandwidth in the spectrum and can occur ran-
domly in the spectra at various wavenumber positions. These
spikes should be removed in order to nullify its influence on
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the normalization and statistical analysis of data.38 Spikes can be
visually detected in the Raman spectrum because of its charac-
teristic of having positive peaks with high intensity values with
bandwidth much narrower than Raman bandwidth. Following
this subtraction, the spectra were normalized by vector normali-
zation, in which each Raman intensity was divided by square
root of sum of the squared intensities calculated using the full
spectrum.39,40 After these procedures, the preprocessed spectra
were subjected to statistical analysis.

3 Statistical Analysis of Data

3.1 Cluster Analysis: Selecting the Correct
Skin Layer

Before starting statistical analysis of the differences in confocal
Raman spectra for the groups of samples, it should be ensured
that the comparisons between the groups are made using the
same layer of the skin.

Confocal Raman system acquires the spectra at different
depths of the skin. Therefore, it is necessary to know which set
of spectra corresponds to what layer of the skin. In order to iden-
tify and separate the different layers of the skin, an exploratory
analysis by the HCAwas performed on a single sample contain-
ing spectra varying in depth. This is necessary to select which
skin depth will be used for the subsequent discussion of the
study.

Cluster analysis is one of the important techniques for pattern
recognition. It finds “natural” grouping (unsupervised) based on
the similarity of the intensities of the dataset variables. It is
applied when the spectra are to be interpreted as members of
a category like skin depth. An excellent visualization of these
clusters by similarity is dendrograms, also called the tree of
clusters.

Figure 1 shows the dendrogram of the HCA for human skin
according to the different depths obtained by confocal Raman
equipment. By HCA, it is possible to classify the different layers
of the skin into separate clusters. From these clusters, the set of
spectra that corresponds to the skin layer to be monitored can be
selected.

In addition to the classification of spectra corresponding to
various skin layers, cluster analysis is also useful to detect out-
liers. Forming a cluster with only one or two spectra or a distant
cluster to others is a strong indication of anomalous data. In this
case, the spectrum of this sample should be inspected to detect

the possible error. Based on the inspection of the spectra, deci-
sion has to be made either to reprocess that spectrum or to repeat
the experiment if possible or to reject that particular spectrum.
There are some approaches for outlier detection such as
Hotelling T, Mahalanobis distance, and Chi-square distribu-
tion.39,41 However, it is highlighted that it is not acceptable to
remove any sample simply by considering it as an outlier.
Outliers can be legitimate observations and sometimes very
interesting and important details can be revealed by them.
Therefore, it is very important to investigate the nature of the
outliers before making a decision on their exclusion.

From this study, the dermis region was chosen for further
analysis as skin aging is mainly represented by the glycation
and degradation of proteins like type I collagen present in the
dermis region of the skin. Out of 52 spectra obtained per vol-
unteer, spectra representing the dermis layer of each volunteer
that were classified by cluster analysis were used for further
analysis. The number of spectra of dermis region was found
to be 30 per volunteer by cluster analysis. Average spectra cal-
culated from these 30 spectra of dermis region for each individ-
ual were used in univariate and multivariate analyses.

3.2 Correlation Matrix: Representativity and
Reproducibility of the Study

An issue in academia is the representation of groups and vol-
unteer numbers used for in vivo studies for the reproducibility
of results. These issues must be addressed in studies using con-
focal Raman spectroscopy as these measurements can be ques-
tioned since each measurement is collected in a focal plane
within specific surface area by the lens used. However, this
issue of confocal Raman spectroscopy can be dealt with in
many ways such as by assessing the changes in analytical infor-
mation with depth and by determining the intragroup and inter-
group correlations.

The Pearson correlation matrix provides an easy interpretation
of correlation between two measurements. This matrix considers
each spectrum as a variable and calculates the correlation coef-
ficient on a scale ranging from −1 to þ1. The data can be with
high negative correlation (−1), with no correlation (zero), or with
strong positive correlation (þ1). This correlation coefficient is
calculated from the mean and standard deviation of the observa-
tions given by the intensity at each wavenumber in the spectra.

Figure 2 shows an example in which the Pearson correlation
matrix can be used. This array has arranged three spectra at

Fig. 1 Dendrogram obtained by HCA from the confocal Raman spectra of human skin at different depths.
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different depths in the dermis of 70, 93, and 117 μm and com-
pared them with the average spectrum calculated by taking the
average of all the spectra that make up the layer of the dermis. It
is very common to use the average of a set of spectra to plot a
graph representing that set of spectra. The Pearson correlation
array can be used to compare the correlation between two indi-
vidual spectra as well as with the average of that set of spectra.

The analysis of Fig. 2 shows that the lowest correlation
occurs for spectral comparison between the depths of 70 and
117 μm (r ¼ 0.95). This is expected because spectra are
taken from the initial and terminal portions of the dermis,
where there is high biochemical variability in the composition
of the skin. However, since both these spectra belong to the
basal layer, significant correlation has been observed even
though there are certain differences due to variable skin compo-
sition. The same explanation applies for the comparison of the
average of all the spectra from dermis with the individual spectra
shown in Fig. 2. All the spectra show a strong positive corre-
lation indicating that there is not much deviation from the aver-
age. Therefore, the average can be used to express the overall
behavior of this layer.

3.3 Univariate and Multivariate Statistical
Approaches: Revealing Vibrational Markers

Once the adequate range of depth to analyze was assessed by
HCA and correlation of individual spectra at different depths
compared with the average spectrum used to represent the der-
mis by the Pearson correlation matrix, statistical data analysis
starts the search for the spectral regions that can be used as an
individual group with characteristics as relevant as possible with
respect to the vibrational ways that discriminate the groups.

Figure 3(a) shows the average spectra of dermis of each vol-
unteer (average between the spectra collected in the range from
60- to 122-μm depth) of the total of 30 volunteers in this study,
and Fig. 3(b) shows the average of the average spectra of the
dermis region of the volunteers belonging to the three groups,
namely YH, EH, and ED. Figure 3(b) also gives the information

on the residual spectra obtained upon comparing YH, EH, and
ED groups. From the visual inspection of the average confocal
Raman spectra and the residual spectra in Figs. 3(a) and 3(b),
it is quite evident that it is not possible to clearly distinguish
a spectral region capable of discriminating the three groups of
volunteers analyzed.

Different statistical approaches can be used to seek the
spectral regions that are significant enough to describe the
differences among the groups analyzed. These spectral regions
indicate the vibrational markers responsible for explaining skin
aging. In this study, we describe the steps used by both univari-
ate and multivariate statistical approaches to explore these vibra-
tional markers.

These approaches can be used either alone or concomitantly
as a result of their complementary character. In univariate stat-
istical application on the set of spectra, each variable, i.e., each
wavenumber, is analyzed separately. The sequence for this
analysis is made variable by variable. In a multivariate approach,
dimension reduction methods will be used and the spectral data
are interpreted as a data matrix. In the case of nonsupervised
analysis, the experiment corresponds to an array and by apply-
ing matrix algebra methods, the spectral regions that have
greater variation in the data are determined, giving little impor-
tance to spectral overlap and noise regions. In the case of super-
vised analysis, only the regions correlated with a property of
interest have more importance. Irrespective of the approach, all
the wavenumbers that contribute are considered in a multivariate
model with different weights.

Figure 4 represents the flowchart of steps in statistical data
analysis. Univariate analysis is performed by applying a set of
hypotheses tests. The hypotheses tests consist of a statistical
procedure based on probability theory in which a parameter is
tested on a set of values. Two hypotheses are considered: the
null hypothesis H0 (to be tested) and the alternative hypothesis

Fig. 2 Pearson correlation matrix. The range of the scale from high-
negative correlation (−1 with red), uncorrelated (0 with white), to
strong positive correlation (þ1 with blue).

Fig. 3 Raman spectra of human skin: (a) average dermis spectra of
30 volunteers and (b) average dermis confocal Raman spectra of
young healthy (YH), elderly healthy (EH), and elderly with diabetes
mellitus (ED) with the residual spectra obtained for the comparisons:
ED minus YH, ED minus EH, and EH minus YH.
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Ha that will be accepted if the group does not fall within the
tested null hypothesis. The decision whether the test set belongs
to H0 or Ha can be made through the analysis of p-values. It is
important to note that for the correct application of hypothesis
testing, the verification of the assumptions should be performed.
If the assumptions are not checked properly, it may result in an
incorrect inference about the dataset analyzed. For the univariate
analysis, there is a great distinction between the sequence of
processes to be employed if the data follow a normal distribution
(parametric statistics) or not (nonparametric statistics).

The univariate approach begins with checking the normality
of the data. If the data show the normal Gaussian distribution
pattern, then it follows the path of parametric analysis; other-
wise, it will follow nonparametric analysis. In the scheme
shown in Fig. 4, Lilliefors test was used for the normality
check.42 In this case, the default null hypothesis, which states
that the sample follows normal distribution, is tested against
the alternative hypothesis stating that it does not follow normal
distribution. The nonparametric test used was the Kruskal–
Wallis test.43 This test compares the medians of the samples and
gives the p-value for the hypothesis testing. Null hypothesis
indicates that all the samples are drawn from the same popula-
tion, whereas the alternative states that they are from different
populations.

The test for the homogeneity of variances is the F-test.44 An
F-test of the null hypothesis checks that two independent sam-
ples coming from normal distributions are with the same
variance against the alternative hypothesis, which states that
they came from normal distributions with different variances.
t-Test44 was used to check if the average of the intensities of
the tested groups is the same or different. t-Test of null hypoth-
esis checks that the data in independent random samples from
the normal distributions are with equal averages against the

alternative hypothesis stating that the averages are not equal.
The complete sequence shown in Fig. 4 can be implemented
in free R software, which is presented in the Appendix and
discussed in detail in various statistics books.43,44

The p-value analysis for a given level of statistical signifi-
cance is used to infer whether a variable is significant or not.
This result is usually disposed in a table of p-values for each
wavenumber. However, it is possible to make a p-value graph
to facilitate the visualization of the results (as shown in Fig. 5).

Figure 5 shows the results by univariate statistical approach
for the three comparisons (ED versus EH, ED versus YH,
and EH versus YH). Black stars represent the variables with
statistically significant differences at 95% confidence level.
Therefore, p-values < 0.05 are represented by black stars and
p-values > 0.05 are represented by open circles.

The region below the horizontal line (p-values < 0.05)
shows the candidates that can act as vibrational markers for each
comparison. In order to be more specific, emphasis will be given
to the spectral region between 800 and 1000 cm−1. This spectral
region does not show any significant variables for comparing
EH versus YH, but for comparing ED versus EH and ED versus
YH, many variables appear as significant. In other words, the
spectral region between 800 and 1000 cm−1 appears to be a
good spectral marker to differentiate the group of ED to other
groups, but it does not show significant difference in the com-
parison between the YH and EH groups. The vibrational modes
in this spectral region 800 to 1000 cm−1 mainly correspond to
the region of amino acids P and HP.34,35

The considerations for a multivariate statistical approach start
from the right side of the flowchart shown in Fig. 4. In case of
spectral overlap [see Fig. 3(a)] or in case of very difficult analy-
sis by visual inspection or in case of the presence of many vibra-
tional modes, multivariate analysis provides good results by use

Fig. 4 Flowchart of statistical data analysis.
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of dimension reduction techniques.19 With the advantage of
visualization of the behavior of the samples using a much
smaller number of dimensions than spectral variables, this multi-
variate analysis is also useful in quantifying compounds. In
multivariate analysis, we will discuss two different approaches:
unsupervised analysis by PCA and supervised analysis by
PLS-DA.

PCA is a method of dimension reduction, in which the new
variables called principal components (PCs) are projected in
hyperplanes in such a way that the dispersion between the origi-
nal variables is maximum. This approach is extremely useful for
the data whose matrices are in the order of tens to hundreds of
columns and can therefore be visualized in diagrams in two or
three dimensions.

The multivariate approach for the full Raman spectra of 30
samples after preprocessing steps is described in Sec. 2. The
PCA model was fitted with three PCs with coefficient of
explained variation of data matrix R2x ¼ 0.71. The diagram
of score plot for this PCA model is shown in Fig. 6(a). The
PCA diagram shows evidence of the formation of groups of
samples, which reinforces the importance of the proposed
study as the PCA analysis is based only on the spectra of the
samples without any additional information, i.e., the samples
are grouped in accordance with their confocal Raman spectra
profile. However, the PCA model is influenced by individual

characteristics such as age, skin pigmentation, and any other
variable that was not controlled, thus presenting a very good
way to inspect the experiment and detect outliers. It is not man-
datory to use unsupervised methods such as PCA before a super-
vised analysis. However, this step is recommended to detect the
outliers where there is no provision of any detailed information.

Figure 6(a) shows the position of the samples in the space of
PCs. PCA is an unsupervised method that is extremely useful in
detecting outliers and natural groupings based solely on the
information of spectra. In this figure, it is possible to identify the
tendency to form clusters; however, this does not occur due to
intrinsic variability of each volunteer. When there is no clear
separation among the groups in the PCA, score and loading
plot analysis cannot be performed as it does not explain any
group behavior.

Since the goal of the study is to find characteristics of groups
and not of individuals, supervised methods maximize the clas-
sification of samples owing to the characteristics of groups,
reducing the effect of variables that contain the characteristics
of individuals. A supervised model of PLS-DA was performed
after the use of OSC on the sets of samples. For the PLS-DA
approach, it is necessary to have some additional information
along with the spectra of the sample like the origin of the sam-
ples or the group to which it belongs so that the algorithm tries to
classify the samples into groups and consequently highlights the
spectral regions responsible for their separation into groups.

Figure 6(b) shows the PLS-adjusted model with R2x ¼ 0.748

and coefficient of variation explained of the discriminant class
R2y ¼ 0.826. In this model, the samples are grouped more effi-
ciently than when compared with the PCA model, presenting
complete separation of the groups. When this separation occurs,
it is possible to ascertain which variables from the data matrix
were uppermost, i.e., with higher weight for explaining the clas-
sification of the groups. These most important variables are then
interpreted as the candidates for vibrational markers because
they make the difference between these analyzed groups.

As the PLS-DA model was more robust and showed good
results to discriminate the three groups of samples, the sub-
sequent strategy was to perform comparisons of two groups
with the PLS-DA approach and then to check which spectral
regions of confocal Raman spectra were the most important
variables to explain this separation. With this approach, it is pos-
sible to verify the contribution of each original variable and
wavenumber to explain the separation of the data into groups
(Fig. 7). The graph as shown in Fig. 7 was performed using
a variable extraction method of variable importance in the pro-
jection (VIP),45–47 where the higher the intensity of the peak, the
greater the significance of that wavenumber in the separation of
the groups. The list of VIP variables and the coefficient predic-
tion capabilityQ2, described in the Appendix, are obtained from
rounds of cross-validation and have confidence intervals from
Jack-knifing estimate. As the objective of this study is not to
validate a new method, all other additional figures of merit that
are generally used for various quantitative studies and compar-
isons with established techniques like limits of detection and
quantification, root mean square, bias, sensibility and sensitiv-
ity, and curve ROC48–50 were not discussed in this article.

The results obtained by univariate and multivariate analyses
can be complementary. This is clearly observed from the com-
parison of the results of univariate and multivariate analyses as
shown in Figs. 5 and 7, respectively. In the present study, as per
the results of PLS-DA model, spectral region between 800 and

Fig. 5 Results of univariate analysis for young healthy (YH), elderly
healthy (EH), and elderly with diabetes mellitus (ED). p-values < 0.05
are represented by black stars, and p-values > 0.05 are represented
by open circles. Horizontal line represents p-value ¼ 0.05.
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1000 cm−1 on the graph appears to have important variables and
this is the region that stands out most to explain the differences
between ED and other groups in univariate analysis, thus cor-
roborating and complementing the results obtained by univariate
analysis.

One of the goals of this study is to disseminate the knowl-
edge on proper application of various statistical tools to the aca-
demic community. For this purpose, a complete routine of
analysis including all the statistical tests used in this study is
presented in the Appendix using the free R software. R software
is a language and an environment for statistical computing, pro-
viding a wide variety of statistical and graphical techniques.
It runs on a wide variety of platforms like UNIX, FreeBSD,
Linux, Windows, and MacOS.

4 Conclusions
This paper summarizes different statistical tools that can be
implemented easily in spectroscopic techniques to reveal vibra-
tional markers for the analysis of biological samples. Univariate
approaches like parametric and nonparametric with all neces-
sary assumptions required for the correct inference and evalu-
ation of p-values were dealt with in detail. In the case of the
multivariate analysis, models of the PCA and PLS-DA were
exemplified to find patterns in the sets of spectra, to detect
outliers, and to suggest good candidates that act as vibrational
markers. To evaluate the reproducibility and representativity of
these measurements, the Pearson correlation matrix was applied.

In addition to this, the HCA was used as an important tool for
detecting outliers and grouping sets of measurements in confo-
cal Raman spectroscopy. The application of these statistical
tools was exemplified on confocal Raman dataset related to
in vivo human skin analysis.

The principal vibrational markers for skin aging using these
statistical approaches were determined mainly in the spectral
region between 800 and 1000 cm−1. This region is assigned
for the amino acids P and HP, constituents of collagen respon-
sible for skin framework and strength, and these amino acids are
also associated with the formation of AGEs. For these reasons, P
and HP are considered as potential biomarkers for explaining the
chronological aging of skin and hyperglycemic effect on skin.
This explanation was corroborated and complemented by these
vibrational markers revealed in this study. To conclude, this
work clearly emphasizes the need of vibrational markers for
proper and speedy analysis of large sets of spectroscopic data.

Appendix: Routine of Data Analysis
In this appendix, the suggested routine of data analysis for
revealing vibrational markers in spectroscopic analysis is
presented. This material includes various univariate tests like
Kruskal–Wallis (nonparametric), Lilliefors (for normality), F-
test (for variance), and t-test. Multivariate approach comprises
PCA and PLS-DA. Apart from these, HCA and Pearson corre-
lation matrix were also included in this material.

All lines of commands were performed by free R software. R
software and additional packages necessary for this application
are available as free downloads in the official page of R
software.

It is important to note that the statistical analysis is performed
after the preprocessing of data. Therefore, spikes removal,
baseline correction, smoothing, as well as data normalization
that come under this preprocessing are not included in this
discussion.

#opening the data table
data=read.table(file=“datatable.txt”, sep=“\t”,header=T,

dec=“.”) #importing the data to R Software. Is crucial for stat-
istical analysis the data will be imported correctly.

dim(data) #verify the dimension of data, number of spectra
(samples) in the lines and number of wavenumbers (variables) in
the columns

groupA=10 #enter the number of individuals in the control
group

groupB=10 #enter the number of individuals in the case
group

Fig. 6 Multivariate statistical analysis: (a) nonsupervised PCA analysis and (b) supervised PLS-DA
analysis for young healthy (YH), elderly healthy (EH), and elderly with diabetes mellitus (ED) groups.

Fig. 7 Graph of VIP for PLS-DA model of young healthy (YH), elderly
healthy (EH), and elderly with diabetes mellitus (ED).
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#Hierarquical Cluster Analysis - HCA
library (hyperSpec) #package necessary
spectra.dist=pearson.dist(alignment) #Pearson distance

measure
spectra.hclust=hclust(spectra.dist,method=“ward.D”)

#Ward linkage method
plot(spectra.hclust) #Dendrogram figure
#Pearson correlation matrix
#only for Pearson correlation matrix is necessary the trans-

pose of data
library (corrplot) #package necessary
corrplot(cor(x, y, method = “pearson”), method = “number”)

#Pearson matrix correlation figure
#Univariate analysis
class=c(rep(1, groupA),rep(2, groupB))
class=factor(class)
variables=dim(data)[2]
wavenumbers=c(data.frame(colnames(data)))
#Calculation of p-values for normality in each class with the

Lilliefors test
pvalLillieforsgroup1=rep(0,variables)
pvalLillieforsgroup2=rep(0,variables)
group1=data[class==1,]
group2=data[class==2,]
library(nortest) #package necessary
for (i in 1:variables)
{lillie1=lillie.test(group1[,i])
lillie2=lillie.test(group2[,i])
pvalLillieforsgroup1[i]=lillie1$p.value
pvalLillieforsgroup2[i]=lillie2$p.value}
#Calculation of p-values for homogeneity of variances with

the F-test
pvalF=rep(0,variables)
library(stats) #package necessary
for (i in 1:variables)
{testf=var.test(data[,i]∼class)
pvalF[i]=testf$p.value}
#Calculation of p-values for t-test assuming different

variances
pvalTstudvardif=rep(0,variables)
library(stats) #package necessary
for (i in 1:variables)
{tstudentvardif=t.test(data[,i]∼class)
pvalTstudvardif[i]=tstudentvardif$p.value}
# Calculation of p-values for t-test assuming equal variances
pvalTstudvarequal=rep(0,variables)
library(stats) #package necessary
for (i in 1:variables)
{tstudentvarequal=t.test(data[,i]∼class,var.equal=TRUE)
pvalTstudvarequal[i]=tstudentvarequal$p.value}
#Calculation of p-values for the nonparametric test of

Kruskal-Wallis
pvalkruskal=rep(0,variables)
library(stats) #package necessary
for (i in 1:variables)
{kruskalwallis=kruskal.test(data[,i]∼class)
pvalkruskal[i]=kruskalwallis$p.value}
#Table with p-values for all univariate statistical tests
pvalues=data.frame(wavenumbers,pvalLillieforsgroup1,

pvalLillieforsgroup2,pvalF,pvalTstudvardif,pvalTstudvarequal,
pvalkruskal)

write.table(pvalues, “univariatestatistics.csv”, sep=“,”,
dec=“.”) #to save a table with all p-values of the complete
univariate analysis

# Multivariate analysis
#Principal component analysis - PCA
pca.clase=c(rep(1, groupA),rep(2, groupB))
library(stats) #package necessary
pcaanalysis=prcomp(data, scale. = TRUE, center = TRUE)

#scaling and centering the data
plot(summary(pcaanalysis)$importance[2,], ylab = “Propor-

tion of variance”, xlab = “Number of PCs”) #Figure with
Proportion of variance versus number of PCs

plot(pcaanalysis$x, xlab = paste(“PC 1 (Proportion of
Variance R2 “, round(100*summary(pcaanalysis)$importance
[2,1], dig = 2), “%)”, sep = ““), ylab = paste(“PC 2 (Proportion
of Variance R2 “, round(100*summary(pcaanalysis)$impor-
tance[2,2], dig = 2), “%)”, sep = ““), pch = pca.clase) #Figure
with score plot of PCA

summary(pcaanalysis) #summary of PCA coefficients
#Partial least squares Discriminant analysis - PLS-DA
plsda.clase=c(rep(1, groupA),rep(2, groupB))
library(DiscriMiner) #package necessary
pls.analysis=plsDA(data, plsda.clase, autosel = TRUE)

#scaling and centering the data
plot(pls.analysis$components, xlab = paste(“PC 1; R2X

global (“, round(100*pls.analysis$R2[2,2], dig = 2), “%);
R2Y global (“, round(100*pls.analysis$R2[2,4], dig = 2), “%);
Q2 global (“, round(100*pls.analysis$Q2[1,3], dig = 2), “%)”,
sep = ““), ylab = paste(“PC 2”), pch = plsda.clase) # Figure
with score plot of PLS-DA

summary(pls.analysis) #summary of PCA coefficients
write.table(pls.analysis$VIP, “VIP-plsda.csv”, sep=“\t”,

dec=“.”) #to save a table with the list of Variables importance
in the projection (VIP) of the first latent variable.
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