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Abstract. A surface plasmon resonance (SPR)-enhanced method is proposed for measuring the circular dichro-
ism (CD), circular birefringence (CB), and degree of polarization (DOP) of turbid media using a Stokes–Mueller
matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simula-
tions. The simulation results show that the proposed detection method enables the CD and CB properties to
be measured with a resolution of 10−4 refractive index unit (RIU) and 10−5 RIU, respectively, for refractive indi-
ces in the range of 1.3 to 1.4. The practical feasibility of the proposed method is demonstrated by detecting
the CB/CD/DOP properties of glucose–chlorophyllin compound samples containing polystyrene microspheres.
It is shown that the extracted CB value decreases linearly with the glucose concentration, while the extracted CD
value increases linearly with the chlorophyllin concentration. However, the DOP is insensitive to both the glucose
concentration and the chlorophyllin concentration. Consequently, the potential of the proposed SPR-enhanced
Stokes–Mueller matrix polarimetry method for high-resolution CB/CD/DOP detection is confirmed. Notably, in
contrast to conventional SPR techniques designed to detect relative refractive index changes, the SPR tech-
nique proposed in the present study allows absolute measurements of the optical properties (CB/CD/DOP) to be
obtained. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.4.047002]
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1 Introduction
Polarization is a fundamental property of light and has many
practical applications in industry and engineering science.
Many studies have shown that the polarization state of
a light beam (including depolarization effects) can be fully
described by four Stokes parameters (S0, S1, S2, and S3).

1–3

Meanwhile, the change in optical properties of a sample
given different polarization states of the incident light can be
completely described by the Mueller matrix formalism.4

Consequently, Stokes–Mueller matrix polarimetry provides a
powerful technique for characterizing a wide range of materials,
biomaterials, and turbid media.5,6 Lu and Chipman7 proposed a
pioneering method for dealing with the strong multiple scatter-
ing effects of turbid media by decomposing the Mueller matrix
into a sequence of three matrix factors corresponding to the
diattenuation, retardation, and depolarization properties, respec-
tively. Kumar et al.8 and Ghosh and Vitkin9 utilized polar
decomposition and Mueller matrix decomposition methods
to extract/quantify the linear retardance, optical rotation, and
depolarization parameters of complex tissue-like turbid media
with simultaneous scattering and depolarization effects. Pham
and Lo10,11 proposed a Stokes–Mueller decomposition matrix-
based method for extracting all the effective parameters of turbid
media, including the linear birefringence, linear dichroism,
circular birefringence (CB), circular dichroism (CD), linear
depolarization, and circular depolarization properties. However,
the methods in Refs. 8–11 require a strict decoupling of the

optical properties of the sample. As a result, they are unsuitable
for samples containing multiple properties. Several studies
have shown that this problem can be resolved by a differential
Mueller matrix formalism. Quijano et al.12 proposed a differen-
tial Mueller matrix decomposition method for extracting the
polarimetric properties of general depolarizing anisotropic
media. Liao and Lo13 developed a hybrid model comprising
the Mueller matrix decomposition method and the differential
Mueller matrix formalism for obtaining full-range measure-
ments of the anisotropic optical properties of turbid media.
However, the methods in Refs. 12 and 13 require light to be
transmitted through the sample and are thus unsuitable for
noninvasive practical medical diagnoses.

Surface plasmon resonance (SPR) is a charge density oscil-
lation at the interface of two media with dielectric constants
of opposite signs and has significant potential for sensing
applications.14–16 Generally speaking, existing SPR sensors are
based on either prism couplers or diffraction gratings. Of the two
types of sensor, those based on prism couplers tend to have
a better sensitivity and resolution.17 One of the most common
uses of prism coupler-based SPR sensors is that of total internal
reflection ellipsometry (TIRE).18 Le et al.19 used TIRE to
visualize the behavior of giant lipid vesicles interacting with
an adhesive surface coated with poly-L-lysine. Olender et al.20

used TIRE to perform the real-time monitoring of the absorption
of lipopolysaccharide molecules and whole gram-negative
bacteria cells. Balevicius et al.21,22 utilized TIRE to study the
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interaction of biomolecule layers and the optical anisotropy of
biorecognition molecule layers.

In a previous study,23 the present group proposed an SPR-
based technique for enhanced CD/degree of polarization
(DOP) sensing. In the present study, the proposed method is
extended to the detection of the CB/CD/DOP properties of
complex turbid media. The validity of the proposed method is
demonstrated both numerically and by means of experimental
investigations using glucose–chlorophyllin compound samples
containing polystyrene microspheres.

2 Total Internal Reflection Ellipsometry
Surface Plasmon Resonance Prism
Coupler

Figure 1(a) presents a schematic illustration of the SPR prism
coupler used in the present study. As described in Ref. 23,
the coupler comprises a half-ball glass lens, a Cr–Au isotropic
thin-film layer, and a Ta2O5 anisotropic layer. The half-ball lens
couples the incident polarized light into the isotropic and aniso-
tropic films and provides total internal reflection. Meanwhile,
the isotropic and anisotropic layers enhance the sensing perfor-
mance by manipulating the incident polarized light and inducing
SPR at the sensed interface. The half-ball lens in the SPR
prism coupler was fabricated of BK7 glass with a refractive
index of n0 ¼ 1.517. The refractive indices of the isotropic
and anisotropic layers were the same as those in Ref. 23, i.e.,
n1 ¼ 0.36–2.9i, n21 ¼ 1.637; and n22 ¼ 1.449, n23 ¼
1.589. However, the thicknesses of the two layers were
increased to d1 ¼ 30 nm and d2 ¼ 10 nm, respectively, to
improve the measurement sensitivity of the CB/CD/DOP prop-
erties. The resonance angle of the prism coupler was found to be
around 76 deg at a wavelength of 632.8 nm and resulted in
a reflectance coefficient Rpp of <0.2, as shown in Fig. 1(b).

3 Analytical Model for Extracting Circular
Birefringence/Circular Dichroism/Degree of
Polarization Properties

An optical sample can be described by the matrix formulation
S ¼ MS 0, where S is the Stokes vector of the output light, M is
the 4 × 4 Mueller matrix of the sample, and S 0 is the Stokes
vector of the input light. The general form of this relation is
given as follows:
EQ-TARGET;temp:intralink-;e001;326;6582
66664
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3
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Compared to the model presented in Ref. 23 for CD/DOP
measurement, the Mueller matrix in the present study contains
an additional term (MCB) to describe the CB properties of the
sample. In other words, the Mueller matrix is given by

EQ-TARGET;temp:intralink-;e002;326;537Msample ¼ MCBMCDMRMD; (2)

where MCD, MR, and MD are the Mueller matrices of the CD
property, the reflectance of the prism coupler, and the scattering-
induced depolarization effect, respectively.23 For a CB sample
with a circular optical rotation angle γ, MCB has the form:10
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2
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Thus, Eq. (1) can be expressed as follows:
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where

EQ-TARGET;temp:intralink-;e005;326;194M13 ¼ m33p2ðR2 þ 1Þ −m34½2Re3 þ p3ðR2 þ 1Þ�; (5)

EQ-TARGET;temp:intralink-;e006;326;157M14 ¼ m34p2ðR2 þ 1Þ þm33½2Re3 þ p3ðR2 þ 1Þ�; (6)

EQ-TARGET;temp:intralink-;e007;326;125M34 ¼ 2Rm33p2 −m34½2Rp3 þ e3ðR2 þ 1Þ�; (7)

EQ-TARGET;temp:intralink-;e008;326;94M44 ¼ 2Rm34p2 þm33½2Rp3 þ e3ðR2 þ 1Þ�: (8)
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Fig. 1 (a) Schematic illustration of SPR prism coupler and (b) reso-
nance angle determination.
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Note that R is the CD property of the sample; m11, m12, m33

and m34 are the elements of theMR Mueller matrix; and p1, p2,
p3, e1, e2, and e3 are the elements of the MD Mueller matrix.

As described in the following, the use of four input lights
[namely, three linear polarization lights (0, 45, and 90 deg)
and one right-hand circular polarization light] yields a sufficient
number of equations to determine parameters γ, R, and Δ (DOP)
of the optical sample. The Stokes vectors of the four input lights
are given as follows: S 0

0 deg ¼ ½1;1; 0;0�T, S 0
45 deg ¼ ½1;0; 1;0�T,

S 0
90 deg ¼ ½1;−1;0; 0�T, and S 0

R ¼ ½1;0; 0;1�T. Thus, R and γ can
be obtained directly as follows:
EQ-TARGET;temp:intralink-;e009;63;627

R ¼

8>>><
>>>:
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i
2
− 1
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S0 degð3Þ
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In addition, the elements of the depolarization Mueller
matrix are obtained as follows:

EQ-TARGET;temp:intralink-;e011;326;752e1 ¼
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−½S0 degð1Þ þ S90 degð1Þ�

2m12

×
1

cosð2γÞ ;
(11)

EQ-TARGET;temp:intralink-;e012;326;700e2¼
1

ðR2−1Þ×
2S45 degð2Þ− ½S0 degð2ÞþS90 degð2Þ�

2m33

×
1

cosð2γÞ ;
(12)

EQ-TARGET;temp:intralink-;e013;326;643e3 ¼
4R2 − ðR2 þ 1Þ2
2RY − XðR2 þ 1Þ ; (13)

EQ-TARGET;temp:intralink-;e014;326;597p1 ¼
1

2R
×
½S0 degð3Þ þ S90 degð3Þ�

m12

−
m11

m12

; (14)

EQ-TARGET;temp:intralink-;e015;326;553p2 ¼
1

2R

�
M43 þ Xm34

m33

�
; (15)
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where
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Thus, the Δ can then be obtained as follows:

EQ-TARGET;temp:intralink-;e019;63;328Δ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22 þ e23

3

r
; 0 ≤ Δ ≤ 1: (19)

It is noted that e1 and e2 in Eqs. (11) and (12) are functions of
γ and represent the only difference from the expressions given in
Ref. 23 for the depolarization Mueller matrix.

4 Validity of Analytical Model
The validity of the analytical model derived above was inves-
tigated by comparing the values obtained for parameters Δ, γ,
and R of a hypothetical sample with the known values inserted
into the sample matrix in Eq. (2). In performing the simulations,
the refractive index of the CB/CD/DOP sample was set as 1.33
and the incident angle θi was set equal to the SPR angle of
76 deg. As shown in Fig. 2, a good agreement was obtained
between the two sets of values in every case. In other words,
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Fig. 2 Comparison of extracted values and input values of: (a) γ, (b) R, and (c) Δ.
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the ability of the proposed model to extract the values of Δ, R,
and γ over the full range is confirmed.

5 Sensitivity of Circular Dichroism
Measurements to Chlorophyllin
Concentration

Chlorophyllin is a common photosynthetic pigment and can be
obtained from spinach leaves or grass. The molecular structure
of chlorophyllin results in a high optical absorbance and a strong
CD effect.24,25 In the present study, simulations were performed
to investigate the sensitivity of the extracted R value to the
change in concentration of chlorophyllin sodium copper salt
samples (referred to hereafter simply as chlorophyllin samples)
in aqueous solution. In performing the simulations, the change
in concentration of the chlorophyllin sample was modeled by a
change in the refractive indexN.26 Based on this assumption, the
R values of samples with refractive indices ranging from 1.3 to
1.4 (with a step size of 0.01) were computed using Eq. (9) for
scanning angles θ in the range of 0 to 180 deg. The correspond-
ing results are presented in Fig. 3. It is noted that scanning angle
θ is the angle between the original X − Y coordinate system and
the measured P 0 − S 0 coordinate system of the polarization
scanning ellipsometry technique developed by the current
group in Ref. 27. As described in Ref. 27, in applying Eq. (9)
to derive the R parameter, the traditional algorithm must be
modified from the laboratory (X − Y) coordinate system to the
measured P 0 − S 0 coordinate system. Thus, the axes of the four
polarization input light beams (i.e., 0 deg, 45 deg, 90 deg, and
R−) in the P 0 − S 0 coordinate system must be rotated through
an additional scanning angle of θ to convert them to the X − Y
coordinate frame.

As shown in Fig. 3(a), the extracted R values are particularly
sensitive to changes in the refractive index (i.e., the chlorophyl-
lin concentration) at scanning angles of 45 and 135 deg.
Furthermore, Fig. 3(b) shows that the R value increases approx-
imately linearly over the refractive index range of 1.3 to 1.4
given a fixed scanning angle of 135 deg. Assuming the output
Stokes vectors are obtained using a commercial Stokes polarim-
eter (PAX5710, Thorlabs Co.) with a deviation of �10−3,
the estimated resolution of the extracted R values is of the
order of 10−4 RIU. Note that the results presented in Fig. 3(a)
show that the sensitivity of the extraction results is the same
given a scanning angle of 45 deg as that for a scanning

angle of 135 deg. Thus, only the data obtained for a scanning
angle of 135 deg are considered in deriving Fig. 3(b).

6 Sensitivity of Circular Birefringence
Measurements to Glucose Concentration

Simulations were performed to investigate the sensitivity of the
extracted γ value to the change in concentration of glucose
aqueous solutions. In performing the simulations, it was
assumed that the refractive index increased linearly from
1.3 to 1.4 as the glucose concentration increased from 0 to
100 mg∕mL.28,29 Based on this assumption, the γ values of
samples with refractive indices ranging from 1.3 to 1.4 (with
a step size of 0.01) were computed using Eq. (10) for scanning
angle θ in the range of 0 to 180 deg. It is noted that scanning
angle θ is the angle between the original X–Y coordinate system
and the measured P 0 − S 0 coordinate system.27

As shown in Fig. 4(a), the extracted optical rotation angle γ is
particularly sensitive to changes in the refractive index (i.e., the
glucose concentration) at polarization scanning angles of 40, 60,
120, and 135 deg. Furthermore, Fig. 4(b) shows that γ decreases
with the increase of refractive index over a range of 1.3 to 1.4
given a fixed scanning angle of 135 deg. Assuming that the
output Stokes vectors are again obtained using a commercial
Stokes polarimeter (PAX5710, Thorlabs Co.) with a deviation
of �10−3, the estimated resolution of the extracted CB values
is of the order of 5 × 10−5 RIU. Note that the results presented
in Fig. 4(a) show that a scanning angle of 135 deg results in the
highest measurement sensitivity. Thus, only the data obtained
for a scanning angle of 135 deg are considered in deriving the
results presented in Fig. 4(b).

Figure 5 shows the simulation results for the sensitivity of the
DOP (Δ) to changes in the refractive index (1.3 to 1.4) for glu-
cose samples with small [Fig. 5(a)] and high [Fig. 5(b)] degrees
of depolarization of Δ ¼ 0.4 and 0.85, respectively. Note that in
performing the simulation, the value of Δ was calculated using
Eq. (19). As shown, the extracted values of Δ are insensitive to
the refractive index over the full range of the polarization scan-
ning angle for both samples. This finding is reasonable since,
although Δ is a function of both R and γ, when the refractive
index increases, R increases but γ decreases (or R decreases
but γ increases, depending on the scanning angle). As a result,
the value of Δ remains approximately unchanged. The thickness
of the isotropic/anisotropic layers of the prism coupler affects
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both the working range and the sensitivity of the sensor. Thus,
the measurement sensitivity of Δ can be enhanced through an
appropriate design of the prism coupler structure. In the present
study, however, the prism coupler is designed only to maximize
the measurement sensitivity of γ and R over the considered
measurement range.

7 Experimental Setup and Results
Figure 6 presents a schematic illustration of the PSR-based scan-
ning polarization ellipsometry system proposed in the present
study. As shown, the major items of equipment include a
He–Ne laser (SL 02/2, SIOS Co., central wavelength 632.8 nm),
a polarizer (GTH5M, Thorlabs Co.) to produce linear polarized
light, a quarter-wave plate (QWP0-633-04-4-R10, CVI Co.) to
convert the linear polarized light into circular polarized light,
a second polarizer (GTH5M, Thorlabs Co.) set to a scanning
angle in the range of θ ¼ 0 to 180 deg, and a neutral density
filter (NDC-100C-2, Oneset Co.) and power detector (8842A,
OPHIR Co.) to calibrate the intensity of the input polarization
light. Following the calibration process, the power detector was
removed from the experimental setup, and the light emerging
from the neutral density filter was reflected on the SPR sensor
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and detected by a commercial Stokes polarimeter (PAX5710,
Thorlabs Co.). To achieve a precise alignment of the optical
components in the experimental setup, a pin hole was placed
in front of the polarizers and quarter-wave plate and the com-
ponents were then adjusted such that the reflected laser beam
passed though the pin hole in turn.

To enhance the SPR effect at the sensed interface, the Stokes
polarimeter was placed on a mechanical stage (SGSP-60YAW,
Sigma Koki Co.) controlled by a step motor (Mark 204-MS,
Sigma Koki Co.) and rotated through an angle of 28 deg
such that the incident light was incident on the prism coupler
at the resonance angle of 76 deg (see Fig. 6). In performing
the experiments, the linear scanning polarization lights were
produced by manually rotating the second polarizer from 0 to
180 deg in steps of 15 deg using a mechanical stage (SGSP-
60YAW, Sigma Koki Co.). In addition, the right-hand circular
polarization light (R−) was produced by removing the second
polarizer from the system. The samples were stored in plastic
cuvettes with dimensions of 10 × 10 × 1 mm. The prism cou-
pler was attached to the cuvettes by means of industrial glue
and a layer of silicon around the border edge. Prior to mounting
the coupler, the cuvette was drilled with a small hole with
a diameter of 6 mm such that the sample made direct contact
with the half-ball lens (thereby avoiding optical interference
by the cuvette material).

The CD samples were prepared using 10-mL chlorophyllin
solutions (C6003, Sigma-Aldrich Co. LLC) with concentrations
ranging from 0 to 100 μg∕mL in 20 μg∕mL increments
mixed with 2 mL D-glucose solution (100 mg∕mL Merck
Ltd.) and 0.5-mL polystyrene microspheres (0.2 mg∕mL Duke
Standard™). Figure 7(a) shows the experimental and simulated
R values of the chlorophyllin samples given a scanning angle
of 135 deg in every case. As shown, R increases linearly with
an increasing chlorophyllin concentration over the considered

concentration range. Figures 7(b) and 7(c) show the experimen-
tal and simulated values of γ and Δ, respectively, for the various
samples. It is seen that γ decreases linearly with an increasing
chlorophyllin concentration, while Δ remains approximately
constant. The standard deviations of the measured values of
R, γ, and Δ obtained on four repeated tests over the measured
concentration range of chlorophyllin samples are shown in
Table 1. Moreover, for all of the samples, a good qualitative
agreement exists between the experimental and simulation
results for all three properties. Hence, the basic validity of
the proposed approach is confirmed. The slight discrepancy
between the two sets of results is most likely due to alignment
errors in the optical system or imperfections in the optical com-
ponents themselves.

The CB samples were prepared using 10-mL glucose solu-
tion samples (100 mg∕mL Merck Ltd) with concentrations
ranging from 0 to 100 mg∕mL in 20 mg∕mL increments
mixed with 2-mL chlorophyllin (C6003, Sigma-Aldrich Co.
LLC) and 0.5-mL polystyrene microspheres (0.2 mg∕mL Duke
Standard™). Figure 8(a) shows the experimental and simulation
results for the γ values of the various samples given a scanning
angle of 135 deg in every case. As shown, γ decreases linearly
with an increasing glucose concentration. Figures 8(b) and 8(c)
show the experimental and simulation results for the R and
Δ values of the various samples. It is seen that the R value
increases linearly with an increasing glucose concentration,
while the Δ value remains approximately constant. As for the
CD samples, a good qualitative agreement exists between the
experimental and simulated values in every case. The standard
deviations of the measured values of γ, R, and Δ obtained on
four repeated tests over the measured concentration range of
glucose samples are shown in Table 2.

Overall, the results presented in Figs. 7 and 8 show that the
extracted values of R and γ are linearly correlated with the
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Fig. 7 Experimental and simulated results for: (a) R, (b) γ, and (c) Δ properties of CD samples with
chlorophyllin concentrations ranging from 0 to 100 μg∕mL. Note that the scanning angle is
θ ¼ 135 deg and the incident angle is 76 deg in every case.

Table 1 The standard deviations of the measured values of R, γ, and Δ obtained on four repeated tests over the measured concentration range of
chlorophyllin samples.

Glucose concentration 0 μg∕mL 20 μg∕mL 40 μg∕mL 60 μg∕mL 80 μg∕mL 100 μg∕mL

Standard deviation R �8.29 × 10−4 �4.33 × 10−4 �4.33 × 10−4 �4.55 × 10−4 �2.45 × 10−4 �2.58 × 10−4

γ �2.6 × 10−2 �2.4 × 10−2 �1.5 × 10−2 �1.4 × 10−2 �2.05 × 10−2 �3.1 × 10−2

Δ �1.6 × 10−3 �2.5 × 10−3 �2.7 × 10−3 �2.0 × 10−3 �2.5 × 10−3 �3.3 × 10−4
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chlorophyllin and glucose concentration over the considered
range. As a result, the feasibility of the proposed method for
extracting the optical properties of turbid media is confirmed.
In addition, the results show that the extracted Δ value is insen-
sitive to changes in the chlorophyllin and glucose concentration
over the range of 0 to 100 μg∕mL and 0 to 100 mg∕mL.

8 Conclusions and Suggestions
This study presents a CB/CD/DOP measurement technique
based on an SPR prism coupler and Stokes–Mueller matrix
polarimetry. The validity of the proposed method is demon-
strated both numerically and experimentally. The simulation
results show that the proposed method enables the CB and
CD properties to be measured with resolutions of 10−5 and
10−4 RIU, respectively, for refractive indices in the range of
1.3 to 1.4. The simulation results also show that the measured
DOP is insensitive to changes in the refractive index of the
sample over the range of 1.3 to 1.4. However, in practice,
the sensitivity of the Δ measurements can be enhanced through
an appropriate design of the prism coupler structure. The exper-
imental results show that the measured CB and CD values are
linearly related to the chlorophyllin and glucose concentrations,
respectively, over the measured range. Furthermore, the average
deviations of the CD, CB, and DOP measurements over four
repeated tests are approximately �1.59 × 10−4, �4.1 × 10−2,
and �2.01 × 10−3, respectively. Thus, the feasibility of the
SPR-enhanced Stokes–Mueller matrix polarimetry technique
proposed in this study for practical CB/CD/DOP sensing appli-
cations is confirmed.
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