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Abstract. Choosing the localization algorithm in superresolution microscopy is an important factor in determin-
ing the resolution in such a modality. The point spread function (PSF) in defocused images has ring structures
that can be used to localize the three-dimensional (3-D) position of single particles by calculating the ring center
(x and y ) and radius (z). As there is no well-developed mathematical model for a defocused PSF, it is difficult to
perform a fitting-based algorithm in such images. A particle localization algorithm based on radial symmetry and
ellipse fitting is developed to localize the centers and radii of defocused PSFs. Our method can localize the 3-D
position of a fluorophore within 20-nm precision in three-dimensions in a range of 40 μm in z-dimension from
defocused two-dimensional (2-D) images. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.3

.036501]

Keywords: localization algorithms; superresolution; fluorescence microscopy.

Paper 170793R received Dec. 8, 2017; accepted for publication Feb. 19, 2018; published online Mar. 19, 2018.

1 Introduction
Superresolution localization microscopy, such as photoactivated
localization microscopy,1 stochastic optical reconstruction
microscopy,2 and fluorescence photoactivation localization
microscopy,3 can achieve nanometer resolution using photo-
switching to image fluorophores sequentially and localization
algorithms to measure their positions precisely. The perfor-
mance of localization algorithms is a key factor in determining
superresolution imaging performance.4,5 Most of these algo-
rithms are based on fitting the point spread function (PSF) of
a single fluorophore with a known mathematical model.
Alternatives to fitting approaches include centroid calculation
and the radial symmetry-based algorithm.6 Since localization
microscopy is a 2-D wide-field imaging modality using a CCD
camera as the detector, acquiring a 3-D superresolution image
needs sophisticated PSF engineering to represent the depth
information in the distinct characteristics of the microscope’s
PSFs, such as astigmatism,7 double helix,8 Airy function,9

saddle-point and tetrapod,10,11 which require appropriate fitting
algorithms to retrieve such information.

Another approach to obtain depth information from a 2-D
image is based on defocused imaging. The PSF in a defocused
image is made of a central spot and multiple concentric rings due
to Fresnel diffraction.12 The radii of the rings are correlated to
the defocus level, thus the depth (z) information. By locating
the centroid and measuring the radius of the outermost ring,
the 3-D position of a single fluorophore can be determined.
Such defocused imaging has been used to track single particles
with Ångström accuracy.13 Recently, we developed a temporal

focusing two-photon microscope that can track single fluoro-
phores at nanometer precision with a depth range of 100 μm.14

The temporal focusing two-photon microscope is a widefield
2-D imaging modality. It can achieve z-sectioning capability
(axial resolution on the order of a few micrometers) by stretch-
ing the femtosecond laser pulse in the temporal domain before
the objective lens and compressing it to its shortest temporal
width at the focal plane of the objective.15,16 When a fluorophore
is out of the focal plane, it forms a defocused image on the
CCD camera. We implemented the same calculation method to
obtain its 3-D position at 50-nm precision from such defocused
images.

There are two obstacles preventing the wide adoption of
defocused imaging for 3-D localization. First, to our best knowl-
edge, there is no well-developed mathematical model for a defo-
cused PSF,17 which makes it difficult to develop localization
algorithms based on fitting a known PSF. Second, the signal-
to-noise ratio (SNR) in a defocused image is substantially
lower than that in an in-focus image since the emitted light
is spread out and detected by many pixels of the CCD camera
instead of only a few. Furthermore, the excitation efficiency is
usually lower than that in in-focus imaging. Therefore, develop-
ing localization algorithms will greatly improve the capability of
defocusing imaging in 3-D localization of particles.

A practical consideration in developing algorithms is that
diffraction rings can exhibit an elliptical shape due to optical
aberration such as astigmatism. In this article, we developed
a particle localization algorithm based on radial symmetry and
ellipse fitting to localize the center of defocused PSF, as well
as both horizontal and vertical radii of the ellipse. Our method
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can localize the 3-D position of a fluorophore particle within
20-nm precision in three dimensions with a range of 40 μm
in z-dimension using a single defocused 2-D image.

2 Materials and Methods

2.1 Imaging

The temporal focusing two-photon microscope setup is
described in detail in Ref. 14. The laser source is a femtosecond
chirped pulse amplifier (Solstice ACE, 35 fs, 5 kHz, 6 W,
Newport Corp., Mountain View, California). Fluorescent images
were acquired by an EMCCD camera (iXon Ultra 897, Andor
Technology, Belfast, UK) working at −80°Cwith a TEC cooling
system.

Two groups of images were acquired for particle localization
experiments. In group #1, the z-position of the specimen (1-μm
diameter, FluoSpheres carboxylate-modified, F8821, Thermo
Fisher Scientific, Waltham, Massachusetts) is scanned from
15.00 to 53.50 μm at 100-nm steps with an automatic nanopo-
sitioning sample stage, and the in-focus plane is at z ¼ 0 μm. In
group #2, the z-position of the specimen is scanned from 39.00
to 40.00 μm at 10-nm steps. At each z-position, 100 images are
acquired, and then the averaged intensity images are calculated.
The signal-to-noise ratio (SNR) of raw images is defined as the
ratio of the averaged intensity inside the ring Ps and the aver-
aged intensity outside the ring Pn. For all images collected
through this temporal focusing two-photon microscope, the inte-
gration time of EMCCD is set at 3 ms, and the number of pho-
tons received on each pixel can be calculated by multiplying
the pixel intensity level and photon count ratio. The pixel
level is a 16-bit digital value recorded by the camera software

and can be read out by image processing software such as
ImageJ. The photon count ratio is a parameter that can be
tuned in the camera software when recording video. This photon
count ratio is set at 500 when taking the experimental images,
and the maximum number of photons detected by one pixel in
the ring PSF is about 25 × 106.

2.2 Particle Localization

The flowchart of our algorithm is shown in Fig. 1. The approach
is to first preprocess the raw image to retain the region of interest
(outermost ring) and crop out other parts. Manual segmentation
of a large number of images is neither accurate nor practical.
Two subroutines are developed for automatic preprocessing
as shown in the first box (rough center localization) and the
second box (rough radius estimation) of Fig. 1. After the first
two steps, ellipse fitting subroutine is executed to calculate the
lengths of the long and short axes as shown in the third box.

2.2.1 Rough center localization

To utilize the twofold rotational symmetry in an ellipse, the first
step in rough center estimation is to determine the symmetrical
axis in four directions by calculating the correlation between the
original image and a new image obtained from the original
image after 180-deg rotation. For a given raw image I, four
equally spaced radial directions with polar angles at 0 deg,
45 deg, 90 deg, and 135 deg are chosen. For each direction,
a series of parallel lines l1;2;3;: : : ;n are tested as the centrosym-
metric axis by calculating symmetric correlation coefficients
ciði ¼ 1: : : nÞ as

EQ-TARGET;temp:intralink-;e001;63;390ci ¼
P

H
x¼1

P
W
y¼1½Iðx; yÞ − I� × ½Irðx; yÞ − Ir�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihP

H
x¼1

PW
y¼1ðIðx; yÞ − IÞ

i
2
×
hP

H
x¼1

PW
y¼1ðIrðx; yÞ − IrÞ

i
2

r ; (1)

where I and Ir denote pixel intensities in the original image
and the new image after 180-deg rotation, I is the average
intensity, and H and W are the height and width of images,
respectively.

The variation of ci versus i in all four directions is shown in
Figs. 2(a)–2(d), respectively, and the line with maximum corre-
lation coefficient is the symmetry axis in that direction [red
points in Figs. 2(a)–2(d)]. The symmetry axis in each direction
is represented as

EQ-TARGET;temp:intralink-;e002;63;215y ¼ Kdxþ Cd; d ¼ 0; 45; 90; 135: (2)

Ideally, these lines intersect exactly at the center. However,
due to noise, this does not happen, as shown in the zoomed-in
image near the center [Figs. 2(e) and 2(f)]. We determine
the center based on least square model, which searches for
a pixel ðx; yÞ that has the minimum sum of Euclidean distances
Dsum to all four lines by the following equation:

EQ-TARGET;temp:intralink-;e003;63;114Dsumðx; yÞ ¼
X
d

jKdx − yþ Cdjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

d

p : (3)

Apparently, Dsum achieves minimum at ðxs; ysÞ when the
following two criteria are met simultaneously

EQ-TARGET;temp:intralink-;e004;326;292

8<
:

∂Dsumðxs;ysÞ
∂xs

¼ 0

∂Dsumðxs;ysÞ
∂ys

¼ 0
: (4)

Therefore, ðxs; ysÞ are the rough center coordinates [red circles
in Figs. 2(e) and 2(f)].

2.2.2 Rough radius estimation

Based on the center found above, a histogram-based radius
estimation algorithm is applied. Figure 3(a) gives a schematic
demonstration of calculating the distance-to-center histogram.
For all the pixels that have equal Euclidean distance (D0) to
the center ðxs; ysÞ marked with a red cross, the average pixel
intensity I0 was calculated and is plotted as a function of D0

in Fig. 3(b). If the noise level is low, this histogram curve should
have a peak as the average pixel intensity reaches its maximum
value when the Euclidean distance-to-center equals the radius.
However, high-frequency noises appear in this histogram, and
this peak is not identifiable. To remove these noises without
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greatly distorting the signal, the Savitzky–Golay (SG) filter is
applied to smooth the histogram by a 597-point quadratic
polynomial.18 Compared with other methods such as derivative
calculation and wavelet transform (WT), the SG filter performs a
fast least-square-fit convolution procedure by setting only two

parameters: the width of the smoothing window and the degree
of the smoothing polynomial, which significantly saves compu-
tation costs with fewer manual parameter settings.19 Rough
radius R0 is calculated by finding the local maximum of the
smoothed curve [red dot in Fig. 3(b)].

Fig. 2 Rough center localization. (a)–(d) The distribution of correlation in four directions, 0 deg, 45 deg,
90 deg, and 135 deg, respectively. Horizontal axis is the index of parallel line. The red dot in each figure
marks the peak of ci , and the numbers in brackets show index i value and the maximal correlation
coefficient. (e) The original image with four blue lines indicating the symmetrical axes in four directions.
(f) The magnified view of (e). The red circle indicates the estimated center.

Fig. 1 Flowchart of proposed particle localization algorithm.
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2.2.3 Ellipse fitting

With the estimated center ðxs; ysÞ and radius R0 known, most of
the background region can be excluded from calculation except
the region of interest (the ring), which was determined as

EQ-TARGET;temp:intralink-;e005;63;447ðx − xsÞ2 þ ðy − ysÞ2 ∈ ½ðR0 − bÞ2; ðR0 þ bÞ2�: (5)

The parameter b is the half width of the ring and is empirically
set as five pixels in this experiment. The equation of an ellipse is
represented by an implicit second-order polynomial

EQ-TARGET;temp:intralink-;e006;63;384EðP;XÞ ¼ PT · X ¼ ax2 þ bxyþ cy2 þ dxþ eyþ f ¼ 0;

(6)

where P ¼ ½a; b; c; d; e; f�T and X ¼ ½x2; xy; y2; x; y; 1�T . In a
2-D image, each pixel coordinate is represented as ðxk; ykÞ, and
the pixel intensity is Ik (k ¼ 1: : : N, N is the total number of
data points). EðP;XkÞ represents the algebraic distance between
point Xk and the ellipse EðP;XÞ ¼ 0. According to least-square
criterion, the optimal ellipse fitting can be achieved by minimiz-
ing the sum of squared algebraic distance of all N data points to
the ellipse [Eq. (7)], and the optimal coefficient vector P0 is
achieved when such error is minimal as shown in Eq. (8)

EQ-TARGET;temp:intralink-;e007;63;240DaðPÞ ¼
XN
k¼1

EðP;XkÞ2; (7)

EQ-TARGET;temp:intralink-;e008;63;195P0 ¼ argminPDaðPÞ: (8)

After the background is cropped out, there are still noises
inside the rings. Intuitively pixels with higher intensity are more
likely to be the real signal and pixels with lower intensity tend
to be noise. Therefore, a weight factor wk is implemented to
enhance signal and suppress noise

EQ-TARGET;temp:intralink-;e009;63;115wk ¼ normðIckÞ; (9)

where c is a positive parameter to control the weight among pix-
els with low (noise) and high (signal) intensities. We empirically

set c ¼ 10. Now the squared algebraic distance with weight
factor from the ellipse to N data points is represented as

EQ-TARGET;temp:intralink-;e010;326;476DaðPÞ ¼
XN
k¼1

wk � EðP;XkÞ2: (10)

When finding the polynomial coefficient vector P by minimiz-
ing DaðPÞ, some constraint is needed to avoid the trivial
solution P ¼ 06 and several possible solutions representing
the same ellipse. In general, constraints can be expressed in
the matrix form of PTCP ¼ 1, where C is a 6 × 6 constraint
matrix. Here, the Bookstein constraint, one type of Euclidean-
invariant constraint, is implemented by the following matrix
equation:20

EQ-TARGET;temp:intralink-;e011;326;342

PT

2
66664

1 0 0

0 1∕2 0 03×3

0 0 1

03×3 03×3

3
77775P ¼ 1: (11)

Now the minimization of Eq. (10) can be solved by consid-
ering a rank-deficient generalized eigenvalue system with a
Lagrange multiplier λ

EQ-TARGET;temp:intralink-;e012;326;232STSP ¼ λCP; (12)

where S ¼ ½X1; X2; : : : ; XN �T . P is solved by calculating
generalized eigenvectors of Eq. (12) under the constraint of
Eq. (11).21 Figure 4 shows an example of the fitting with
P ¼ ½0.0036; 0.0004; 0.0035;−0.4796; 0.4329; 30.3565�T .

3 Results and Discussion
The performance of this algorithm is first tested on simulated
noisy images, and the algorithmic error is evaluated with a
method developed in Ref. 6. Simulated rings with intensity
obeying Gaussian distribution are considered ideal noise-free
images (Iideal), and the long and short axes are L and S with
the center at ðxs; ysÞ. Simulated noisy images (Inoisy) with

Fig. 3 Rough radius estimation. (a) Schematic graph interprets the histogram. Given a distance (D0) to
center (xs , ys), the corresponding averaged intensity is calculated by the average intensities of all pixels
whose Euclidean distances to center equal D0. (b) Blue and magenta curves represent the original
histogram and S–G filtering result. The horizontal coordinate of the red solid dot indicates the radius.
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artificially added Poisson noises to Iideal spanning a range of
SNR are used to evaluate this algorithm. Figure 5 shows
three simulated noisy images with SNR at 1.05, 1.5, and 2,
respectively. The algorithmic error is defined as the difference
between algorithm outputs from Inoisy and real ring parameters
from Iideal. For the purpose of brevity, only the algorithmic
errors of the horizontal axis (ΔR) and center coordinate
ðΔxs;ΔysÞ are displayed in the figures.

In the first test, different levels of Poisson noises ranging
from SNR ¼ 1.01 to 2 at intervals of 0.1 are added. At each
SNR level, 1000 test images are generated. The mean of abso-
lute value of algorithmic error (red circle dots) and standard
deviation (blue plus signs) of algorithmic error at different
SNR levels are shown in Fig. 6(a). Furthermore, since the SNR
of experimental raw images is around 1.05, we calculate the
mean of absolute value of algorithmic error (red circle dots) and
standard deviation (blue plus signs) of error in a fine range from
SNR ¼ 1.01 to 1.1 with intervals of 0.01 [Fig. 6(b)]. Data of
1000 images at the SNR level of 1.05 is shown in Fig. 6(c).
The errors ΔR, Δxs, and Δys in these 1000 experiments are
randomly distributed with a standard deviation of 9.69, 7.62,

and 7.51 nm with corresponding parameters in Iideal as 0.
These tests show that, under the current image SNR of around
1.05, we have ∼95% confidence to expect the algorithmic error
for R, xs, and ys to be around 20, 15, and 15 nm, respectively.

This algorithm is further applied on real microscopic images.
Figures 7(a)–7(c) show three experimental defocused images
acquired by the temporal focusing two-photon microscope at
z ¼ 20, 35, and 50 μm, respectively. At most depths, the center
lobe still has the highest intensity, and the outmost ring intensity
increases as the level of defocus increases. Figures 7(d) and 7(e)
show the distribution of SNR for all raw images in group #1 and
group #2, respectively. The mean of SNR is 1.045 with standard
deviation 0.032 in group #1, and the mean of SNR is 1.051 with
standard deviation 0.008 in group #2. The elliptical long and
short radii for both experimental groups are shown in Figs. 8(a)
and 8(b), respectively. In a long range, the relationship of radius
versus z is not linear; however, in a short range, it shows better
linearity. The ratio of long axis over short axis is about 1.02,
indicating the aspect ratio of ellipse. Apparently the fluctuations
of the calculated radii of rings are much larger than the means
and standard deviations in test images (Fig. 6). The most

Fig. 4 Weighted least square ellipse fitting. (a) Original image, (b) ellipse fitting based on ring cropping
of (a). The red solid curve in (b) is the optimal solution.

Fig. 5 Simulated noisy images with different levels of SNR. (a) SNR ¼ 1.05, (b) SNR ¼ 1.5, and
(c) SNR ¼ 2.
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possible reason is the mechanical instability of the microscope
since it is not equipped with feedback control.

To estimate the mechanical instability, the same specimen
was kept stationary and imaged for 20 min with a total of 20
images taken at 1-min intervals. The fluctuation of calculated

horizontal radius over time after subtracting average is shown
in Fig. 9. Since at SNR ¼ 1.05 the algorithmic errors for R,
xs, and ys are around 20, 15, and 15 nm, respectively,
[Fig. 6(c)], this shows that the microscope has a fluctuation
for R, xs, and ys in round 50 nm. The mean and standard

Fig. 6 Evaluation of algorithmic error and mechanical instability. (a) Mean and standard deviation of ΔR,
Δxs , and Δys versus SNR in large SNR range (from 1.01 to 2 at 0.1 intervals). (b) Mean and standard
deviation of ΔR, Δxs , and Δys versus SNR in short SNR range (from 1.01 to 1.1 at 0.01 intervals).
Note that at each SNR level in (a) and (b), such noise adding is repeated 1000 times. (c) The distribution
of ΔR, Δxs , and Δys versus number of experiments when SNR is set as 1.05. The mean SNR of
experimental raw data is 1.05.
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deviation of Figs. 6(c) and 9 are summarized in Table 1. These
tests demonstrate that mechanical instability is the limiting
factor in demining particle position precision in our current
experiments.

All calculations were run on a Lenovo™ Ideapad 320 laptop
computer with an AMD A12-9720P processor. The average
execution time of this ring localization algorithm for a single
image is shorter than 1.3 s (Table 2).

In summary, we developed an advanced algorithm to
optimize the precision of localization in defocused imaging

superresolution microscopy. A previous particle tracking work
based on the calculation of radial symmetry centers from
in-focus superresolution images achieved near theoretical
limits with orders-of-magnitude faster execution time over the
Gaussian fitting approach.6 With improvement of mechanical
stability, we expect that this method could achieve nanometer-
level resolution under current SNR. The advantage of defocused
imaging is the capability of imaging multiple fluorophores at
different depths simultaneously. Such capability allows us to
achieve 3-D superresolution imaging without PSD engineering.

Fig. 7 Experimental images at (a) z ¼ 20 μm, (b) z ¼ 35 μm, and (c) z ¼ 50 μm, (d) and (e) The SNR
level is between 1 and 1.15.

Fig. 8 Radius versus depth for (a) group #1 (large range) and (b) group #2 (small range). Red: long axis
and blue: short axis.
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The challenge is that, when multiple particles are imaged simul-
taneously, their PSFs overlap. Further development is needed
for segmentation of overlapping rings in such scenarios.
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Fig. 9 Mechanical stability measurement for R, xs , and ys .

Table 1 Mean and standard deviation of ΔR, Δxs , and Δys for simu-
lated images [Fig. 6(c)] and raw experimental images (Fig. 8).

Mean (nm) Std (nm)

R xs ys R xs ys

Simulated images −0.7 0.2 0.2 9.7 7.6 7.5

Experimental images — — — 25.9 22.8 29.3

Table 2 Mean and standard deviation of computation time for rough
center localization (S1), rough radius estimation (S2), and ellipse
fitting (S3).

Mean (ms) Std (ms)

S1 1097 48.8

S2 160.9 9.4

S3 12.8 1.4
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