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Abstract. Real-time monitoring of functional tissue parameters, such as local blood oxygenation, based on opti-
cal imaging could provide groundbreaking advances in the diagnosis and interventional therapy of various dis-
eases. Although photoacoustic (PA) imaging is a modality with great potential to measure optical absorption
deep inside tissue, quantification of the measurements remains a major challenge. We introduce the first
machine learning-based approach to quantitative PA imaging (qPAI), which relies on learning the fluence in
a voxel to deduce the corresponding optical absorption. The method encodes relevant information of the mea-
sured signal and the characteristics of the imaging system in voxel-based feature vectors, which allow the gen-
eration of thousands of training samples from a single simulated PA image. Comprehensive in silico experiments
suggest that context encoding-qPAI enables highly accurate and robust quantification of the local fluence and
thereby the optical absorption from PA images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction
Photoacoustic (PA) imaging is an imaging concept with a high
potential for real-time monitoring of functional tissue parame-
ters such as blood oxygenation deep inside tissue. It measures
the acoustic waves arising from the stress-confined thermal
response of optical absorption in tissue.1 More specifically, a
PA signal SðvÞ in a location v is a pressure response to the
locally absorbed energy HðvÞ, which, in turn, is a product of
the absorption coefficient μaðvÞ, the Grueneisen coefficient
ΓðvÞ and the light fluence ϕðvÞ

EQ-TARGET;temp:intralink-;e001;63;315SðvÞ ∝ HðvÞ ¼ μaðvÞ · ΓðvÞ · ϕðvÞ: (1)

Given that the local light fluence not only depends on the
imaging setup but is also highly dependent on the optical proper-
ties of the surrounding tissue, quantification of optical absorp-
tion based on the measured PA signal is a major challenge.2,3 So
far, the field of quantitative PA imaging (qPAI) has focused on
model-based iterative optimization approaches to infer optical
tissue parameters from measured signals (cf. e.g., Refs. 3–
12). Although these methods are well suited for tomographic
devices with high image quality (cf. e.g., Refs. 13–15) as
used in small animal imaging, translational PA research with
clinical ultrasound transducers or similar handheld devices
(cf. e.g., Refs. 1 and 16–22) focuses on qualitative image
analysis.

As an initial step toward clinical qPAI, we introduce a
machine learning-based approach to quantifying PA

measurements. The approach features high robustness to
noise while being computationally efficient. In contrast to all
other approaches proposed to date, our method relies on learning
the light fluence on a voxel level to deduce the corresponding
optical absorption. Our core contribution is the development of a
voxel-based context image (CI) that encodes relevant informa-
tion of the measured signal voxel together with characteristics of
the imaging system in a single feature vector. This enables us to
tackle the challenge of fluence estimation as a machine learning
problem that we can solve in a fast and robust manner.
Comprehensive in silico experiments indicate high accuracy,
speed, and robustness of the proposed context encoding
(CE)-qPAI approach. This is demonstrated for estimation of
(1) fluence and optical absorption from PA images, as well
as (2) blood oxygen saturation as an example of functional im-
aging using multispectral PA images.

2 Materials and Methods
A common challenge when applying machine learning methods
to biomedical imaging problems is the lack of labeled training
data. In the context of PAI, a major issue is the strong depend-
ence of the signal on the surrounding tissue. This renders sep-
aration of voxels from their context—as in surface optical
imaging23—impossible or highly inaccurate. Simulation of a
sufficient number of training volumes covering a large range
of tissue parameter variations, on the other hand, is computa-
tionally not feasible given the generally long runtime of
Monte Carlo methods, which are currently the gold standard
for the simulation of light transportation in tissue.11

Inspired by an approach to shape matching, where the shape
context is encoded in a so-called spin image specifically for each
node in a mesh,24 we encode the voxel-specific context in so-
called CIs. This allows us to train machine learning algorithms
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on a voxel level rather than image level and we thus require
orders of magnitude fewer simulated training volumes. CIs
encode relevant information of the measured signal as well
as characteristics of the imaging system represented by so-called
voxel-specific fluence contribution maps (FCMs). The CIs serve
as a feature vector for said machine learning algorithm, which is
trained to estimate fluence in a voxel. The entire quantification
method is shown in Fig. 1, which serves as an overview with
details given in the following sections.

2.1 Fluence Contribution Map

An important prerequisite for computing the CI for a voxel v is
the computation of the corresponding FCM, referred to as
FCM½v�. FCM½v�ðv 0Þ represents a measure for the likelihood

that a photon arriving in voxel v has passed v 0. In other
words, an FCM reflects the impact of a PA signal in v 0 on
the drop in fluence in voxel v. An illustration of an FCM cor-
responding to a typical handheld PA setup is shown in Fig. 2.
The FCM½v� is dependent on how the PA excitation light pulse
propagates through homogeneous tissue to arrive in v given
a chosen hardware setup. The x × y FCMs per imaging plane
are generated once for each new hardware setup and each
voxel in the imaging plane.

In this first implementation of the CE-qPAI concept, FCMs
are simulated with the same resolution as the input data assum-
ing a background absorption coefficient of 0.1 cm−1 and a con-
stant reduced scattering coefficient of 1.5 cm−1.25 The number
of photons is varied to achieve a consistent photon count in the

Fig. 1 Machine learning approach to fluence estimation with CIs. CIs are generated individually for each
voxel and encode both (1) relevant information on the measured signal extracted from the PAI signal
volume and (2) prior knowledge on the characteristics of the imaging system represented by FCMs.
During algorithm training, a regressor is presented tuples of CIs and corresponding ground truth fluence
values for each voxel in the training data. For estimation of optical absorption in voxels of a previously
unseen image, the voxel-specific CI is generated and used to infer the local fluence using the trained
regressor.

Fig. 2 Generation of CIs for three representative voxels based on their FCMs. The voxel-specific FCMs
serve as a representation of how the PA excitation light pulse propagates through homogeneous tissue to
arrive in a target voxel given a chosen hardware setup. For each voxel (here: green, red, and blue), tupels
of measured signal and corresponding fluence contribution (for that voxel) are determined to generate the
voxel-specific histograms from which the CI is generated.
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target voxel. The FCMs are generated with the widely used
Monte Carlo simulation tool mcxyz.26 We integrated mcxyz
into the open-source Medical Image Interaction Toolkit MITK27

as mitkMcxyz and modified it to work in a multithreaded envi-
ronment. Sample FCMs for three different voxels are shown in
Fig. 2, which also shows the generation of CIs for those three
example voxels.

2.2 Context Image

The CI for a voxel v in a PA volume is essentially a two-dimen-
sional (2-D) histogram composed of (1) the measured PA signal
S in the tissue surrounding v and (2) the corresponding
FCM½v�. More specifically, it is constructed from the tuples
fðSðv 0Þ; FCM½v�ðv 0ÞÞjv 0 ∈ NðvÞg where NðvÞ is defined as
NðvÞ ¼ fv 0jFCM½v�ðv 0Þ > ϵg. This constraint is set to exclude
voxels with a negligible contribution to the fluence in v. The
tuples are arranged by magnitude of Sðv 0Þ and FCM½v�ðv 0Þ
into a 2-D histogram and thereby encode the relevant context
information in a compact form. In our prototype implementation
of the CE-qPAI concept, the fluence contribution and signal axes
of the histogram are discretized in 12 bins and scaled logarithmi-
cally to better represent the predominantly low signal and flu-
ence contribution components. The ranges of the axes are set as
0 < logðSÞ < logð255Þ and logðϵÞ < logðFCMÞ < −1. Signals
and fluence contributions larger than the upper boundary are
included in the highest bin, whereas smaller signals and fluence
contributions are not. Figure 2 shows the generation of CIs from
FCMs and PA signals. Labeled CIs are used for training a
regressor that can later estimate fluence, which, in turn, is
used to reconstruct absorption [Eq. (1)].

2.3 Machine Learning-Based Regression for
Fluence Estimation

During the training phase, a regressor is presented tuples
½CIðvÞ;ϕðvÞ� of CIðvÞ and corresponding ground truth fluence
values ϕðvÞ for each voxel v in a set of PAI volumes. For esti-
mation of optical absorption in a voxel vu of a previously unseen
image, the voxel-specific CI is generated and used to infer flu-
ence ϕ̂ðvuÞ using the trained algorithm.

In our prototype implementation of the CE-qPAI method, we
use a random forest regressor. A random forest regressor is an
ensemble of decision trees, where the weighted vote of the indi-
vidual trees is used as the estimation.28 To train the random for-
est, all labeled CIs of the respective training set need to be
evaluated at once. With voxel-based CIs, thousands of training
samples can be extracted from a single slice of a simulated PA
training volume. Ground truth training data generation is per-
formed using a dedicated software plugin integrated into
MITK and simulating the fluence with mitkMcxyz. It should
be noted that the simulated images consist mainly of back-
ground voxels and not of vessel structures, which are our regions
of interest (ROI). This leads to an imbalance in the training set.
To avoid poor estimation for underrepresented classes,29 we
undersample background voxels in the training process to
ensure a 1:1 ROI/background sample ratio. The parameters
of the random forest are set to the defaults of sklearn 0.18
using python 2.7, except for the tree count which was set to
nregressors ¼ 100. CIs are used as feature vectors and labeled
with the optical property to be estimated (e.g., fluence or oxy-
genation). The parameters were chosen based on a grid search
on a separate dataset not used in the experiments of this work.

2.4 Hardware Setup

We assume a typical linear probe hardware setup,30 where the
ultrasound detector array and the light source move together and
the illumination geometry is the same for each image recorded.
This is also the case for other typical tomographic devices.31,32

All simulations were performed on high-end CPUs (Intel
i7-5960X).

3 Experiments and Results
In the following validation experiments, we quantify the fluence
up to an imaging depth of 28 mm in unseen test images for each
dataset. With our implementation and setup, all images comprise
3008 training samples, which results in an average simulation
time of about 50 ms per training sample. This allows us to gen-
erate enough training samples in a feasible amount of time, to
train a regressor that enables fluence estimation in a previously
unseen image in near real time. The measured computational
time for quantifying fluence in a single 64 × 47 voxel image
slice is 0.9 s� 0.1 s.

In the following, we present the experimental design and
results of the validation of CE-qPAI. First, we will validate
the estimation of absorption from PAI volumes acquired at a
fixed wavelength and then estimate blood oxygenation from
multispectral PAI volumes.

3.1 Monospectral Absorption Estimation

3.1.1 Experiment

To assess the performance of CE-qPAI in PA images of blood
vessels, we designed six experimental datasets (DS) with vary-
ing complexities as listed in Table 1. With the exception of
DSmulti, each of the six experimental DS is composed of 150
training items, 25 validation items, and 25 test items, where
each item comprises a three-dimensional (3-D) simulated PA
image of dimensions 64 × 47 × 62 and 0.6-mm equal spacing
as well as a corresponding (ground truth) fluence map.

As labels of the generated CIs, we used a fluence correction
ϕcðv 0Þ ¼ ϕðv 0Þ∕ϕhðv 0Þ, where ϕhðv 0Þ is a fluence simulation
based on a homogeneous background tissue assumption. We
used five equidistant slices out of each volume, resulting in a
generation of a total of 2,256,000; 376,000 and 376,000 CIs
for each dataset—for training, parameter optimization, and

Table 1 The design parameters of the DS. All ranges denote sam-
pling from uniform distributions within the given bounds.

Dataset

Vessel
radius
[mm]

Vessel
absorption
μa [cm−1]

Vessel
count

Background
absorption
μa [cm−1]

DSbase 3 4.7 1 0.1

DSradius 0.5 to 6 4.7 1 0.1

DSabsorb 3 1 to 12 1 0.1

DSvessel 3 4.7 1 to 7 0.1

DSbackground 3 4.7 1 10−4 to 0.2

DSmulti 0.5 to 6 1 to 12 1 to 7 10−4 to 0.2
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testing, respectively. To account for the high complexity of
DSmulti, we increased the number of training volumes for that
set from 150 to 400. The baseline dataset DSbase represents sim-
ulations of a transcutaneously scanned simplified model of a
blood vessel of constant radius (3 mm) and constant absorption
(vessel: 4.73 cm−1, background: 0.1 cm−1) and reduced scatter-
ing coefficient (1.5 cm−1). To approximate partial volume
effects, the absorption coefficients in the ground truth images
were Gaussian blurred with a sigma of 0.6 mm. Single slices
were simulated using 2 × 106 photons for all training sets
and 108 photons for the respective test and validation sets
and then compounded in a fully scanned volume. Different
shapes and poses of the vessel were generated by a random
walk with steps r defined as

EQ-TARGET;temp:intralink-;e002;63;598ri ¼ ri−1 þ η · a; (2)

where η is a free parameter constant in each vessel with an inter-
vessel variation within a uniform distribution ð0 < η < 0.2Þ and
a is varied for each of its components in each step within a uni-
form distribution ð−0.2 mm < ai < 0.2 mmÞ. To investigate
how variations in geometry and optical properties impact the
performance of our method, we designed further experimental
DS in which the number of vessels (DSvessel), the radii of the
vessels (DSradius), the optical absorption coefficients within
the vessels (DSabsorb), the absorption coefficient of the back-
ground (DSbackground), as well as all of the above (DSmulti)
were varied. We tested the robustness of CE-qPAI to this
range of scenarios without retuning CI or random forest
parameters.

Although most studies assess the performance of a method in
the entire image (cf. e.g., Refs. 6, 33, and 34), it must be pointed
out that the accuracy of signal quantification is often most rel-
evant in a defined region of interest—such as in vessels or
regions that provide a meaningful PA signal. These are typically
also the regions, where quantification is particularly challenging
due to the strongest signals originating from boundaries with
discontinuous tissue properties. To address this important aspect
we validated our method, not only on the entire image, but also
in the ROI, which we define for our DS as voxels representing a
vessel and at the same time having a contrast-to-noise ratio
(CNR) of larger than 2, to only include significant signal in
the ROI. We define CNR following Walvaert and Rosseel35

in a voxel v as

EQ-TARGET;temp:intralink-;e003;63;271CNR ¼ SðvÞ − avgðbÞ
stdðbÞ ; (3)

where the avgðbÞ and stdðbÞ are the average and standard devi-
ations of the background signal b over a simulated image slice
with a background absorption coefficient of 0.1 cm−1 and no
other structures. Using such an image without application of
a noise model, we simulated an intrinsic background noise of
ð4.2� 2.8Þ a.u.

To investigate the robustness of CE-qPAI to noise, we added
the following noise models to each dataset. The noise models
consist of an additive Gaussian noise term applied on the signal
volumes followed by a multiplicative white Gaussian noise
term, similar to noise assumptions used in prior work.6,33 We
examined three noise levels to compare against the simula-
tion-intrinsic noise case:

1. 2% multiplicative and ð0.125� 0.125Þ a.u. additive
component

2. 10% multiplicative and ð0.625� 0.625Þ a.u. additive
component

3. 20% multiplicative and ð1.25� 1.25Þ a.u. additive
component

The additive and multiplicative noise components follow an
estimation of noise components on a custom PA system.30 For
each experimental dataset introduced in Table 1 and each noise
set, we applied the following validation procedure separately.
Following common research practice, we used the training
data subset for training of the random forest and the validation
data subset to ensure the convergence of the training process, as
well as to set suitable parameters for the random forest and ROI,
whereas we only evaluated the test data subset to report the final
results (as described in Ref. 36). As an error metric, we report
the relative fluence estimation error er

EQ-TARGET;temp:intralink-;e004;326;544erðvÞ ¼
jϕ̂ðvÞ − ϕðvÞj

ϕðvÞ ; (4)

rather than an absorption estimation error, to separate the error in
estimating fluence with CE-qPAI from errors introduced
through simulation-intrinsic or added noise on the signal,
which will affect the quantification regardless of fluence
estimation.

3.1.2 Results

Figures 3(a)–3(c) show representative examples of the previ-
ously unseen 125 simulated test images from the baseline data-
set DSbase, with their corresponding fluence estimation results.
The optical absorption is reconstructed using the fluence estima-
tion. A histogram illustrating absorption estimation accuracy in
ROI voxels of DSbase is shown in Fig. 3(d) and compared with a
static fluence correction approach.

Table 2 summarizes the descriptive statistics of the relative
fluence estimation errors er for the experiments on absorption
estimation using single wavelength PA images. The relative flu-
ence estimation error er does not follow a normal distribution
due to large outliers especially in complex DS, which is why
we report median er with interquartile ranges (IQR) for all
DS. Even for the most complex dataset DSmulti with variations
of multiple parameters, CE-qPAI yields a median overall relative
fluence estimation error er below 4%. Errors are higher in the
ROI, especially in DS with high variations of absorption.

Previously proposed qPAI approaches reveal high drops in
estimation performance when dealing with noisy data (cf. e.g.,
Ref. 37). To remedy this, methods have been proposed to incor-
porate more accurate noise representations into model-based
reconstruction algorithms.33,38 When validating the robustness
of CE-qPAI to noise, it yields high accuracy even under unre-
alistically high noise levels of up to 20% (cf. Fig. 4). Regardless
of the noise level applied, the highest median errors occur in the
ROIs of DS that are characterized by high absorption and inho-
mogeneous tissue properties.

3.2 Multispectral Blood Oxygenation Estimation

The concept of CE cannot only be used to estimate fluence and
absorption, but also derived functional parameters such as
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blood oxygenation. To this end, the estimated absorption in a
voxel for multiple wavelengths can be applied to resolve oxy-
genation via linear spectral unmixing. Alternatively, a regres-
sor can be trained using the CIs labeled with ground truth
oxygenation.

3.2.1 Experiment

To investigate the performance of CE-qPAI for blood oxygena-
tion (sO2) estimation, we designed an additional multispectral
simulated dataset DSoxy using the wavelengths 750, 800, and
850 nm. It consists of 240 multispectral training volumes and

Fig. 3 Absorption reconstruction results after fluence estimation. For the slices with the (a) lowest,
(b) median, and (c) highest median fluence estimation error er within the ROI of DSbase. We show
(from left to right) the estimated fluence, the corresponding signal images, the resulting estimation of
the absorption coefficient, and the ground truth optical absorption, for reference. (d) A histogram of
the relative absorption estimation over all ROI voxels (n ¼ 5347) in DSbase illustrating absorption esti-
mation accuracy rather than fluence estimation accuracy measured by er. Precorrecting the signal with
the fluence of a homogeneous tissue assumption underestimates the absorption and is considerably
outperformed by CE-qPAI in the ROI. The CE-qPAI plot omits 5 outliers larger 2.
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11 multispectral test volumes, each featuring homogeneous oxy-
genation and one vessel with a radius of 2.3 to 4 mm—modeled
after a carotid artery.39 For each image slice and at each wave-
length, 107 photons were used for simulation. Oxygenation
values for the training images were drawn randomly from a uni-
form sO2 distributionUð0%; 100%Þ. For testing, we simulated 11
multispectral volumes at three wavelengths and 11 blood oxy-
genation levels (sO2 ∈ f0%; 10%; 20%; : : : ; 100%g). The opti-
cal absorption was adjusted by wavelength and oxygenation,
as described by Jacques.25 Hemoglobin concentration was
assumed to be 150 g∕L.25 The blood volume fraction was set
to 0.5% in the background tissue and to 100% in the blood ves-
sels. The reduced scattering coefficient was again set to 1.5 cm−1.
We estimated the oxygenation using three methods:

1. Linear spectral unmixing on the signal images as a
baseline.40 For this, we applied a non-negative con-
strained least squares approach as also used in
Ref. 15 that minimizes kAx − bk ¼ 0, where A is
the matrix containing the reference spectra, b is the
measurement vector, and x is the unmixing result.

Specifically, we used the python scipy.optimize.mini-
mize function with the sequential least squares pro-
gramming method and added a non-negativity
inequality constraint. We evaluated the unmixing
results of this method on all voxels in the ROI as
well as exclusively on those voxels with the maximum
intensity projection (MIP) along image x-axis at wave-
length 800 nm to account for nonlinear fluence effects
deep inside the vessels.

2. Linear spectral unmixing of the signal after quantifi-
cation of the three input images with CE-qPAI. After
correcting the raw signal images for nonlinear fluence
effects using CE-qPAI, we applied the same method as
described in (1) and evaluated on the same voxels that
were used in (1) to ensure comparability of the results.

3. Direct estimation of oxygenation using a functional
adaptation of CE-qPAI. For functional CE-qPAI
(fCE-qPAI), triples of CIs for the three chosen wave-
lengths were concatenated into one feature vector and
labeled with the ground truth oxygenation.

3.2.2 Results

Estimation of local blood oxygen saturation (sO2) is one of the
main qPAI applications and is only possible with multispectral
measurements. As such, the presented approaches were vali-
dated together with the baseline method on the dataset
DSoxy. As shown in Fig. 5(a), the estimation results for both
methods are in very close agreement with the ground truth.
In fact, the median absolute oxygen estimation error was
3.1% with IQR (1.1% and 6.4%) for CE-qPAI and 0.8%
with IQR (0.3% and 1.8%) for the fCE-qPAI adaptation.
Furthermore, our methodology outperforms a baseline approach
based on linear spectral unmixing of the raw signal (as also com-
pared to in Ref. 15). By means of example Fig. 5(b) shows that
the linear spectral unmixing of the ROI on the uncorrected signal
fails deep inside the ROI, where the fluence varies strongly for
different wavelengths. To compensate for this effect when com-
paring the approach to our method, we validate all methods only
on the MIP along the depth axis (as also used in Ref. 41) in
Fig. 5(a).

Table 2 Descriptive statistics of fluence estimation results. The
median and IQR of the relative fluence estimation error er for the
six validation DS used for the single wavelength experiments. The
median error and IQR are provided (1) for all voxels in the respective
test set as well as (2) for the voxels in the ROI only.

Relative error er

All voxels ROI

Dataset Median (%) IQR (%) Median (%) IQR (%)

DSbase 1.0 (0.5, 1.9) 4.2 (1.9, 7.6)

DSradius 1.4 (0.6, 3.3) 5.7 (2.4, 11.3)

DSabsorb 1.2 (0.5, 2.8) 14.7 (5.4, 32.2)

DSvessel 1.8 (0.7, 6.2) 6.8 (3.0, 13.2)

DSbackground 0.7 (0.3, 1.4) 4.1 (1.7, 7.3)

DSmulti 2.3 (0.7, 38.5) 15.7 (6.6, 40.0)

Fig. 4 Robustness of the fluence estimation against noise. Median relative fluence estimation errors er
with IQR over all DS for, (a) all test voxels, and (b) in region of interest test voxels. The whiskers in this
plot show the first and third quartile.
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4 Discussion
This paper addresses one of the most important challenges
related to PA imaging, namely the quantification of optical
absorption based on the measured signal. In contrast to all
other approaches proposed to qPAI to date (cf. e.g., Refs. 3–12),
our method relies on learning the light fluence in a voxel to
deduce the corresponding optical absorption. Comprehensive
in silico experiments presented in this manuscript show the
high potential of this approach to estimate optical absorption
as well as derived functional properties, such as oxygenation,
even in the presence of high noise.

Although machine learning methods have recently been
applied to PAI related problems (cf. e.g., Refs. 42–44), these
have mainly focused on image reconstruction but not signal
quantification. We attribute this to the fact that in vivo training
data generation for machine learning-based qPAI is not at all
straightforward given the lack of reference methods for estimat-
ing optical absorption in depth. Despite recent developments
related to hybrid diffusion approximation and Monte Carlo
methods,45 fast generation of in silico training data also remains
an unsolved challenge. Note in this context that commonly
applied methods of data augmentation (i.e., methods that
may be used to automatically enlarge training data sets as dis-
cussed in Ref. 46) cannot be applied to PA images due to the
interdependence of fluence and signal. With our contribution,
we have addressed the challenge by introducing the concept
of CIs, which allow us to generate one training case from
each voxel rather than from each image.

As an important contribution with high potential impact, we
adapted CE-qPAI to estimate functional tissue properties from
multiwavelength data. Both variants—linear spectral unmixing
of the fluence corrected signal, as well as direct estimation of
oxygenation from multi wavelength CIs, yielded accurate results
that outperformed a baseline approach based on linear spectral
unmixing of the raw PA signal. It should be noted that linear
spectral unmixing of the signal for sO2 estimation is usually

performed on a wider range of wavelengths to increase accuracy.
However, even this increase in the number of wavelengths can-
not fully account for nonlinear fluence effects.3 Combined with
the separately established robustness to noise, multiwavelength
applications of CE-qPAI are very promising.

In our first prototype implementation of CE-qPAI, we used
random forests regressors with standard parameters. It should be
noted, however, that fluence estimation from the proposed CI
can in principle be performed by any other machine learning
method in a straightforward manner. Initial experiments suggest
that even better performance can be achieved with convolutional
neural networks.47

By relating the measured signals Sðv 0Þ in the neighborhood
of v to the corresponding fluence contributions FCM½v�ðv 0Þ we
relate the absorbed energy in v 0, to the fluence contribution of v 0

to v. In this context, it has to be noted that the fluence contri-
bution FCM½v�ðv 0Þ is only an approximation of the true likeli-
hood that a photon passing v has previously passed v 0, because
FCM½v� is generated independently of the scene under observa-
tion assuming constant background absorption and scattering.
Nevertheless due to the generally low variance of scattering
in tissue, it serves as a reliable input for the proposed machine
learning-based quantification.

A limitation of our study can be seen in the fact that we per-
formed the validation in silico. To apply CE-qPAI in vivo, fur-
ther research will have to be conducted in two main areas. First,
we are working on accurately solving the acoustical inverse
problem for specific scanners.48 The method will be integrated
into the quantification algorithm to enable quantification of
images acquired with common PAI probes such as clinical linear
transducers. Second, training data have to be generated as close
to reality as possible—considering, for example, imaging
artifacts.

In contrast to prior work (cf. e.g., Refs. 6, 7, 33, 49, and 34),
our initial validation handles the whole range of near infrared
absorption in whole blood at physiological hemoglobin concen-
trations and demonstrates high robustness to noise. The impact

Fig. 5 Oxygenation estimation. (a) The median oxygen estimation with the IQR on the MIP voxels using
linear spectral unmixing of (blue) the uncorrected signal, (green) the signal corrected by CE-qPAI, and
(red) direct estimation by functional CE-qPAI (fCE-qPAI). (b) The oxygenation estimation for a represen-
tative patch of signal showing a vessel in 15-mm depth and with 3-mm radius. The signal for one of the
measurement wavelengths is shown for reference together with the oxygen estimation results for 0%,
50%, and 100% ground truth homogeneous oxygenation and the three examined methods.
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of variations of scattering still needs investigation although these
should be small in the near infrared.

Long-term goal of our work is the transfer of CE-qPAI to
clinical data. In this context, run-time of the algorithm will
play an important role. Although our current implementation
can estimate absorption on single slices within a second, this
might not be sufficient for interventional clinical estimation
of whole tissue volumes and at higher resolutions. An efficient
GPU implementation of the time intensive CI generation should
enable real-time quantification.

In summary, CE-qPAI is the first machine learning-based
approach to quantification of PA signals. The results of this
work suggest that quantitative real-time functional PA imaging
deep inside tissue is feasible.

Code and Data Availability
The code for the method as well as the experiments was written
in C++ and python 2.7 and is partially open source and available
at https://phabricator.mitk.org/source/mitk.git. Additional code
and all raw and processed data generated in this work are avail-
able from the corresponding authors on reasonable request.
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