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Abstract. Since it was first demonstrated more than a decade ago, the single-pixel camera concept has been
used in numerous applications in which it is necessary or advantageous to reduce the channel count, cost, or
data volume. Here, three-dimensional (3-D), compressed-sensing photoacoustic tomography (PAT) is demon-
strated experimentally using a single-pixel camera. A large area collimated laser beam is reflected from a planar
Fabry–Pérot ultrasound sensor onto a digital micromirror device, which patterns the light using a scrambled
Hadamard basis before it is collected into a single photodetector. In this way, inner products of the Hadamard
patterns and the distribution of thickness changes of the FP sensor—induced by the photoacoustic waves—are
recorded. The initial distribution of acoustic pressure giving rise to those photoacoustic waves is recovered
directly from the measured signals using an accelerated proximal gradient-type algorithm to solve a model-
based minimization with total variation regularization. Using this approach, it is shown that 3-D PAT of imaging
phantoms can be obtained with compression rates as low as 10%. Compressed sensing approaches to photo-
acoustic imaging, such as this, have the potential to reduce the data acquisition time as well as the volume of
data it is necessary to acquire, both of which are becoming increasingly important in the drive for faster imaging
systems giving higher resolution images with larger fields of view. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JBO.24.12.121907]
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1 Introduction
Photoacoustic tomography (PAT) is a hybrid imaging technique
based on the use of laser-generated ultrasound within soft tissue
that has been demonstrated in a wide variety of applications in
preclinical research and clinical medicine.1,2 When a short pulse
of near infrared (NIR) light is absorbed by chromophores within
soft tissue, it gives rise to a pressure increase that propagates
through the tissue as an ultrasound pulse and can be detected
at the surface. Following the measurement of these photoacous-
tic signals on the tissue surface, an image of the initial pressure
distribution can be reconstructed.

Photoacoustic signals are broadband, containing frequencies
up to and above 10 MHz, at which the wavelength is <150 μm.
The classical approach to sampling—spatial and temporal—
follows the Shannon–Nyquist theorem, which states that a band-
limited signal can be recovered exactly if the sampling rate is
at least twice the maximum frequency present in the signal.
This suggests a large number of detectors are required for
PAT, because the measurement plane should subtend a large
solid angle at the imaging target in order to avoid limited-view
artifacts, e.g., a 2 × 2 cm aperture sampled at 75-μm spacing
results in more than 70,000 detection points. However, a dense
array of many tens of thousands of small elements can be expen-
sive and difficult to fabricate. One alternative is to use a smaller
number of detectors and scan them across the surface, but this
has the drawback of reducing the imaging frame rate. Another
alternative is compressed sensing (CS),3 also called compressive

sampling. The idea behind CS is that, under certain conditions, it
is possible to reconstruct a target image accurately from fewer
samples than determined by the Nyquist rate. The first require-
ment is that the target is known to be of low spatial (or more
generally spatiotemporal) complexity, e.g., that it is sparse in
a given basis. The second requirement is that the set of measure-
ments contains nonredundant information about the target at all
relevant scales. With these two requirements satisfied, it is often
possible to reconstruct an accurate image of the target with only
a fraction of the data that would be acquired with Nyquist sam-
pling. The original and classic demonstration of this CS para-
digm is the single-pixel camera.4,5

In this paper, a single-pixel camera is used to measure time-
varying photoacoustic signals reaching a planar Fabry–Pérot (FP)
ultrasound sensor,6 thereby facilitating compressed-sensing PAT.
The FP sensor comprises a polymer film spacer sandwiched
between a pair of dichroic mirrors. Any changes in the optical
thickness of the spacer will modulate the optical reflectivity.
When the wavelength of the interrogating laser light is tuned cor-
rectly, the reflected optical power will be proportional to the
acoustic wave modulating the spacer thickness. A focussed laser
beam is usually used to read out these acoustic pressure waves
point-by-point. In this way, it is possible to synthesize arrays
of many tens of thousands of detection points with small element
sizes. This approach has been shown to give high-resolution
images with high contrast.7 However, as mentioned above, the
need to scan results in slow data acquisition. To acquire the data
more quickly, one possibility is to use an interrogation system that
can read out multiple points simultaneously,8 but it comes with
high equipment cost and is technically challenging to implement.
Another choice would be to use a camera, e.g., a CCD or CMOS
camera, to record the signal at many pixels simultaneously,9,10 but
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this requires a separate measurement for every time point. In this
paper, the FP sensor was interrogated using wide-beam illumina-
tion and the reflected light was patterned on reflection from a
digital micromirror device (DMD) before being collected into
a single photodetector. With this system, it is possible to measure
the spatial integral of the product of the pattern and the acoustic
field at the sensor, i.e., projections of the field onto arbitrary spa-
tial patterns. When choosing the set of patterns it is necessary to
ensure that they will capture the data in such a way as to facilitate
maximizing the image quality for a given size of dataset during
the image reconstruction. Here scrambled Hadamard patterns are
used. This approach has previously been demonstrated for real-
time ultrasound detection;6 here, that work is extended to PAT.

Several experimental demonstrations of CS in PAT have been
reported since Provost and Lesage11 first proposed it. The
systems used have included ring arrays or circular scanning
systems,11–15 systems employing integrating line detectors,16–19

linear arrays or line scans,20–23 and two-dimensional (2-D)
arrays.24–29 In all of these studies, the sensors are restricted to
subsampling the acoustic field at a set of points (or lines in the
case of the integrating line detectors). In contrast, this paper is
concerned with measurements made with a 2-D planar sensor
interrogated with patterns.6 As well as a variety of detection
schemes, a number of approaches to reconstruction from sparse
data have been proposed for PAT: principal component analy-
sis,21 sparsifying transforms,18,30 deep learning,17,16,25,26,31 and
variational approaches that minimize a functional11,14,15,29,28,32

including joint motion estimation.24 Here a variational minimi-
zation approach will be taken.29 (For clarity, the term “com-
pressed sensing” has been used in the photoacoustic imaging
literature to refer to 2-D photoacoustic imaging using patterned
excitation light.33–35 This is difficult to extend to 3-D imaging
and is quite a different idea from the patterned acoustic sensing
described here.)

2 Compressed Sensing Photoacoustic
Tomography with Patterned Detection

In a PAT experiment, a laser pulse is used to illuminate the target
volume, and where the light is absorbed it generates an initial
acoustic pressure distribution p0ðx; y; zÞ. The aim is to image
this initial acoustic pressure distribution. Because tissue is elas-
tic, the initial pressure distribution excites acoustic waves,
which propagate through the tissue to the sensor on the tissue
surface. The acoustic field at the FP sensor at time t can be
denoted by pðx; y; tÞ ¼ Ap0ðx; y; zÞ, where A is the acoustic
propagation operator. To describe how the FP sensor facilitates
CS, it is useful to start by considering a point-by-point interrog-
ation scheme, in which there are N detection points on the sen-
sor. A complete dataset, P ∈ RN × RT, which can be described
as a collection of measurements at different times P ¼
fpt; t ¼ 0; : : : ; T − 1g, where pt ¼ fpn

t ; n ¼ 1; : : : ; Ng ∈ RN

represents the measurements at the N detection points at a single
time t, and pn

t ¼ pðxn; yn; tÞ is the scalar acoustic pressure
amplitude at a single point with coordinates ðxn; ynÞ at time
t. If, for a single time t, the pressure field pt can be represented
sparsely in a basis Ψ, then we can write pt ¼ Ψat, or
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where the columns ψq of Ψ are basis functions and at ¼
faqt ; q ¼ 1; : : : ; Q < Ng are the corresponding coefficients. If
measurements pn

t are recorded at all N points, as they are with
a complete point-by-point scan, it would be possible to calculate
the sparse coefficients at using an inner product aqt ¼ hψq; pti.
This is analogous to the case of image compression. In the CS
approach, the coefficients at are obtained directly from M < N
measurements. Each measurement in the pattern-interrogation
scheme is an integral of the field weighted by a pattern. In other
words, the measurements are the set of amplitudes wt ¼
fwm

t ; m ¼ 1; : : : ;Mg given by

EQ-TARGET;temp:intralink-;e002;326;629wm
t ¼ hϕm; pti; m ¼ 1; : : : ;M; (2)

where each ϕm is a measurement pattern. The idea behind CS is
to assume that pt is sparsely represented in a basis Ψ and use
measurement patterns Φ ¼ fϕm;m ¼ 1; : : : ;M < Ng incoher-
ent to it. The incoherence of the basis Ψ and the measurement
patterns Φ is crucial. If one knew, ahead of time, which sparse
coefficients represent the solution, it would be possible to coher-
ently measure the relevant coefficients aqt directly using the
respective basis functions as the measurement patterns,
ϕm ¼ ψm. In practice, however, the basis in which the data will
be sparse is rarely known in advance, so CS proceeds using pat-
terns that, through their incoherence, “equally” sense all the
basis vectors ψm and afterward use sparse recovery to extract
the sparse coefficients from these measurements.

Once the M measurements at each time step wt have been
recorded, the challenge is to reconstruct the initial acoustic pres-
sure distribution p0. If a full set of amplitudes w ¼ fwm

t ; m ¼
1; : : : ;M ¼ N; t ¼ 0; : : : ; T − 1g have been recorded, one can
obtain the original acoustic field at the FP sensor as p ¼ Φ−1w
and use standard PAT image reconstruction techniques for this
scanning geometry, e.g., time-reversal.36 However, when only a
subset of the data has been recorded, M < N, there are two
options: two-step schemes first reconstruct p from compressed
measurements, solving a problem akin to basis pursuit in CS
(see e.g., Ref. 27, which assumes sparsity of pt in a Curvelet
basis), and then use a standard photoacoustic inversion tech-
nique, whereas one-step schemes reconstruct the image directly
from the compressed data. Reference 29 contains a detailed
description of the one-step approach used here, namely an accel-
erated proximal gradient-type algorithm to solve the following
minimization problem:

EQ-TARGET;temp:intralink-;e003;326;267p�
0 ¼ arg min

p0≥0
kΦAp0 − wtk22 þ λTVðp0Þ; (3)

where TVðp0Þ denotes the total-variation regularization. k-
Wave37 was used to compute both the acoustic operator A and
its adjoint.38 The regularization parameter λ was chosen via
manual inspection. In the experiments reported here, the meas-
urement matrix Φ was chosen as a scrambled Hadamard matrix.
This choice is both theoretically and practically appealing as
explained below. The Hadamard transform is a 2j × 2j matrix
that can be recursively defined as

EQ-TARGET;temp:intralink-;e004;326;141Hj ¼
1ffiffiffi
2

p
�
Hj−1 Hj−1
Hj−1 −Hj−1

�
; j > 0 (4)

andH0 ¼ 1 (note that this means that a Hadamard matrix can be
written as a matrix with entries that are 1 or −1, multiplied by a
normalization factor). The Hadamard transform is orthogonal
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and self-inverse, i.e., Hj ¼ HT
j ¼ H−1

j . A scrambled Hadamard
matrix is formed by permuting the columns and rows of the
matrix Hj, to give Hs

j ¼ Pr Hj Pc, where Pc and Pr are the col-
umn and row permutation matrices, respectively. Notice that
the scrambled Hadamard transform

EQ-TARGET;temp:intralink-;e005;63;694y ¼ Hs
j x ¼ Pr Hj Pc x (5)

amounts to applying the column permutation to the vector x,
Pc x, applying the Hadamard transform to the permuted vector
and subsequently permuting the rows. Thus, the cost of the
scrambled Hadamard transform is of the same order as that
of the Hadamard transform, which in turn can be realized with
a fast algorithm, O½2j logð2jÞ�. Similarly, the inverse scrambled
Hadamard transform

EQ-TARGET;temp:intralink-;e006;63;584x ¼ Hs−1
j y ¼ P−1

c H−1
j P−1

r y ¼ PT
c Hj PT

r y (6)

is equivalent to applying inverse row permutation to y, PT
r y,

applying the Hadamard transform to the permuted vector and
subsequently applying the column permutation to the vector.
Each row of the matrix Hs

j represents a measurement pattern,
so for CS, where M < N ¼ 2j, the first M rows out of N are
selected. The selection of M rows yields an underdetermined
matrix with desirable properties for CS, similar to those of a
random Gaussian/Bernoulli matrices.39

3 Experimental Measurements
The experimental setup is shown in Fig. 1(a). The FP sensor
(aluminum coatings, PPXC spacer, thickness of 40 μm) was
illuminated by a 20-mm diameter expanded interrogation beam
(Santec TSL-510 tunable laser source connected to a IPG
Laser GmbH Erbium Fiber Amplifier EAD-4-L), Fig. 1(b).
The reflected beam from the sensor was then redirected to the
DMD (ViaLUX V-7000 DLP 0.7″ XGA 1024 × 768 array,

pitch size of 13.68 μm) by the polarized beam splitter (Thorlabs
CM1-PBS254). The optical reflected beam from the DMD was
collected by lens L2 (f ¼ 25.4 mm) and focused into a photo-
detector (InGaAs Hamamatsu G8376-03 and a customized
transimpedance amplifier configuration with DC- and AC-
coupled outputs). A digitiser (NI PCI-5114) was used to acquire
time series signals from the photodetector’s output. The sys-
tem’s sampling rate and bandwidth were set at 50 and 20 MHz.
The excitation laser was a Q-switched fiber-coupled Nd:YAG
laser (Continuum Minilite-20, repetition rate of 20 Hz). The
excitation beam diameter was ∼15 mm and the total pulse
energy was set to ∼17 mJ. Since the FP sensor used in this study
was not transparent, the system was operating in forward mode.

Due to the periodic distribution of the micromirrors, a DMD
acts as a 2-D diffraction grating when laser light is reflected
from it.40 The reflected light from the FP sensor is, therefore,
diffracted at the DMD into many diffraction orders that, within
the NIR range, are well separated. The detector is positioned so
that it collects light from only the strongest order. The details
of how to optimize the DMD arrangement have been discussed
elsewhere.6 In this setup, the strongest order at 1580 nm is at
about 50 deg with the incident angle of about 26 deg. With this
arrangement, the DMD was used to pattern (spatially sample)
the reflected beam from the sensor, before it was passed through
an integrating lens and onto the photodetector. The scrambled
Hadamard patterns, Fig. 1(c), were sequentially displayed on
the DMD, and a time series signal was recorded at the photo-
detector for M < N patterns. Because light intensities cannot be
negative, it was not possible to implement ð−1;1Þ Hadamard
patterns experimentally so (0, 1) patterns were used and the
mean value of all the time series was subtracted from the set.
Also, to avoid saturating the photodiode, the data corresponding
to the all-1 pattern were constructed from two half-1 half-0
patterns. The active area on the DMD was chosen to be 640 ×
640 pixels (∼8.7 × 8.7 mm2). It was positioned to align with the
most uniform region on the FP sensor so only one wavelength
was required to interrogate the sensor. A scrambled Hadamard
operator for 1282 pixels was used for these experiments. Each
image pixel corresponded to a group of 5 × 5 micromirrors on
the DMD, so the effective sensing element size was 68 μm ×
68 μm. The DMD and the digitizer were synchronized and
triggered by the Q-switched laser.

The two phantoms shown in Fig. 2, a knotted artificial hair
and a twisted polymer ribbon, were used in this study. The
phantoms were immersed in 1% Intralipid with a reduced optical
scattering coefficient μ 0

s of 1 mm−1 and were positioned ∼2 mm

above the sensor and 4 mm below the Intralipid surface. The

(a)

(b)

(c)

Fig. 1 (a) Experimental setup: L1, lens 1; L2, lens 2; LP, linear polar-
izer; PBS, polarizing beam splitter; λ∕4, quarter waveplate; PD, photo-
detector; DMD, digital micromirror device; (b) Fabry–Perot sensor
with a wide interrogation beam; and (c) illustrations of scrambled
Hadamard patterns.

(a)

(b)

Fig. 2 Phantoms for photoacoustic imaging experiments (the black
bar in both images measures 1 mm): (a) artificial hair (∼150 μm in
diameter) and (b) twisted black polymer ribbon (∼350 μm).
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diameter of the hair was about 150 μm and the ribbon width
was 350 μm.

4 Results and Discussion
Photoacoustic images of the phantoms were recovered using
Eq. (3) for different degrees of compression, and the results are
presented in Figs. 3 and 4. Figure 3 shows the 3-D images of the
knotted hair. The images were obtained using 100%, 50%, 20%,
and 10% of the scrambled Hadamard patterns. It is instructive
that with the omission of 50% of the data it is still possible to
recover an image of similar quality to that recovered using the
full data, and the main features of the targets are recovered suc-
cessfully even when only 10% of the data are used. Figure 4
shows the z − y slice images of the polymer ribbon.

In the accelerated proximal gradient-type algorithm29 used
here for the reconstructions, the loss of data was compensated
for through the use of the total variation regularization.
However, there are many other minimization algorithms and
regularization strategies described in the literature that could
be employed to tackle this CS inverse problem. In particular,
because the scrambled Hadamard basis is close to ideal for

CS, the data obtained with this system allows an investigation
into which basis is the best for reconstructions with partial data.
It remains a focus of future work to determine which approach is
optimal for photoacoustic imaging systems such as this.

Despite the advantages a CS approach has over full-data
scanning systems, it still requires multiple sequential measure-
ments. The data acquisition speed is, therefore, currently limited
by the pulse repetition rate of the photoacoustic excitation laser
(although the pulse repetition rates of photoacoustic lasers are
gradually increasing). Devices using multichannel systems with
arrays of detectors that can detect simultaneously do not suffer
from this limitation. However, they are usually limited in their
bandwidth and the cost and complexity typically becomes pro-
hibitive beyond a thousand or so channels.

The images obtained here are not as high quality as published
images obtained using a FP sensor with point-wise interroga-
tion.7 This is due to a lower signal-to-noise ratio. There are prin-
cipally two factors that affect the image quality for both
patterned and point-wise detection: (1) the signal-to-noise ratio,
and (2) the effectiveness of the CS, i.e., the degree to which the
undersampling can be ameliorated in the reconstruction. It is the
second point that is fundamental here. The signal-to-noise ratio,

Fig. 3 CS-PAT reconstructions (8 × 8 × 2.5 mm) of the knotted hair with different levels of compression,
visualized as maximum intensity projections from the top, i.e., (top row) through the sensor plane and
(bottom row) from the side. The sensor plane is located on the top of the side view; the first six depth
slices below it are set to zero to prevent sensor noise from dominating the maximum intensity projection
from the top.

Fig. 4 CS-PAT reconstructions of the twisted polymer ribbon with different levels of compression
visualized by a single slice through the ribbon, orthogonal to the sensor plane (located on top of the
slice view).
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while important practically, is not a fundamental constraint, and
it could in future be enhanced, for example, with improved sen-
sor fabrication, averaging, or using higher power illumination
and a photodiode with a greater dynamic range.

The sensitivity of FP sensors that are interrogated point-by-
point can be maximized using high-finesse cavities and by tun-
ing the wavelength to the optimal bias point on the interference
fringe at each point. With the wide-beam, single-wavelength,
illumination that this system requires, it is not possible to tune
the interrogation wavelength to the optimal wavelength for each
point, and so for this proof-of-principle experiment, a low-
finesse cavity was used to ensure that every point in the field
of view could be interrogated with some, if not optimal, sensi-
tivity at the one wavelength. FP sensors with more uniform
thickness over cm-sized areas are being developed, which will
allow higher finesse cavities to be used in future, and therefore,
larger signal-to-noise ratios to be achieved with this system.

5 Conclusions
3-D CS PAT using a single-pixel camera has been demonstrated
experimentally. Scrambled Hadamard patterns from a DMD
were used to sample the photoacoustic field as detected by a
planar FP ultrasound sensor. Photoacoustic images of knot and
ribbon phantoms were obtained with compression rates as low
as 10%. CS will become important in PAT as the demand grows
for fast, high-resolution systems with large fields of view.
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