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Abstract. Quantitative photoacoustic tomography aims to recover maps of the local concentrations of tissue
chromophores from multispectral images. While model-based inversion schemes are promising approaches,
major challenges to their practical implementation include the unknown fluence distribution and the scale of
the inverse problem. We describe an inversion scheme based on a radiance Monte Carlo model and an
adjoint-assisted gradient optimization that incorporates fluence-dependent step sizes and adaptive moment esti-
mation. The inversion is shown to recover absolute chromophore concentrations, blood oxygen saturation, and
the Grüneisen parameter from in silico three-dimensional phantom images for different radiance approximations.
The scattering coefficient is assumed to be homogeneous and known a priori. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JBO.24.6.066001]
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1 Introduction
Biomedical photoacoustic (PA) tomography is a hybrid soft-tis-
sue imaging modality that combines the high spatial resolution
of ultrasound with the high contrast and specificity of optical
imaging techniques.1–3 It relies on the generation of acoustic
waves inside the tissue, which result from the absorption of
intensity-modulated light, such as laser pulses or frequency
chirps, by the tissue chromophores. From time-resolved PA
signals recorded at multiple measurement points around the
object, three-dimensional (3-D) data sets of the initial pressure
distribution (i.e., PA images) can be calculated using acoustic
reconstruction algorithms. Quantitative PA tomography (QPAT)
aims to exploit the wavelength dependence of the image inten-
sity to recover the local concentrations of endogenous tissue
chromophores and exogenous contrast agents from which
functional parameters, such as blood oxygen saturation, can be
derived. To relate the PA image intensity to local chromophore
concentrations, computational models of the physical processes
during the image generation in conjunction with inversion
schemes represent one approach to QPAT.4,5 A major challenge
in QPAT is the unknown light fluence in the tissue,5–7 which is
a nonlinear function of the concentrations and the scattering
coefficient. Its effects on PA images have been described as
spectral coloring and structural distortion.5 For an accurate
quantification of concentrations and their ratios (e.g., blood
oxygenation), the wavelength-dependent fluence distribution
has to be accounted for.

Commonly used fluence correction methods include the
application of empirical correction factors8 or simple models
under the assumption of homogeneous optical properties.9

This is deemed sufficient to recover the absorption coefficient
distribution from which maps of the chromophore concentra-
tions can then be calculated using linear matrix inversions.
The main limitation of these methods is the reliance on a priori
knowledge of the distribution and wavelength dependence of
the fluence, i.e., Φð~x; λÞ. For in vivo images, this assumption
is often invalid and can lead to significant quantification errors
especially at greater depth. Alternative approaches include data-
driven methods. In the work reported by Tzoumas et al.10 the
wavelength-dependent fluence is written on the basis of eigens-
pectra obtained using a principle component analysis of in silico
training data, and Kirchner et al.11 calculated the fluence maps
by applying deep learning and local context encoding to a large
number of training data. While these methods have the potential
to offer fast inversions, they require large training sets and may
thus lack generality.

Model-based inversions, incorporating light transport models
to predict the fluence as a function of the spatial distribution of
the absorption and scattering coefficients, remain the most
promising approach to QPAT. The initial pressure distribution
is obtained by multiplying the fluence with the distribution
of the absorption coefficient and the Grüneisen parameter,
and PA image data sets can be obtained using acoustic propa-
gation models. The difference between the model output and the
measured data, i.e., the objective function, is minimized by iter-
atively updating the absorption and scattering coefficients dur-
ing the inversion until convergence is reached. To overcome the
nonuniqueness that arises from the use of single-wavelength
images,5 multi-illumination approaches12,13 or multiwavelength
image acquisition, in combination with a priori knowledge of
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the wavelength dependence of the absorption and scattering
coefficients,14,15 are employed.

A major challenge in high-resolution 3-D QPAT is the large
number of variables (>106). While gradient-free methods can be
applied to small-scale problems,16 inversions of a larger scale
(tens of variables and more) quickly become computationally
unfeasible. Gradient-based methods have the potential to over-
come these limitations. They have been implemented using the
adjoint formalism,17–19 which is applied using a finite element
model of the diffusion approximation (DA) to the inversion of
measured 3-D phantom images.20 While the DA is valid in the
diffusive regime and can be implemented efficiently,21,22 high-
resolution PAT can cover depths in the ballistic and quasiballis-
tic regimes, where the DA may not be valid.23 Methods that aim
to solve the radiative transfer equation (RTE) directly are com-
putationally expensive and have only been demonstrated in two-
dimensional (2-D) images so far.24–27 Monte Carlo (MC) models
have recently gained attention28–31 due to their highly parallel-
ized architecture and advances in graphics-processing units and
have already been applied to 2-D QPAT inversions19 and in initial
studies with limited parameter space in 3-D.16,32 In this paper, a
method for inverting multiwavelength 3-D images based on an
adjoint formulation of a radiance MC model is demonstrated
in silico. The challenges that are addressed in this work are
(1) the optimization of the objective function using inherently
noisy gradients, (2) accounting for the effect of the concentra-
tion-dependent Grüneisen parameter, and (3) the representation
of the radiance in terms of spherical harmonics. The capability
of this approach to recover absolute chromophore concentrations
and their ratios, e.g., blood oxygen saturation (blood sO2), from
high-resolution 3-D image data sets is demonstrated.

2 Methods
The forward model of the generation of the initial pressure
shown in tomographic PA images is described in Sec. 2.1.
The adjoint formalism26 with which the gradients of the objec-
tive function are calculated is described in Sec. 2.2. The approxi-
mation of the radiance field as a finite sum of spherical
harmonics31 within an MC light transport model is described
in Secs. 2.3 and 2.4. The numerical phantom and the simulation
parameters are outlined in Secs. 2.5 and 2.6, respectively. To
reduce the impact of the inherent MC noise on the parameter
update and to maximize the convergence speed of the gradient
descent, an adaptive moment estimation (Adam) optimization
algorithm33 is employed (Sec. 2.7).

2.1 Forward Model

Assuming that the effects of the limited detection aperture and
acoustic propagation can be neglected, the image intensity
represents the initial pressure distribution, p0, which is given as

EQ-TARGET;temp:intralink-;e001;63;193p0ð~r; λÞ ¼ Γð~rÞHð~rÞ; (1)

where Γ is the Grüneisen parameter, which describes the PA effi-
ciency; H is the absorbed optical energy density; ~r is the spatial
coordinate; and λ is the excitation wavelength. The absorbed
energy density is defined as

EQ-TARGET;temp:intralink-;e002;63;118Hð~rÞ ¼ μað~r; λÞΦð~r; λÞ; (2)

where μa is the absorption coefficient and Φ is the light fluence,
which is the radiance ϕ integrated over all angles:

EQ-TARGET;temp:intralink-;e003;326;752Φð~rÞ ¼
Z

ϕð~r; ŝ 0Þdŝ 0: (3)

The absorption coefficient is related to the chromophore
concentrations via the specific absorption coefficient, αkðλÞ, i.e.,

EQ-TARGET;temp:intralink-;e004;326;696μaðλ; ~rÞ ¼
XNk

k

ckð~rÞαkðλÞ; (4)

where Nk is the number of chromophores and k indicates the
chromophore type. The Grüneisen parameter Γ is assumed to
be linearly dependent on chromophore concentrations,15,34,35

i.e.,

EQ-TARGET;temp:intralink-;e005;326;602Γð~rÞ ¼ Γwater

�
1þ

X
k

βkckð~rÞ
�
; (5)

where βk is an empirical and chromophore-specific coefficient.
The MC method is chosen for modeling the light fluence as it
provides an accurate approximation of the radiative transport
equation for superficial (1 to 2 cm), high-resolution QPAT.5

This involves the launch of photons (typically represented as
packets of energy36) according to a predefined source distribu-
tion. Their propagation within the domain is determined by the
optical coefficients μað~rÞ and μsð~rÞ, the scattering phase func-
tion Θðŝ; ŝ 0; ~rÞ, and the refractive index n. The deposition of
energy when a photon traverses a voxel is determined by the
absorption coefficient μa. The angular dependence of scattering
events is described by the Henyey–Greenstein phase function.37

2.2 Adjoint-Assisted Optimization

Assuming Gaussian noise on the measured data, an estimate of
the chromophore distributions is found by minimizing the objec-
tive function ε, which is given as

EQ-TARGET;temp:intralink-;e006;326;359ε ¼
XNλ

l

Z
Ω

1

2
½pm

0 ðλl; ~rÞ − p0ðλl; ~rÞ�2dΩ; (6)

where Ω is the imaged volume domain, pm
0 ðλl;~rÞ is the mea-

sured PA image at wavelength λl, p0 is the PA image obtained
from the forward model, and Nλ is the number of excitation
wavelengths.

To find the chromophore concentration maps, ckð~rÞ, the
derivative of ε with respect to ck at any position ~ri is required,
i.e., ∂ε

∂ci
≡ ∂ε

∂ckð~riÞ. For the sake of brevity, only one chromophore

will be considered in the remaining description, i.e., ∂
∂ci

≡ ∂
∂c1ð~riÞ.

The objective function ε represents the sum of the objective
functions, ελl , at each excitation wavelength, which is given

as ε ¼ PNλ
l ελl . For simplicity, only one wavelength, λl, will

be considered to describe the derivative:

EQ-TARGET;temp:intralink-;e007;326;164

∂ελl
∂ci

¼ −
Z
Ω
½pm

0 ð~rÞ − p0ð~rÞ�
∂p0

∂ci
dΩ: (7)

Since p0 ¼ ΓμaΦ, after applying the chain rule, ∂p0

∂ci
becomes

EQ-TARGET;temp:intralink-;e008;326;109

∂p0

∂ci
¼ ∂Γ

∂ci
μaΦþ Γ

∂μa
∂ci

Φþ Γμa
∂Φ
∂ci

(8)
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EQ-TARGET;temp:intralink-;e009;63;741 ¼ βkδð~r − ~riÞHð~rÞ þ Γð~rÞαkðλlÞδð~r − ~riÞΦð~rÞ

þ Γð~rÞμað~rÞ
∂Φ
∂ci

; (9)

where δð~r −~riÞ is the Dirac delta function. The gradient of the
fluence with respect to chromophore concentration at a particu-
lar position, ∂Φ∂ci, is generally unknown, and one can make use of
the adjoint formalism.17,26 Briefly, the adjoint approach defines
a source term q� for the adjoint radiance ϕ�

EQ-TARGET;temp:intralink-;e010;63;644q�ð~r; λÞ ¼ Γð~rÞμað~r; λÞ½pm
0 ð~r; λÞ − p0ð~r; λÞ�; (10)

in which the adjoint radiance is expressed in terms of the differ-
ence between the measured images and the modeled images of
p0. Using this adjoint source definition enables the substitution
of the term containing the unknown ∂Φ

∂ci
in Eq. (8) with a term

containing the radiance ϕ and its adjoint counterpart ϕ�

EQ-TARGET;temp:intralink-;e011;63;556 Z
Ω
Γð~rÞμað~rÞðpm

0 − p0Þ
∂Φ
∂ci

dΩ

¼ −αkðλlÞ
�Z

S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

Vvox; (11)

where ∫ S2 is the integral over solid angle ~s, and S2 is the unit
sphere. The term Vvox is the result of the discretization of the
data using a piecewise constant basis to sample (see Sec. 9).
The gradient required to update the concentration of one
chromophore at one wavelength is therefore given as
EQ-TARGET;temp:intralink-;e012;63;428

∂ελl
∂ci

¼ −½pm
0 ð~riÞ − p0ð~riÞ�Vvox½βkHð~riÞ þ Γð~riÞαkΦð~riÞ�

þ αk

�Z
S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

Vvox: (12)

The adjoint model and its derivation are described in general
and in more detail in Secs. 6 and 7.

2.3 Radiance Approximation

As the radiance ϕð~sÞ and the adjoint radiance ϕ�ð~sÞ are func-
tions of solid angle and are defined on the surface of the unit
sphere, both quantities can be expressed on the basis of spherical
harmonic functions. The expansion of the radiance into spheri-
cal harmonics is based on previous work31 and is inspired by the
Pn approximations, described in Ref. 22 (similar to a Fourier
expansion in 1-D or 2-D) and is outlined in detail in Sec. 8.
Using a finite expansion of ½∫ S2ϕ

�ð~sÞϕð~sÞd~s�~r¼~ri
in real spheri-

cal harmonics, the gradient equation is given as
EQ-TARGET;temp:intralink-;e013;63;203

∂ελl
∂ci

¼ Vvox

�
−½pm

0 ð~riÞ − p0ð~riÞ�½βkHð~riÞ þ Γð~riÞαkΦð~riÞ�

þ αk
XNL

l¼0

Xl

m¼−l
ψ lmð~riÞψ�

lmð~riÞ
�
; (13)

where ψ lmð~riÞ is the radiance field approximated by the spheri-
cal harmonics function of degree l, order m at position ~ri and
ψ�
lm its adjoint counterpart. Equation (13) is implemented in

a gradient-based optimization scheme (described in Sec. 2.7),
which updates the concentrations iteratively to minimize the
mismatch between measured and modeled data [Eq. (6)].

The last term of the gradient in Eq. (13) contains an expan-
sion of the radiance and the adjoint radiance in spherical
harmonics

EQ-TARGET;temp:intralink-;e014;326;719αk
XNL

l¼0

Xl

m¼−l
ψ lmð~riÞψ�

lmð~riÞ: (14)

Here, NL ¼ ∞ would give the most accurate radiance approxi-
mation, but due to constraints with respect to computation time
and memory, the degree of the spherical harmonics, NL, needs
to be finite. However, it is not clear a priori up to which value of
NL the corresponding coefficients needs to be stored to approxi-
mate the radiance with sufficient accuracy. This has been inves-
tigated by evaluating the inversion scheme for three different
configurations: (1) NL ¼ 0, i.e., using only the fluence,
(2) for NL ¼ 4, i.e., the most accurate representation of the radi-
ance, and (3) omitting the radiance, i.e., ψ lm ¼ ψ�

lm ¼ 0 for all l,
m, thus neglecting the gradient term provided by the adjoint
radiance. All other parameters remain the same during the
inversions.

2.4 Radiance Monte Carlo Simulations

Most MC simulators provide only the light fluence, which is the
radiance integrated over all directions and time. To satisfy
Eq. (12), a radiance MC algorithm (RMC)19,31 is used. To obtain
the radiance ϕð~rÞ, the directional information of the photon tra-
versing a voxel at position ~r is stored by depositing the photon
weight into the relevant spherical harmonics coefficients ψ lmð~rÞ.
The RMC code is implemented in the Julia programming lan-
guage,38 which controls and dispatches the execution of kernels
on both the CPU (written in Julia), and the GPU (written in
NVIDIA’s CUDA language).31 Because the definition of the
adjoint model does not change the dynamics of photon propa-
gation, the same RMC simulation code provides the adjoint
radiance ϕ�ð~rÞ.

2.5 In Silico Phantom

An MC model has been used to calculate the multiwavelength
3-D PA images that represented measured data and are referred
to as reference images or reference data throughout this paper.
The domain of the model is divided into subvolumes (SVs) that
represented simplified anatomical structures, such as a subcuta-
neous tumor and a number of discrete blood vessels. The depths
of the structures are similar to those observed in in vivo images
acquired using a Fabry–Perot scanner with a planar detection
geometry.39–42 Absorption is assumed to originate from three
chromophores, i.e., oxyhemoglobin ðHbO2Þ, deoxyhemoglobin
(HHb), and methylene blue (Mb), as an exogenous contrast
agent. It should be noted that the method can potentially be
applied to any number of chromophores. The computational
model of the phantom consists of nine different SVs, each
with homogeneous optical properties (Fig. 1). This includes
six tube-like structures to mimic blood vessels, a tumor consist-
ing of an ellipsoidal rim and core SV, and the background. The
tubes are positioned adjacent to the tumor at depths of 1.5 and
7.5 mm, have a circular cross section with a radius of 0.4 mm,
and are filled with HHb and HbO2. The blood oxygen saturation
(sO2) is defined as the ratio of the concentration of oxyhemo-
globin and the total hemoglobin concentration

Journal of Biomedical Optics 066001-3 June 2019 • Vol. 24(6)

Buchmann et al.: Three-dimensional quantitative photoacoustic tomography using an adjoint. . .



EQ-TARGET;temp:intralink-;e015;63;554sO2 ¼
cHbO2

cHbO2
þ cHHb

: (15)

The tube-like structures are assumed to contain blood sO2

ranging from 75% to 98% to represent the typical values
found in veins and arteries.43 The total hemoglobin concentra-
tion is 2.3 mM.44 Two concentric ellipsoids represent the tumor
at a depth ranging from 3.0 mm to 6.0 mm. The outer (inner)
ellipsoid’s axes are a ¼ 4.5ð2.5Þ mm, b ¼ 3.5ð2.0Þ mm, and
c ¼ 2.0ð0.8Þ mm, respectively. The tumor SVs contained
20% blood (0.46 mM).45 The tumor shell has an sO2 of
80%, whereas that of the core is 40% to mimic necrotic tissue.
The tumor also contains an exogenous contrast agent, Mb, at a
concentration of 10 μM. The background SV contains a blood
volume fraction of 1.5% with an sO2 of 60%. Other parameters,
such as the scattering anisotropy (g ¼ 0.9), the refractive index
(ni ¼ 1.33 inside the domain, ne ¼ 1.5 outside of the domain),
and μsð~r; λÞ are held constant and uniform across the domain.
The absorption spectra of HHb, HbO2, and Mb are shown
in Fig. 2. The wavelength dependence of the reduced scatter-
ing coefficient μ 0

sðλÞ ¼ μsðλÞð1 − gÞ is approximated using

μsðλÞ ¼ 6.65 · 103 · λ−1.317þ mm−1 with λþ ¼ λ∕nm, which
resulted in a μ 0

s of ∼1 mm−1 at λ ¼ 800 nm. The Grüneisen
parameter of water is set to 0.124. The coefficient βk describing
the total hemoglobin concentration dependence of the
Grüneisen parameter is set to βHb;HbO ¼ 0.02146 L∕mmol.35

It is assumed that the Mb concentration distribution does not
change the Grüneisen parameter (βMb ¼ 0). The remaining
parts of the volume are assumed to be filled with materials,
such as water and lipids, whose absorption is considered neg-
ligible at the selected excitation wavelengths.

2.6 Monte Carlo Simulation Parameters

To obtain reference images, i.e., data sets that represent
measured multiwavelength PA images, the domain was discre-
tized into 200 × 200 × 100 (i.e., 4 × 106) isotropic voxels of
size Vvox ¼ 10−3 mm3 yielding a total volume of 20 × 20 ×
10 mm3. The source profile was a 2-D Gaussian function
with a width of σ ¼ 4 mm. About 2 · 109 photon packets were
used in the MC simulation of the light fluence. The angle-de-
pendent radiance was not calculated. Reference image data sets
were calculated for three different excitation wavelengths that
coincided with the absorption peaks of Mb (664 nm), HHb
(758 nm), and the isosbestic point of hemoglobin absorption
(798 nm). Gaussian noise (σ ¼ 0.1% of the maximum image
intensity) was added to the reference data, resulting in negative
image intensities in regions of low p0.

The domain discretization used during the inversion was
identical to that used for the reference data set, which may
raise the question of whether this constitutes a so-called inverse
crime. In MCmodels, the discretization is used merely as a basis
for sampling physical quantities while photon packets can
propagate freely in continuous space. This is in contrast to
other methods, such as finite elements, where the discretization
has a direct impact on the accuracy of the solution. Taking also
into account the stochastic nature of MC models, it can be con-
cluded that using identical discretizations does not constitute
an inverse crime.

During an inversion, 1 × 107 photon packets were used for the
calculation of the radiance and fluence; 5 × 106 photons were
used for the calculation of the corresponding adjoint quantities.
The typical running time for one inversion iteration, including the
adjoint model with NL ¼ 4, was 84 s on a high-end consumer
GPU (NVIDIA GeForce Titan X Pascal). This was reduced
to 17 s when the radiance term in Eq. (13) was neglected, i.e.,

Fig. 1 A 3-D view of the in silico phantom and reference pm
0 . (a) Segmented phantom with SV IDs; SV1:

homogeneous backgroundmaterial, SV2 to SV4 and SV7 to SV9: tubes representing blood vessels, SV5
and SV6 represent an ellipsoidal tumor consisting of an inner and outer SV. (b) Initial pressure distribution
pm
0 ð~r Þ calculated using physiological hemoglobin concentrations and blood sO2 at an excitation wave-

length of λ ¼ 798 nm. The x − y Gaussian profile of the excitation beam is shown below.

Fig. 2 Spectra of HHb, HbO2, andMb used for forward simulation and
inversion. The excitation wavelengths are indicated by gray vertical
lines. The absorption spectra are taken from Ref. 46.
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NL ¼ 0 and no adjoint MC runs. Since k ¼ 3 independent
chromophore concentrations were associated with each voxel,
the model contained a total of 12 million variables.

2.7 Gradient-Based Optimization

The gradient-based optimization was initialized assuming
a homogeneous cHHb ¼ cHbO ¼ 0.023 mM, i.e., sO2 ¼ 50%,
and cMb ¼ 0.0 mM. Owing to the stochastic nature of MC mod-
els, the gradients [Eq. (13)] were subjected to noise. To compen-
sate for this, the Adam optimization algorithm33 was employed.
It was developed for the first-order optimization of noisy objec-
tive functions in high-dimensional parameter spaces and can be
seen as an extension of the momentum algorithm.47,48 The Adam
algorithm calculated an exponential moving average of the gra-
dient (first moment) and the squared gradient (second moment)
using the decay rates β1;Adam and β2;Adam with an additional bias-
correction step. The final update was calculated by multiplying
the step-size parameter γAdam with the first-order moment di-
vided by the square root of the second-order moment. The
detailed description can be found in Ref. 33. This algorithm
was found to dramatically increase the convergence speed,
compared to standard gradient descent. Its efficiency depended
on the values of a set of parameters, including the step-size
γAdam, the decay rates β1;Adam and β2;Adam, and an additional
εAdam, which avoided division by zero. The decay rates and
ε were set to recommended default values (β1;Adam ¼ 0.9,
β2;Adam ¼ 0.999, and εAdam ¼ 10−8), and the step size was
assigned different values depending on the chromophore
according to Eqs. (16) and (17).

To ensure fast convergence for all chromophores, the step
size for Mb is set to be significantly smaller than that of
HHb∕HbO2 since Mb concentrations are in the range of μM
while those ofHHb∕HbO2 are in the range of mM. The chromo-
phore-dependent step size is calculated as follows:

EQ-TARGET;temp:intralink-;e016;63;368γchrom ¼ γref

P
λαchrom;λ · cmax;refP

λ
αref;λ · cmax;chrom

; (16)

where γref is the step size of a reference chromophore, the value
of which was set ad hoc to γref ¼ γHbO2

¼ 100; αchrom∕ref;λ is the
specific absorption coefficient of the respective chromophore
at wavelength λ; and cmax;ref∕chrom is the anticipated maximum
concentration of the respective chromophore, which is set
to physiological reasonable values (cmax;HbO ¼ cmax;HHb ¼
2.3 mM, cmax;Mb ¼ 30 μM).

The gradient is also expressed as a function of fluence in
Eq. (13), either directly or via H and Δp. This would result
in slow convergence in regions of low fluence. To compensate
for this, a spatially dependent step size is used, which increases
the step size by normalizing it by the mean fluence over all
wavelengths:

EQ-TARGET;temp:intralink-;e017;63;174γð~rÞchrom;scaled ¼
γchrom

Φ̃normð~rÞ þ εΦ
. (17)

Note that Φ̃normð~rÞ is the normalized mean fluence:

EQ-TARGET;temp:intralink-;e018;63;125Φ̃normð~rÞ ¼
X
λ

Φð~r; λÞ∕
X
λ

Φð~rmax; λÞ; (18)

where ~rmax ¼ arg max~r
P

λΦð~r; λÞ represents the location
where the total fluence is at a maximum. The parameter εΦ

avoids division by zero and determines the maximum change
in the step size in regions of low fluence. In this study,
εΦ ¼ 10−4 leads to a sufficient speed-up in convergence for
the deepest tubes. The optimization of the step size with respect
to the different chromophores and the local fluence is often
referred to as preconditioning.

A single iteration of the gradient-based update consisted of
the execution of the MC model and its adjoint counterpart for all
three wavelengths. The inversion was run for 1500 iterations to
investigate the convergence. After each iteration, the updated
concentrations for HHb, HbO2, and Mb were limited to a rea-
sonable range of values (also known as projected gradient
descent) to avoid spurious overshooting or undershooting that
could lead to physiologically unrealistic concentrations. To
compensate for the effects of noise in low-absorbing regions
(i.e., negative p0 in reference images), negative chromophore
concentrations, and hence negative μa values, were allowed
during the gradient descent. To ensure stability, the range of
negative concentration values was limited to a tenth of the maxi-
mum positive concentrations (−0.35 to 3.5 mM for cHHb and
cHbO2

, −0.02 to 0.2 mM for cMb). The 3-D blood sO2 maps
were calculated from the recovered cHbO2

and cHHb images.
The scattering distribution was assumed to be known a priori.

To verify that the inversion scheme is valid over a range
of physiologically plausible parameter values, multiwavelength
reference images were calculated and inverted for different
sO2 values in the inner tumor region and the background.
Two scenarios were chosen, each comprising five different com-
bination of sO2 values. First, as the tumor core (being completely
enclosed by the rim) may be assumed to be most strongly affected
by spectral coloring, its sO2 value was varied from 10% to 90% in
20% increments (SV 6), whereas all other parameters remained
fixed. Second, the sO2 value of the background (SV ID 1) was
varied from 10% to 90% in 20% increments.

3 Results
The accuracy of the recovered chromophore concentration and
sO2 maps are reported in Secs. 3.1 and 3.2. In Sec. 3.3, the
results obtained using multiple inversions of image data sets,
in which the chromophore concentrations and their ratios are
varied, are reported.

3.1 Absolute Concentrations

Examples of 3-D volume-rendered images of the absolute
concentrations of HbO2, HHb, and Mb recovered after 1500 iter-
ations are shown in Figs. 3(a)–3(c). The color scales are thresh-
olded to render the background with its comparatively low
chromophore concentrations transparent. To reduce the effect
of the added Gaussian noise on the rendered images (particularly
in regions of low fluence), a 3-D median filter is applied (non-
iterative, edge- and face-connected). The error functional as a
function of the number of iterations is shown in Fig. 3(d). The
value of the error functional cannot reach zero due to the inherent
MC noise of the forward model used during the inversion. The
dashed orange line indicates the minimum value of the error func-
tional that is reached with 1 × 107 photons, and the green dotted
line indicates the total noise level consisting of MC noise and
Gaussian noise added to the reference data. The MC noise is
obtained from forward calculations with prior knowledge of
the correct chromophore distributions.

In Fig. 4, cross-sectional xz-images of the true and recovered
concentration of the three chromophores and the absolute error
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Fig. 3 Absolute chromophore concentration maps recovered using the inversion scheme and its
convergence. (a)–(c) The 3-D volume-rendered images of the concentrations of HbO2, (b) HHb, and
(c) Mb. (d) Values of the error functional (solid blue line), the baseline of the MC noise (dashed orange
line), and added Gaussian noise (dotted green line).

Fig. 4 The 2-D cross-sectional xz-images of the true and recovered chromophore concentrations,
together with the absolute error at y ¼ 10 mm. Left column: true chromophore concentrations.
Center column: recovered concentrations. Left and center column share the same color bar. Right
column: absolute concentration error. Voxels where the error exceeds the limits of the color scale are
rendered in green and yellow. In (a), the reduced background SV 1* is illustrated as a white dashed
rectangle. Because background voxels far away from the source exhibit large errors due to low
SNR, this reduced SV is used for calculating average concentrations.
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at y ¼ 10 mm (center plane) are shown. Excellent agreement is
found in regions of high fluence [e.g., corresponding to white,
light blue, and light red pixels in Figs. 4(c), 4(f), and 4(i)].
By contrast, significant quantification errors [corresponding
to yellow and green pixels in Figs. 4(c), 4(f), and 4(i)] are
observed in regions of low fluence. The recovered cMb appears
to exhibit larger quantification errors in the background com-
pared to cHbO2

and cHHb.
Table 1 contains the true and recovered concentrations aver-

aged over all voxels of each SV defined in Sec. 2.5. The brackets
indicate the standard deviation (concise notation). The recov-
ered cHHb and cHbO2

in SV 2 to 9 are in excellent agreement
with the true values. While the recovered cMb are generally
in good agreement with the true values, SV 2 to 4 and SV 7
to 9 exhibit negative and small concentrations with large stan-
dard deviations. The background (SV 1) also exhibits large
errors and standard deviations due to the low signal-to-noise
ratio (SNR). In the background region closer to the light source
[140 × 140 × 70 central voxels inside the 200 × 200 × 100
image domain, illustrated in Fig. 4(a)] where the SNR is greater,
the recovered concentrations are in good agreement with the true
values (SV 1* in Table 1).

As described in Sec. 2.4, the inversion is implemented using
an approximation of the radiance based on spherical harmonics
of varying degree NL, including the omission of the adjoint
term. The inversions are found to converge to the same final
values while propagating along different routes. Convergence
is reached irrespective of the radiance approximation (see
Fig. 5).

3.2 Blood Oxygen Saturation

Figure 6 shows the cross-sectional xz-images (y ¼ 10 mm) of
the known and recovered blood sO2 together with the absolute
error. The accuracy is clearly affected by noise as shown in the
difference image in Fig. 6(c). While most voxels in SV 2 to 9

exhibit an error within �5% sO2, it is noticeably larger for
objects at greater depth. Concentrations in the background
SV 1 are also affected by noise, particularly in regions further
away from the source. However, the accuracy improves near the
source where SNR is increased. The average values of blood sO2

for each SV are also calculated and are summarized in Table 1.
Blood sO2 in SV 2 to 9, i.e., corresponding to blood-filled tubes
and the tumor SVs, are found to lie within 0.3% of the true val-
ues (i.e., while sO2 errors of individual voxels can be quite large
due to noise, averaging over lots of voxels greatly improves
accuracy). The average blood sO2 for SV 1 (i.e., the entire back-
ground SV) is found to show significant errors (18.3% sO2) and
is attributed mainly to the adverse effects of noise in low fluence
regions. By contrast, the inversion results are accurate for the
reduced background SV 1* due to higher SNR.

3.3 Validation over a Range of Blood Oxygen
Saturation

The inversion scheme is validated on image data sets where sO2

is varied over a range of physiologically plausible parameter val-
ues (Sec. 2.7). The inversions are computed without including
the gradient term of the radiance and NL ¼ 0 in order to min-
imize the computation time. To obtain the final sO2 value for
each image data set, the inversion is run for 1500 iterations
after which the average sO2 is obtained from the SVs.
Figure 7(a) shows the true and recovered sO2 values for all
SVs and all image data sets together with the line of unity
(dashed line) and a �5% error interval (dotted lines). All recov-
ered sO2 values are in good agreement with the known values
and exhibit an average error below 0.3% sO2. Figure 7(b) shows
the difference between true and recovered sO2 for all SVs and
image data sets sorted by SV. Only the results corresponding to
the reduced background SV 1* are shown as this region exhibits
sufficient SNR.

Table 1 True and recovered (inversion) absolute chromophore concentrations and blood sO2 in the SVs of the phantom. The concentrations
represent the average value over all voxels within each SV; the values in brackets indicate the standard deviations (concise notation).
SV 1—background, SV 1*—background close to the source, SV 5 and SV 6—outer and inner tumor SVs, respectively, SV 2 to 4 and SV 7
to 9—blood-filled tubes.

HHb (mM) HbO2 (mM) Mb (μM) sO2 (%)

SV True Inversion True Inversion True Inversion True Inversion

1 0.0138 0.0087(1169) 0.0207 0.0320(212) 0 0.2(58) 60 78.3

1* 0.0138 0.0138(219) 0.0207 0.0205(384) 0 −0.002ð922Þ 60 59.8

2 0.506 0.503(70) 1.79 1.78(11) 0 −0.08ð266Þ 78 77.9

3 0.115 0.117(63) 2.18 2.16(11) 0 −0.04ð244Þ 95 94.9

4 0.046 0.047(31) 2.25 2.25(6) 0 −0.05ð106Þ 98 97.9

5 0.092 0.092(18) 0.368 0.367(31) 10 9.76(99) 80 79.9

6 0.276 0.275(18) 0.184 0.183(29) 10 9.51(100) 40 39.8

7 0.575 0.560(128) 1.73 1.71(20) 0 −0.35ð510Þ 75 75.3

8 0.230 0.229(90) 2.07 2.04(14) 0 −0.41ð374Þ 90 89.9

9 0.460 0.450(125) 1.84 1.82(20) 0 −0.37ð509Þ 80 80.0
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4 Discussion
The 3-D maps of absolute concentrations of HbO2, HHb and
Mb, and the resulting blood sO2 recovered using a gradient-
based MC inversion scheme showed excellent agreement
with the true values. To achieve the best possible match of

noise-affected PA images and the model, the inversion scheme
was implemented without a non-negativity constraint for the
chromophore concentrations. Even though negative concentra-
tions were physiologically implausible, it was found that
incorporating a non-negativity constraint greatly affected the

Fig. 5 Convergence of the true and recovered concentrations for inversions incorporating the gradient
term of the adjoint radiance for NL ¼ 4 (dotted line, ⋯), NL ¼ 0 (dashed-dotted line, − · −), and without
the adjoint term (dashed line, −−). The chromophores are shown in blue (Mb), red (HbO2), and black
(HHb). Horizontal lines in light color depict perfect convergence, i.e., Δc ¼ 0.

Fig. 6 The 2-D cross-sectional yz-images of the true (a) and recovered sO2 (b), together with the abso-
lute error (c) at the center of the phantom (y ¼ 10 mm). The images on the left and in the center share
the same color bar. In the right color bar, voxels exceeding (dropping below) an absolute difference
between true and recovered sO2 of 15% are shown in green (yellow).

Journal of Biomedical Optics 066001-8 June 2019 • Vol. 24(6)

Buchmann et al.: Three-dimensional quantitative photoacoustic tomography using an adjoint. . .



recovered average concentrations and blood sO2 values.
However, negative concentrations can lead to negative absorp-
tion coefficients. In the MC model, it led to the photon packets
gaining weight as they traversed a voxel with negative absorp-
tion. If too many voxels exhibited negative μa, unstable inver-
sions can be observed as the photon weight diverges. While this
was occasionally observed in this study, it was found that a
reduction of the step size and an increase in the number of iter-
ations remedied this problem. The inversion scheme described
in this paper included an expression of the radiance and its
adjoint in a basis of spherical harmonics. The influence of
the adjoint formalism and the spherical harmonics approxima-
tion on the accuracy and convergence of the inversion was
evaluated under the assumption that the scattering coefficient
was known a priori. It was found that neither accuracy nor con-
vergence speed were affected by the radiance term and its
adjoint, i.e., the last term in Eq. (13). This was also observed
when the radiance term was omitted (Fig. 5) and was confirmed
by the relative magnitudes of the individual gradient terms. The
radiance term (irrespective of the spherical harmonic approxi-
mations) was always significantly smaller than the remaining
terms of Eq. (13). Omitting the computation of the adjoint
radiance resulted in a major increase in computational speed.
However, from the limited investigation presented here, it can
only be concluded that the adjoint term may be neglected if
the scattering coefficient was known. If the recovery of the scat-
tering coefficient was of interest, a radiance approximation to
a minimum of NL ¼ 1 deg may be necessary.31

The gradient-based inversion was found to benefit greatly
from optimization algorithms in which parameters, such as
the step sizes and the exponential decay rates of the Adam algo-
rithm, were predefined to enable a fast and accurate conver-
gence. A potential drawback of such methods was the need to
test several sets of these parameters prior to an inversion to
assess whether they have a positive impact on the convergence
speed. Within the scope of this study, only minor and ad hoc
parameter tuning was conducted. A more thorough investiga-
tion, including the development of automated parameter selec-
tion algorithms, may yield significantly faster convergence.

The chromophore-dependent step size and the fluence-depen-
dent spatial step size scaling [Eqs. (16) and (17)] proved to be vital

for achieving convergence. Without chromophore-dependent step
sizes, Mb concentrations diverged to the upper and lower fit limits.
Similarly, the fluence-dependent spatial step size scaling was cru-
cial for achieving fast convergence in the regions of low fluence.

The selection of the excitation wavelengths could also be
optimized further to improve inversion accuracy and conver-
gence speed.49 However, such a study would exceed the scope
of this paper. Despite potentially suboptimal excitation wave-
lengths, the inversion is shown to recover blood sO2 over a
wide range [Fig. 7(a)] with high accuracy (<1% error in sO2)
across the domain.

Gradient-based methods do not guarantee convergence to
a global minimum, especially when the inversion is adversely
affected by a noisy gradient. While the Adam optimization
algorithm (compared to, for example, standard or momentum
gradient descent) has been shown to greatly reduce the likeli-
hood of finishing the inversion in a local minimum or on a sad-
dle point, such a result cannot be ruled out entirely. It should
also be noted that the application of this method to measured
PA images does not require their segmentation into subregions.
While this makes the method generally valid, some form of
image segmentation may still be advantageous as it would
reduce the number of variables and the risk of convergence
to a local minimum and increase convergence speed. Moreover,
explicit regularization of the objective function could further
improve the accuracy and speed of the convergence.

While the general methodology of a gradient-based inversion
using an adjoint formulation of an MC model has been demon-
strated in silico, the application of this approach to experimental
3-D PA images, especially those acquired in vivo, requires fur-
ther investigation. One of the perhaps most critical points is
the recovery of the scattering coefficient as it is likely to have
an impact on the importance of the radiance approximation
using spherical harmonics. Other issues, such as the choice
of inversion parameters and the selection of optimal excitation
wavelengths, are also important in the translation of QPAT
methods toward applications in the medical and life sciences.

5 Conclusions
An inversion scheme for recovering absolute chromophore
concentrations and their ratios, such as blood sO2 from 3-D

0

(a) (b)

Fig. 7 Validation of the inversion scheme over a range of blood sO2. (a) Average recovered sO2 as a
function of the true sO2 of all SVs and image data sets together with the line of unity (dashed line) and a
�5% error interval (dotted lines). In the five image data sets, the sO2 in the inner tumor material varies
from 10% to 90% in 20% increments. In another five image data sets, the background sO2 ranges from
10% to 90% (20% increments). (b) Box-and-whisker-plot of the absolute difference between true and
recovered sO2 for each SV.
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multiwavelength PA images was developed and validated
in silico. The scheme was based on an adjoint formulation of
an MC light-transport model and allowed an approximation of
the radiance using spherical harmonics. It was found that the
adjoint radiance was not required to obtain accurate inversion
results, provided the scattering coefficient was constant. The
speed of convergence was increased by incorporating the Adam
optimization algorithm, chromophore-dependent step sizes, and
fluence-dependent step-size scaling. This work represented an
important step in the development of robust and generally appli-
cable methods for quantitative functional and molecular PA
imaging.

6 Appendix A: Definition of the Adjoint Model
The idea of the adjoint formalism is to define nonphysical
quantities, an adjoint source q�ð~r; λÞ, adjoint radiance ϕ�ð~r; ~s; λÞ,
and an adjoint fluence Φ�ð~r; λÞ ¼ ∫ S2ϕ

�ð~r; ~s; λÞd~s that help in
replacing the integral term containing the unknown ∂Φ

∂ci
in the

definition of the gradient. In our case the gradient equation is
EQ-TARGET;temp:intralink-;e019;63;537

∂ελl
∂ci

¼ −½pm
0 ð~riÞ − p0ð~riÞ�Vvox½βkHð~riÞ þ Γð~riÞαkΦð~riÞ�

þ
Z
Ω
ðpm

0 − p0ÞΓð~rÞμað~rÞ
∂Φ
∂ci

dΩ: (19)

The adjoint approach has been used in the context of PAT
earlier, see e.g., Refs. 17–19, 26, and 27.

As a first step, the adjoint source term is defined as

EQ-TARGET;temp:intralink-;e020;63;433q�ð~r; λÞ ¼ ½pm
0 ð~r; λÞ − p0ð~r; λÞ�Γð~rÞμað~r; λÞ: (20)

Since the approach is targeted for multispectral QPAT, each
wavelength requires its own definition of an adjoint source
based on the difference between modeled p0ð~r; λÞ and measured
data pm

0 ð~r; λÞ. We only denote one wavelength here and omit
the dependence on λ for the sake of brevity.

The adjoint source is usually defined as the “prefactor” of the
unknown term that is to be replaced and contains the error
between modeled and measured data. By defining the behavior
of the adjoint radiance ϕ� and adjoint fluence Φ�, a relationship
between these and the desired ∂Φ

∂ci
can be established, which is

outlined in the following derivation. One important aspect of
the definition of the adjoint quantity is to leave the equations
underlying the development similar to the ones of their physical
counterpart, which is in this context the time-independent RTE.

The RTE is given as
EQ-TARGET;temp:intralink-;e021;63;232

½~s · ∇þ μað~rÞ þ μsð~rÞ�ϕð~r; ~sÞ − μs

Z
S2
Θð~s; ~s 0Þϕð~r; ~s 0Þd~s 0

¼ qð~r; ~sÞ: (21)

Similarly, we define the adjoint RTE (ARTE) as
EQ-TARGET;temp:intralink-;e022;63;161½−~s · ∇þ μað~rÞ þ μsð~rÞ�ϕ�ð~r; ~sÞ

− μs

Z
S2
Θð~s; ~s 0Þϕ�ð~r; ~s 0Þd~s 0 ¼ q�ð~r; ~sÞ: (22)

One advantage of defining the adjoint radiance in that way is
that the propagation dynamics are identical to that of the normal
radiance defined by the RTE since the left-hand side of both the

RTE and the ARTE are practically identical, the only difference
being the negative sign in the ARTE indicating a change of
direction in light propagation. One way to interpret the negative
sign is to follow the propagation of photons in the opposite
direction, which does not affect the photon’s movement and
the final results in terms of energy deposit. Thus, the mecha-
nisms for absorption and scattering remain the same as in the
RTE. Because the light transport is dominated by scattering
and absorption and not whether photons move in the forward
or backward direction, light propagation can be seen as recip-
rocal and hence the numerical framework implementing the
ARTE is unaffected by the additional negative sign. Thus,
the same simulation code as for the RTE can be used for the
ARTE. Only the difference in the source distributions needs
to be taken into account, with the adjoint source being 3-D,
whereas normal source distributions are usually 2-D.

It is important to note that the adjoint fluence and adjoint
radiance have different physical units as their physical counter-
parts. The adjoint radiance’s unit is J∕ðm3 srÞ and the adjoint
fluence’s unit is J∕ðm3Þ.

7 Appendix B: Adjoint-Assisted Derivation of
the Gradient

Using the above definition of the adjoint source in Eq. (20),
the substitution of the unknown term ∂Φ

∂ci
EQ-TARGET;temp:intralink-;e023;326;472 Z

Ω
ðpm

0 − p0ÞΓð~rÞμað~rÞ
∂Φ
∂ci

dΩ

¼ −αk
�Z

S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

Vvox; (23)

can be derived.
The derivation follows the ideas presented in previous works,

in particular Ref. 27. In Ref. 27, ∂RTE
∂ci

is combined with the
ARTE

EQ-TARGET;temp:intralink-;e024;326;351ϕ� ·
∂RTE
∂ci

−
∂ϕ
∂ci

· ARTE: (24)

The term ∂RTE
∂ci

is
EQ-TARGET;temp:intralink-;e025;326;297

½~s · ∇þ μað~rÞ þ μsð~rÞ�
∂ϕð~r; ~sÞ
∂ci

þ ∂μa
∂ci

ϕð~r; ~sÞ

− μs

Z
S2
Θð~s; ~s 0Þ ∂ϕð~r; ~s

0Þ
∂ci

d~s 0 ¼ 0; (25)

as ∂q
∂ci

¼ 0 since the external light source does not depend on
chromophore concentrations. The basic idea underlying the
following steps is to rearrange all the terms in Eq. (24) so
that all terms on the left-hand side can be set to zero after inte-
grating over space and angles. First, we insert ∂μa

∂ci
¼ αδð~r −~riÞ

and rearrange Eq. (25)
EQ-TARGET;temp:intralink-;e026;326;150

ð~s · ∇þ μað~rÞ þ μsð~rÞÞ
∂ϕð~r; ~sÞ
∂ci

− μs

Z
S2
Θð~s; ~s 0Þ ∂ϕð~r; ~s

0Þ
∂ci

d~s 0

¼ −αð~rÞϕð~r; ~sÞδð~r− ~riÞ: (26)

The combination of the ARTE and the RTE from Eq. (24) is
(for brevity we omit the dependency on ~r and ~s for the moment)
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EQ-TARGET;temp:intralink-;e027;63;752

ϕ�ð~s · ∇þ μa þ μsÞ
∂ϕ
∂ci

− ϕ�μs

Z
S2
Θð~s; ~s 0Þ ∂ϕ

∂ci
d~s 0

−
∂ϕ
∂ci

ð−~s · ∇þ μa þ μsÞϕ� þ ∂ϕ
∂ci

μs

Z
S2
Θð~s; ~s 0Þϕ�d~s 0

¼ −αϕ�ϕδð~r − ~riÞ −
∂ϕ
∂ci

q�: (27)

The left-hand side can be simplified and can be given as

EQ-TARGET;temp:intralink-;e028;63;652

ϕ�ð~s · ∇Þ ∂ϕ
∂ci

þ ∂ϕ
∂ci

ð~s · ∇Þϕ� − ϕ�μs

Z
S2
Θð~s; ~s 0Þ ∂ϕ

∂ci
d~s 0

þ ∂ϕ
∂ci

μs

Z
S2
Θð~s; ~s 0Þϕ�d~s 0

¼ −αϕ�ϕδð~r − ~riÞ −
∂ϕ
∂ci

q�: (28)

The next steps of the derivation are from now on identical to
Eqs. (4.11 ff) in Ref. 27. The left-hand side of Eq. (28) equates
to zero, which can be seen after integrating first over all angles
s ∈ Sn−1 and over the volume Ω with surface ∂Ω:

EQ-TARGET;temp:intralink-;e029;63;509 Z
Ω

Z
S2
ϕ�ð~s · ∇Þ ∂ϕ

∂ci
d~sdΩþ

Z
Ω

Z
S2

∂ϕ
∂ci

ð~s · ∇Þϕ�d~s dΩ

−
Z
Ω
μs

Z
S2
ϕ�ð~sÞ

Z
S2
Θð~s; ~s 0Þ ∂ϕð~s

0Þ
∂ci

d~s 0 d~s dΩ

þ
Z
Ω
μs

Z
S2

∂ϕð~sÞ
∂ci

Z
S2
Θð~s; ~s 0Þϕ�ð~s 0Þd~s 0 d~s dΩ

¼ −
Z
Ω
αδð~r − ~riÞ

Z
S2
ϕ�ϕd~s dΩ −

Z
Ω
q�

Z
S2

∂ϕ
∂ci

d~s dΩ:

(29)

To see that the left-hand side equates to zero the volume
integral with the terms involving ∇ can be transformed into a
surface integral using this form of the divergence theorem:

EQ-TARGET;temp:intralink-;e030;63;331

Z
Ω
ab · ∇cdΩþ

Z
Ω
cb · ∇adΩ ¼

Z
∂Ω

b · n̂acdΩ; (30)

along with the following substitutions:

EQ-TARGET;temp:intralink-;e031;63;277a ¼ ϕ�ð~sÞ; b ¼ ~s and c ¼ ∂ϕð~sÞ
∂ci

: (31)

Hence, using the divergence theorem, the first two terms in
Eq. (28) are replaced by a single term

EQ-TARGET;temp:intralink-;sec7;63;209 Z
Ω

Z
S2
ϕ�ð~s · ∇Þ ∂ϕ

∂ci
d~s dΩþ

Z
Ω

Z
S2

∂ϕ
∂ci

ð~s · ∇Þϕ�d~s dΩ

¼
Z
∂Ω

Z
S2
ð~s · ~̂nÞϕ�ð~sÞ ∂ϕð~sÞ

∂ci
d~s dΩ:

By definition, both ϕ� → 0 and ∂Φ∕∂ci → 0 on the boundary
of the volume ∂Ω. Thus, the integrand on the right-hand side and
hence the integral equate to zero.

This reduces Eq. (28) to
EQ-TARGET;temp:intralink-;e032;326;741

−
Z
Ω
μs

Z
S2
ϕ�ð~sÞ

Z
S2
Θð~s; ~s 0Þ ∂ϕð~s

0Þ
∂ci

d~s 0 d~s dΩ

þ
Z
Ω
μs

Z
S2

∂ϕð~sÞ
∂ci

Z
S2
Θð~s; ~s 0Þϕ�ð~s 0Þd~s 0 d~s dΩ

¼ −
Z
Ω
αδð~r − ~riÞ

Z
S2
ϕ�ϕd~s dΩ −

Z
Ω
q�

Z
S2

∂ϕ
∂ci

d~s dΩ:

(32)

Because we can assume that all functions are integrable, the
terms on the left-hand side of Eq. (32) can be rearranged after
changing the order of integration, yielding
EQ-TARGET;temp:intralink-;sec7;326;591 Z

Ω
μs

Z
S2

Z
S2
Θð~s; ~s 0Þϕ�ð~sÞ ∂ϕð~s

0Þ
∂ci

d~s 0 d~s dΩ

−
Z
Ω
μs

Z
S2

Z
S2
Θð~s; ~s 0Þϕ�ð~s 0Þ ∂ϕð~sÞ

∂ci
d~s 0 d~s dΩ:

Hence, the left-hand side of Eq. (32) equates to zero, which
leaves us with

EQ-TARGET;temp:intralink-;e033;326;495

Z
Ω
q�

Z
S2

∂ϕ
∂ci

d~s dΩ ¼ −
Z
Ω
αδð~r − ~riÞ

Z
S2
ϕ�ϕd~s dΩ: (33)

The fluence Φ is by definition the integral of the time-
integrated radiance ϕð~sÞ over all directions ~s, that is,

EQ-TARGET;temp:intralink-;e034;326;430Φð~rÞ ¼
Z
S2
ϕð~r; ~sÞd~s: (34)

Applying the derivative with respect to ci yields

EQ-TARGET;temp:intralink-;e035;326;375

∂Φð~rÞ
∂ci

¼
Z
S2

∂ϕð~r; ~sÞ
∂ci

d~s; (35)

which lets us write Eq. (33) as

EQ-TARGET;temp:intralink-;e036;326;320

Z
Ω
q�

∂Φ
∂ci

dΩ ¼ −αð~riÞ
�Z

S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

Vvox: (36)

Because we have defined the adjoint source term as
q� ¼ ðpm

0 − p0ÞΓμa the left-hand side of Eq. (36) is exactly
the last term in Eq. (19)
EQ-TARGET;temp:intralink-;e037;326;240Z
Ω
ðpm

0 −p0ÞΓμa
∂Φ
∂ci

dΩ¼−αð~riÞ
�Z

S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

Vvox:

(37)

Inserting this result into the error-gradient Eq. (19) provides
us with the subgradient term obtained using one wavelength

EQ-TARGET;temp:intralink-;e038;326;160

∂ελl
∂ci

¼ −½pm
0 ð~riÞ − p0ð~riÞ�αðλlÞΦð~riÞVvox

þ αð~riÞ
�Z

S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

Vvox: (38)

In summary, the adjoint formalism enables the update of the
concentration distribution using only terms obtained from
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running the forward model implemented by the RMC algorithm.
The following section will focus on the question as to how the
term ϕ�ϕ can be computed and approximated.

8 Appendix C: Radiance Approximations
To simulate the radiance, some discretization over angle is
required. One option is to use a set of piecewise constant
basis functions. However, due to the importance of ballistic
and quasi-ballistic light propagation in PAT, a high number
of discretization orders would be required to capture the direc-
tionality of the radiance in regions near the source. This would
result in very large memory demands in finite-element imple-
mentations (see Refs. 29, 50, and 51, for more details on differ-
ent approaches for estimating the radiance, their limitations, and
suggested solutions. For a summary thereof, see Ref. 52).
Inspired by the Pn approximation22 and continuing the work
presented by Refs. 19 and 52 we approximate the radiance in
3-D using spherical harmonics as basic functions, as in
Ref. 31. Instead of discretizing the angular domain into seg-
ments, the radiance field ϕ at any position ~r can be expanded
using a series of spherical harmonics53,54

EQ-TARGET;temp:intralink-;e039;63;520ϕð~r; ~sÞ ¼
XNL¼∞

l¼0

Xl

m¼−l
ψ lmð~rÞYlmð~r; ~sÞ; (39)

where ψ lmð~rÞ are the coefficients corresponding to the real
spherical harmonics Ylmð~r;~sÞ, expressed as

EQ-TARGET;temp:intralink-;e040;63;446Ylm ¼

8>>>><
>>>>:

ffiffiffi
2

p ffiffiffiffiffiffiffiffi
2lþ1
4π

q ffiffiffiffiffiffiffiffiffiffiffiffi
ðl−jmjÞ!
ðlþjmjÞ!

q
Pjmj
l cosðθÞ sinðjmjϕÞ if m < 0;ffiffiffiffiffiffiffiffi

2lþ1
4π

q
Pm
l ½cosðθÞ� if m¼ 0;ffiffiffi

2
p ffiffiffiffiffiffiffiffi

2lþ1
4π

q ffiffiffiffiffiffiffiffiffiffiffi
ðl−mÞ!
ðlþmÞ!

q
Pm
l cosðθÞ cosðmϕÞ if m> 0;

(40)

where l is the degree of the spherical harmonic, m is the order,
and Pm

l is the associated Legendre polynomials. The coefficient
ψ lmð~rÞ scales the total weight deposited by all simulated
photons at position (voxel) ~r for the associated spherical
harmonic.

The advantage of expressing ϕ�ϕ in a spherical harmonics
expansion lies in the fact that the Ylm forms an orthonormal
basis, i.e.,

EQ-TARGET;temp:intralink-;e041;63;262

Z
S2
Ylm · Yl 0m 0d~s ¼ δll 0δmm 0 : (41)

Using this orthonormality condition greatly simplifies the
term ½∫ S2ϕ

�ð~sÞϕð~sÞd~s�~r¼~ri
from Eq. (38), when the radiance

is expressed in spherical harmonics

EQ-TARGET;temp:intralink-;e042;63;183�Z
S2
ϕ�ð~sÞϕð~sÞd~s

�
~r¼~ri

¼
Z
S2

"XNL

l¼0

Xl

m¼−l
ψ�
lmð~riÞY�

lmð~ri;~sÞ
#

×

"XNL

l 0¼0

Xl 0
m 0¼−l 0

ψ l 0m 0 ð~riÞYl 0m 0 ð~ri;~sÞ
#
d~s;

(42)

EQ-TARGET;temp:intralink-;e043;326;752 ¼
�XNL

l 0¼0

Xl 0
m 0¼−l 0

ψ l 0m 0 ð~riÞ
�
2
66664
Z
S2
Y�
lmð~ri; ~sÞYl 0m 0 ð~ri; ~sÞd~s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δll 0δmm 0

3
77775

(43)

EQ-TARGET;temp:intralink-;e044;326;656¼
XNL

l¼0

Xl

m¼−l
ψ lmð~riÞψ�

lmð~riÞ: (44)

Hence, with this approximation the gradient to update the
distribution of chromophore k finally becomes
EQ-TARGET;temp:intralink-;e045;326;604

∂ελl
∂ci

¼ Vvox

�
−½pm

0 ð~riÞ − p0ð~riÞ�½βkHð~riÞ þ Γð~riÞαkΦð~riÞ�

þ αk
XNL

l¼0

Xl

m¼−l
ψ lmð~riÞψ�

lmð~riÞ
�
: (45)

9 Appendix D: Discretization
To solve the given equations numerically, the bases in which
the data and model output are represented must be defined.
Assuming a sampling of continuous fields in a point-wise
basis Ψjð~rÞ ¼ δð~r − ~riÞ, as shown in Ref. 18. Hence, the data
projected onto this basis becomes a vector of coefficients ~pm

0

EQ-TARGET;temp:intralink-;e046;326;445hj ¼ hΨj; pm
0 ð~rÞi ¼ pm

0 ð~rjÞ: (46)

Equally, all other continuous fields are discretized.
Transforming an integral of any integrable function fð~rÞ over
the continuous domain Ω into discretized space introduces a
volume element dΩ ¼ Vvox

EQ-TARGET;temp:intralink-;e047;326;368

Z
Ω
fð~rÞdΩ ¼

XNvox

j

hΨj; fð~rÞiVvox ¼
XNvox

j

fð~rjÞVvox: (47)
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