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Abstract. We propose a nonscanning three-dimensional (3-D) fluorescence imaging technique using the
transport of intensity equation (TIE) and free-space Fresnel propagation. In this imaging technique, a phase
distribution corresponding to defocused fluorescence images with a point-light-source-like shape is retrieved
by a TIE-based phase retrieval algorithm. From the obtained phase distribution, and its corresponding amplitude
distribution, of the defocused fluorescence image, various images at different distances can be reconstructed at
the desired plane after Fresnel propagation of the complex wave function. Through the proposed imaging
approach, the 3-D fluorescence imaging can be performed in multiple planes. The fluorescence intensity images
are captured with the help of an electrically tunable lens; hence, the imaging technique is free from motion
artifacts. We present experimental results corresponding to microbeads and a biological sample to demonstrate
the proposed 3-D fluorescence imaging technique. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JBO.25.3.032004]
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1 Introduction
Fluorescence imaging is an important technique to get the
functional information of a biological sample for cellular and
microbiological investigations, as has been proved by several
studies.1–13 Most of the reported fluorescence imaging tech-
niques are either two-dimensional in nature or involve section-
ing to get three-dimensional (3-D) information, such as laser
scanning confocal microscopy and other related techniques.1–11

These techniques are time-consuming processes to obtain the
3-D information of objects. Further techniques have been devel-
oped by using digital holography in fluorescence microscopy
to record and retrieve the 3-D information of a fluorescent
object.12,13 However, by adopting digital holography or other
interferometric systems for 3-D fluorescence imaging, the im-
aging systems become more complicated due to the involvement
of an additional reference beam. So, it is desirable to further
investigate 3-D fluorescence imaging techniques to develop
simple, compact, and cost-effective solutions.

Noninterferometric imaging techniques, such as those based
on the transport of intensity equation (TIE), have been proposed
for quantitative phase imaging,14–22 which does not require a
reference beam and hence makes the system simple and com-
pact. Teague proposed the TIE from the Helmholtz equation
under the paraxial approximation with the assumption of a
monochromatic and coherent beam.14 Some reported variants
of the TIE method work with partial coherence illumina-
tion.15–20 Hence, the TIE technique has an additional advantage

of robustness against disturbance under the partially coherent
illumination, which extends its application to microscopy.17–22

In these techniques, it is often inevitable or desirable that the
field should be partially coherent. Generally, the TIE method
requires two or three intensity measurements recorded at differ-
ent planes to retrieve the phase distribution. In addition to simple
optical phase microscopy, it has been demonstrated that accurate
and high-quality quantitative phase imaging can be achieved by
imaging techniques based on TIE with partially coherent illumi-
nations to prevent image degradation due to speckle noise.15–20

Focus estimation has also been proposed in TIE phase imaging
using inverse Fresnel propagation.21,22 To apply this concept in
fluorescence imaging could be advantageous in different appli-
cations requiring 3-D fluorescence imaging.

Here, we propose the use of the TIE for the 3-D fluorescence
imaging. With the help of a TIE-based phase retrieval algorithm
and Fresnel backpropagation, images focused at different distan-
ces can be obtained from three defocused fluorescent images
recorded in multiple planes. To the best of our knowledge,
this is the first paper to demonstrate 3-D fluorescence imaging
of biological samples by TIE. Although fluorescence light is
incoherent, the partial spatial coherence of defocused images
obtained by propagation is available when specific conditions,
such as small fluorescence light sources (from nuclei of the
cells) and narrow bandwidth, are assumed. Note that the phase
distribution is measured in the image defocused plane, not in the
object plane where the nuclei of the cells exist. The proposed
imaging system is simple and straightforward and can be used
for different kinds of fluorescent samples. The idea is demon-
strated experimentally by developing a specific 3-D microscopy
optical setup.
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2 Methodology
The optical setup of the proposed 3-D fluorescence imaging sys-
tem is shown in Fig. 1. In this system, a blue LED light source
was used to excite the sample placed on the stage. Three defocus
intensity images were recorded by changing the optical power
of the commercially available electrically tunable lens (ETL),
EL-16-40-TC from Optotune, to solve the TIE for obtaining the
phase distributions at the output plane. The ETL is inserted
at the Fourier plane of the first lens. In this setup, the magnifi-
cation ratio is fixed even when the object is located at different
depth positions. The ETL is basically a variable focal length
lens8,10 that is used to implement nonmovable TIE.17 After solv-
ing TIE by using these images, the phase distribution can be
retrieved.16–22

It is well known that the light emitted by a fluorescence sam-
ple is not coherent. However, in the applications of biological
samples, fluorescence proteins are stained to the cells, and
then the fluorescence distribution of nucleus is assumed as a
quasi-point-like monochromatic source, because its size is about
10 μm. Besides, in our optical system, a band-pass filter with
a central wavelength of 575 nm and width of 10 nm is used
to increase the temporal coherence. Therefore, partial spatial
coherence of the fluorescence light can be considered after
propagation through the optical system even if there is no coded
aperture.13 For the partial coherence field, the generalized def-
inition of TIE for phase has been discussed in Refs. 15 and 16
and it has been demonstrated in several studies to obtain phase
distributions.17–19 In case of partial coherence field, the TIE can
be derived from the Helmholtz equation, which is explained as
follows:

EQ-TARGET;temp:intralink-;e001;63;418∇:½Izðx; yÞ × ∇ϕzðx; yÞ� ¼ −
2π

λ

∂Izðx; yÞ
∂z

; (1)

where λ, Izðx; yÞ, and ϕzðx; yÞ, are the wavelength, intensity
distributions, and phase distributions at depth z, respectively.

The symbol ∇ is the gradient operator in the transverse plane
ðx; yÞ. The TIE for the phase is solved by using Fourier trans-
form (FT).16–22 Here, we consider the intensity distribution,
I0ðx; yÞ, and defocus intensity distributions can be captured,
which are to be located at axial positions z ¼ 0 and z ¼ �Δz,
respectively. The obtained phase can be determined by the
following equation:
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: (2)

In the previous equation, u and v are the spatial frequencies
corresponding to x and y coordinates, respectively. The intensity
derivative used in Eq. (2) is calculated approximately by using
the difference between the two intensity distributions obtained
at depth positions Δz and −Δz, as is shown in the following
equation:

EQ-TARGET;temp:intralink-;e003;326;535

∂I0ðx; yÞ
∂z

¼ IΔzðx; yÞ − I−Δzðx; yÞ
2Δz

: (3)

Hence, the phase distribution can be retrieved by combining
Eqs. (2) and (3). It should be noted that the intensity image
I0ðx; yÞ can also be a defocused version of the input object.
Yet, our method allows to record the light field corresponding
to the selected axial distance with the TIE-based algorithm.
However, in the original TIE method, focus image and in- and
out-of-focus images are always used to get phase information.

Now the complex amplitude, Hðx; yÞ, is obtained by multi-
plying the square root of the intensity image, I0ðx; yÞ, with the
retrieved phase, ϕ0ðx; yÞ, and this complex amplitude is Fresnel
propagated. From the back- or forward-propagated distribution,
intensity images of the fluorescent samples can be estimated at
multiple planes located at different distances.21,22

Fig. 1 The 3-D fluorescence imaging setup. LED, light-emitting diode; L, lens; TL, tube lens; ETL, electri-
cally tunable lens; MO, microscope objective; M, mirror; DM, dichroic mirror; and BPF, bandpass filter.
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3 Experiments and Results
Various experiments were performed to verify the proposed
method for 3-D fluorescence imaging using the optical setup
shown in Fig. 1. Microscope objective of 20× magnification
was used for imaging fluorescent microbeads and a biological
sample. In the first experiment, single plane fluorescence
imaging of microbeads of 10.4 μm diameter is verified and the
focusing capability is demonstrated. A blue LED of 470-nm
wavelength was used as an excitation light source for the
microbeads. The fluorescent microbeads emit light with a wave-
length ranging from 550 to 600 nm. A bandpass filter centered
at 575 nm with a bandwidth of 10 nm was used in front of the
image sensor. The effective pixel number of the image sensor is
700 × 700 pixels with a pixel pitch of 4.54 μm.

Results of single plane fluorescence imaging are shown in
Fig. 2. Three defocus intensity images of fluorescent microbeads
were recorded, as shown in Figs. 2(a)–2(c), by changing the
focal length of the ETL. A focus intensity image of the input
plane was also recorded to compare it with the retrieved focused
fluorescent image obtained with the proposed method. The
defocus distances of the three recorded images from the ideal

focus image are 20, 30, and 40 μm, respectively. From these
images, the phase image corresponding to the intensity image
shown in Fig. 2(b) was retrieved by solving the TIE. The result
is shown in Fig. 2(d). Here, the image shown in Fig. 2(b) is
treated as the intensity distribution I0, as used in Eqs. (2) and
(3), and the images shown in Figs. 2(a) and 2(c) are considered
as IΔz and I−Δz, respectively, for solving the TIE. Figure 2(e)
shows the surface plot of the retrieved phase. The focus image,
shown in Fig. 2(f), was recovered after backpropagation of the
complex function calculated from the amplitude image, shown
in Fig. 2(b), and the corresponding retrieved phase. The original
focus image recorded in the experiment is shown in Fig. 2(g).
Figure 2(h) shows the line plot across the image of the bead on
the recovered and the original focus images. Here, the recon-
struction distance from central defocus image is 24 mm. From
these results, it can be seen that the focus image can be obtained
successfully from the three defocus images, which proves the
capability of our method to provide 3-D fluorescence imaging.

Another experiment was performed to demonstrate the 3-D
fluorescence imaging capability of the proposed method. For
this experiment, two layers of fluorescent beads were prepared

Fig. 2 Experimental results for single plane imaging. (a)–(c) Three defocus intensity images, (d) the
reconstructed phase image, (e) surface plot of phase, (f) recovered focus image, (g) original focus image
recorded in the experiment, and (h) line plot on the recovered and original focus image.
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on glass slides with a separation of more than 80 μm and again,
three defocus images were recorded, as shown in Figs. 3(a)–
3(c). In this case, defocus images were recorded in between with
an interval of 5 μm. The phase image shown in Fig. 3(d) cor-
responds to the phase associated with the intensity image in

Fig. 3(b). This image in Fig. 3(b) is considered as I0; the images
shown in Figs. 3(a) and 3(c), as IΔz and I−Δz, respectively.
Figure 3(e) shows the surface plot of the phase distribution
in Fig. 3(d). Figure 3(e) indicates that the defocused image
to obtain the complex amplitude distribution is located at a

Fig. 3 Experimental results for double plane imaging. (a)–(c) Three defocus intensity images, (d) the
reconstructed phase image using TIE-based phase retrieval, and (e) surface plot of the phase in (d).
Recovered focus images in which (f) one bead is at focus and (g) second bead is at focus. Original focus
images recorded in a conventional imaging experiment, where (h) one of the beads is at focus and (i) the
second bead is at focus. (j), (k) Line plots of the intensity along the position of the beads on the recovered
and the original image for (j) the first focusing distance and (k) the second focusing distance.
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farther position than that of Fig. 2(e). The maximum phase
amount depends on the distance from the observed defocused
plane to the focused plane to be reconstructed. The effect of two
beads located at different distances is clearly noticeable. The
complex light field is determined from the retrieved phase and
its corresponding intensity image. Images focused at different
planes, showing clear intensity images of the beads, were recov-
ered by Fresnel propagation of the complex function. These
recovered focus images are shown in Figs. 3(f) and 3(g). The
corresponding original images, with beads in focus, recorded
experimentally by conventional imaging, are shown in Figs. 3(h)
and 3(i). Reconstruction distance from the central defocus image
for the upper bead is 45 mm to positive side and 36 mm for
other beads to the negative side from the measurement plane.
Figures 3(j) and 3(k) show line plot across the images of beads
of the recovered and original intensity distributions in both
planes. From these results, it can be confirmed that the 3-D fluo-
rescence imaging can be performed by our proposed method.

In the third experiment, the 3-D imaging capability of the
proposed method was verified on a biological sample. GCaMP-
expressing neurons in a cerebral slice of 100 μm thickness
from a CaMK2-CreERT2/Rosa-GCaMP323 mouse treated with
tamoxifen were visualized by anti-GFP immunostaining with
Cy3-tyramine signal amplification system. For this sample, a
green LED of the central wavelength of 575 nm was used as
the light source to excite the fluorescent-labeled neurite and
cells. The fluorescent-labeled neurite and cells emit light with
a wavelength ranging from 620 to 640 nm, thus a bandpass filter
centered at 630 nm was used in front of the image sensor. The
three experimentally recorded defocus images of the biological
sample are shown in Figs. 4(a)–4(c). Fluorescent light from
neurite can be clearly seen. These defocus images were re-
corded with an interval of 2 μm. Here, the sample is shifted
along the depth direction by a translation stage to obtain the
defocused images instead of ETL. The retrieved phase obtained
by TIE algorithm corresponding to the intensity images in

Fig. 4 Experimental results for fluorescence from neurite and cells. (a)–(c) Three defocus intensity
images; (d) reconstructed phase image; (e) surface plot of phase in (d); (f)–(h) recovered intensity images
at distances of 22, 26, and 30 mm, respectively, from measurement plane.
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Figs. 4(a)–4(c) is shown in Fig. 4(d). The surface plot of the
phase is shown in Fig. 4(e). From the complex field retrieved
from the phase in Fig. 4(d) and intensity in Fig. 4(b), recon-
structed images in the image plane at different depths of 22,
26, and 30 mm can be recovered, which are shown in
Figs. 4(f)–4(h), respectively. From these results, it can be
concluded that with our proposed technique, it is possible to
perform 3-D fluorescence imaging of biological sample in
multiple planes from defocused intensity images.

4 Conclusion
In this work, we have presented a scanless 3-D fluorescence im-
aging scheme based on the TIE technique that uses the Fresnel
backpropagation of a complex wave function calculated from
the phase retrieved by TIE and its corresponding intensity
image. In the proposed imaging technique, the phase distribu-
tion corresponding to defocus fluorescence images is retrieved
by a phase retrieval algorithm based on TIE. Images focused at
different planes can be estimated from the complex distribution
after the numerical calculation of inverse Fresnel propagation.
Through the proposed imaging approach, it is straightforward
to perform 3-D fluorescence imaging in multiple planes. Real-
time imaging, for example, for live-cell imaging will be also
possible because intensity fluorescence images can be captured
with the help of fast ETLs and focus images are retrieved by fast
FT-based numerical methods. The feasibility of the proposed
3-D fluorescence imaging method is demonstrated by experi-
mental results obtained from distributions of microbeads and
a biological sample.
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