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Abstract

Significance: Shear wave optical coherence elastography is an emerging technique for character-
izing tissue biomechanics that relies on the generation of elastic waves to obtain the mechanical
contrast. Various techniques, such as contact, acoustic, and pneumatic methods, have been used
to induce elastic waves. However, the lack of higher-frequency components within the elastic
wave restricts their use in thin samples. The methods also require moving parts and/or tubing,
which therefore limits the extent to which they can be miniaturized.

Aim: To overcome these limitations, we propose an all-optical approach using photothermal
excitation. Depending on the absorption coefficient of the sample and the laser pulse energy,
elastic waves are generated either through a thermoelastic or an ablative process. Our study
aimed to experimentally determine the boundary between the thermoelastic and the ablative
regimes for safe all-optical elastography applications.

Approach: Tissue-mimicking graphite-doped phantoms and chicken liver samples were used to
investigate the boundary between thermoelastic and ablative regimes. A pulsed laser at 532 nm
was used to induce elastic waves in the samples. Laser-induced elastic waves were detected
using a line field low coherence holography instrument. The shape of the elastic wave amplitude
was analyzed and used to determine the transition point between thermoelastic and ablative
regimes.

Results: The transition from the thermoelastic to the ablative regime is accompanied by the
nonlinear increase in surface wave amplitude as well as the transformation of the wave shape.
Correlation between the absorption coefficient and the transition point energy was experimen-
tally determined using graphite-doped phantoms and applied to biological samples ex vivo.

Conclusions: Our study described a methodology for determining the boundary region between
thermoelastic and ablative regimes of elastic wave generation. These can be used for the develop-
ment of a safe method for completely noncontact, all-optical microscale assessment of tissue
biomechanics using laser-induced elastic waves.
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1 Introduction

Recent advancements in optical coherence elastography (OCE) technique1–4 have followed the
progress in optical coherence tomography (OCT),5 with increasing performance in both imaging
resolution and speed.6–9 Change in the phase of the complex OCT signal can be used to evaluate
axial tissue displacements in both static and dynamic OCE approaches.2,9–11 Static, also known
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as compression OCE, usually relies on slow tissue deformation using contact loading methods
and measuring quasistatic strain and displacement fields.10,11 Static approaches are capable of
mapping the local two-dimensional and three-dimensional strain distribution with high spatial
resolution, including estimation of the nonlinear elastic properties.10–18 In dynamic elastography,
the tissue is perturbed by impulsive loading or harmonic vibrations, and the elasticity estimation
is based on tissue motion as a function of time, i.e., velocity of the elastic wave or displacement
dynamics.2–4 Dynamic approaches permit direct quantification of the absolute values of the
elastic constants using appropriate models. Thus, dynamic elastography is gaining popularity
and currently used for many medical applications.

In dynamic OCE, however, the mechanical excitation of tissue induced by various tech-
niques, such as direct contact,19 acoustic radiation force,20–22 or pneumatic,23–25 has limitations.
For example, contact-based methods require direct contact and, therefore, cannot be considered
as noninvasive. Pneumatic air-puff excitation does not require direct contact or a coupling
medium but has a relatively low-frequency response and bandwidth, which makes it more sus-
ceptible to boundary conditions.26,27 It also requires moving parts and tubing to deliver the air
pulse, which limits the extent to which it can be miniaturized.

All-optical excitation of elastic waves has many advantages compared to other methods.28–34

Similar to photoacoustics, pulsed laser irradiation is converted into elastic waves by light absorp-
tion and localized heat expansion of the tissues. This transient mechanical perturbation generates
compressional and shear waves that propagate through the sample. A short laser pulse excitation
generates an elastic wave that contains high-frequency components and less susceptible to boun-
dary conditions. Also, by focusing the laser beam on the sample, the excitation spot can be very
small comparing all other excitation methods. The advantages of the laser-based wave generation
for in vivo applications also include the potential for the development of endoscopic-based OCE
technology.

To generate the elastic wave, the laser pulse should be efficiently absorbed and converted into
heat by the tissue. Different techniques have been used to enhance the absorption of pulsed laser
energy by the sample, such as the injection of nanoparticles,35–37 droplets of perfluorocarbon,38

and doping with graphite.34 Naturally, the endogenous mechanism of the elastic wave generation
would be preferred for many biological and clinical applications.

Depending on the pulsed laser fluence and the absorption coefficient of the sample, the
mechanism for generating elastic waves can be classified into two regimes: thermoelastic and
ablative.34 While thermoelastic and ablative mechanisms for compressional wave generation
in metals have been intensively investigated in the past,39–45 there are very few reports on
generation of elastic waves in soft tissues.34,46 The thermally induced disturbance on a sample
by low laser irradiation is mainly a result of the thermal expansion of the sample material.
But, at high laser irradiation, the excitation area experiences an ablation process that causes
a nonlinear dependence between laser energy and the displacement amplitude, as well as
damage of the sample. Therefore, understanding the transition point between thermoelastic
and ablative regimes is required for safe biological application of laser excitation in elastog-
raphy. Here, we investigated the boundary between thermoelastic and ablative regimes in
soft tissue-mimicking phantoms and chicken liver using a 6-ns pulsed laser at 532-nm
wavelength.

2 Materials and Methods

Tissue-mimicking phantoms were made of 1% (w/w) agar23 and prepared at different absorption
coefficients by varying the percentage of graphite powder in the phantom mixture. The absorp-
tion coefficient at the pulsed laser wavelength (532 nm) of each sample was determined by
measuring the light transmission of 10 slices of the phantom with different thicknesses. The
mean value and the standard deviation of the measured absorption coefficient for different graph-
ite concentrations are shown in Fig. 1 along with the linear fit.

Chicken liver from a local supermarket was used as an example of a biological sample with
strong endogenous absorption at 532 nm. To avoid dehydration of the liver tissue, phosphate-
buffered saline was regularly applied.
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In these experiments, a Q-switched, frequency-doubled Nd:YAG laser at 532 nm (Polaris II,
NewWave Research, Inc.) was used to induce elastic waves in the samples. Energy per pulse was
adjusted from 0.29 to 12.27 mJ by changing the flashlamp intensity. The laser beam was focused
on the sample surface with an incidence angle of ∼15 deg. The focused beam diameter on the
sample surface was ∼0.7 mm. Therefore, the fluence of the pulsed laser on the sample surface
was varied from 76 to 3.19 J∕cm2. Figure 2 shows the pulsed laser energy and corresponding
irradiance on the sample surface for different energy level settings of flashlamp (70 to
100 arb. un.).

Laser-induced elastic waves were detected using a line field low coherence holography
(LF-LCH) instrument, fully described in Refs. 47 and 48. Briefly, the system (Fig. 3) uses
an 840� 20 nm superluminescent diode (SLD, Superlum, Ireland) as the light source and a
fast line scan camera (Basler Sprinter, Germany) to track propagating surface waves. LF-
LCH had a temporal resolution of 5 μs and a displacement sensitivity of <1 nm. The cylindrical
lens (CL) in the beam path generated a line beam and was focused on the sample with an offset
distance of ∼5 mm from the excitation beam for the phantom samples and ∼0.5 mm for the liver.
With the lens L1, the interference pattern was focused on CCD, which illuminates 440 pixels.
The surface wave displacements were measured over the length of 1.35 mm with a spatial res-
olution of 9 μm for tissue-mimicking phantom samples. For the chicken liver, the displacements
were measured over the interval of 0.25 mm, and the spatial resolution was increased to 2.6 μm,
which was achieved by changing the lens L3. The pulsed laser was externally triggered and
synchronized with the LF-LCH system.

A 30-kHz swept-source OCT imaging system with the central wavelength of 1310 nm and
−3-dB bandwidth of ∼150 nm was used to measure the thickness of the tissue-mimicking
graphite sample slices for absorption coefficient calculation. The axial resolution of the system
was ∼11 μm. The same system was used for imaging and calculating heterogeneous absorption
of the chicken liver tissue sample.

Fig. 2 Tunable pulse laser energy and fluence on the sample for different energy level settings.

Fig. 1 Absorption coefficient of tissue-mimicking agar phantom sample with different concentra-
tions of graphite.
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3 Results

The complete spatiotemporal maps of elastic waves propagating in a 1% graphite phantom in (a)
thermoelastic and (b) ablative regimes are shown in Fig. 4. The dotted line in Fig. 4 indicates the
time of laser excitation. There is a lag of ∼2.3 ms between the excitation pulse and the appear-
ance of the elastic wave. The lag is proportional to the offset distance between the probe beam
and the laser excitation location. These spatiotemporal maps indicate that the LF-LCH system
can robustly detect the laser-induced elastic waves.

Representative temporal displacement profiles of the elastic wave in 1% graphite phantom as
a function of excitation energy were taken from the full spatiotemporal maps and are shown in
Fig. 5. Here, a change in the temporal profile of the elastic wave is observed with increasing
excitation energy. As a convention for the following discussion, outward displacement from
the surface of the sample is positive (+), while inward displacement is negative (−). At lower

Fig. 4 Spatiotemporal displacement profiles in (a) thermoelastic regime (1.64 mJ) and (b) ablative
regime (6.01 mJ) on the surface of the 1% graphite phantom. The classification of the profiles is
discussed later in the text.

Fig. 3 Schematic setup of LF-LCH system (top view). CL, cylindrical lens; L1 to L3, plano-convex
lens; DAC, digital-to-analog converter; ADC, analog-to-digital converter; and BP, bandpass filter.
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excitation energies, positive and negative displacement features in the elastic wave profile are
both: (1) equal in number (quantity) and (2) equal or nearly equal in amplitude so, therefore,
become “mirror symmetric” across the zero displacement axis. As excitation energy increases,
positive and negative displacement features in the elastic wave profile become both: (1) unequal
in number and (2) unequal in amplitude so, therefore, become “mirror asymmetric” across the
zero displacement axis.

Spatiotemporal profiles of the elastic wave were used to calculate its amplitude and group
velocity.47–51 The measured elastic wave group velocity for all graphite phantoms was
2.18� 0.2 m∕s, which is in agreement with previously published OCE data.23

The dependence of the surface wave amplitude (SWA) on laser energy was quantitatively
investigated by gradually increasing the laser beam energy from 0.29 to 12.27 mJ. SWAs were
averaged over three trials at each energy and on three samples of each graphite concentration.
Laser pulse impact location was changed after each shot by translating the sample to ensure a
fresh surface was hit with each shot. A microscope image demonstrating the impact points of the
pulsed laser on the sample surface (1% graphite doping) is shown in Fig. 6. For higher pulse
energies, there is clear evidence of ablation as indicated by damaged sites on the sample surface.
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Fig. 5 Temporal displacement profiles on the surface of 1% graphite phantom at different laser
energy levels. Displacement profiles are measured at a distance of 5 mm from the laser excitation
location.

Fig. 6 Microscopic image of the pulse laser impact on the sample surface of 1% graphite phantom
(absorption coefficient is 12.21 mm−1). Pulse energy and fluence values for each location are
indicated in Fig. 1.
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As the laser pulse energy is reduced, the diameter of the ablated zone decreases and even-
tually, at low pulse energy, no visual damage spot is observed under the microscope. However,
due to the high displacement sensitivity of the LF-LCH system, elastic wave propagation is
observed even at the lower energy levels despite the lack of a visible impact spot.

The evolution of the surface displacement as a function of laser pulse energy was used to
determine the boundary between the thermoelastic and ablative regimes. Wave amplitude was
calculated as the root mean square of the maximum displacements on the phantom surface
caused by the laser excitation. The root mean square is calculated over the distance of 0.1 mm
from the start of the imaging region (i.e., from 5 to 5.1 mm from the focus of the excitation
beam). Figure 7 shows the wave amplitude versus the laser pulsed energy for different graphite
phantom samples. At 0.1% graphite concentration (absorption coefficient ¼ 1.87 mm−1), there
is no noticeable change in temporal wave symmetry or amplitude at all laser pulse energies.
As the sample absorption coefficient is increased by increasing graphite concentration, there
appears a transition point energy where the slope of the wave amplitude versus pulse energy
increases sharply. It has been suggested that this sharp increase in slope is due to the nonlinear
nature of the ablation process.30 This transition point energy also corresponds closely with the
energy needed to induce visible ablative damage to the sample surface, as verified via micros-
copy in Fig. 6. This energy level, therefore, indicates the boundary between the thermoelastic
and ablative regimes at each sample absorption coefficient. The transition point energy is marked
by solid arrows in Fig. 7 for each sample of the increasing absorption coefficient. Below the
transition point laser energy, the mechanism of laser-induced surface wave generation is thermo-
elastic and above the transition point energy, it is ablative. From the results in Fig. 7, it is evident
that the laser beam energy at the transition point decreases with the increased absorption coef-
ficient of the sample. In other words, the threshold energy for crossing over from the thermo-
elastic regime into ablative decreases with increasingly absorptive samples and tissues.

For the proof-of-concept, the same experiments were performed with real tissue (chicken
liver). Due to the curvature and roughness of the chicken liver sample, a smaller field of view
with finer pixel resolution was selected for precise measurements. Additionally, as the attenu-
ation of the elastic wave in chicken liver is high compared to agar phantoms, offset distance
between the pulsed laser and the line focus was reduced from ∼5 to ∼0.5 mm, while the length
of the measurement interval was decreased from 1.35 to 0.25 mm, which corresponds to the
spatial resolution of 2.6 μm.

The measured surface wave group velocity in the chicken liver is 1.48� 0.16 m∕s, which is
in good agreement with the results of our previous study.52 For validation of experimental results,
the experiment was repeated for an N ¼ 16 times at different positions. Full spatiotemporal
displacement profiles of the laser-induced elastic wave in thermoelastic and ablative regimes
in the chicken liver are shown in Figs. 8(a) and 8(b), respectively.

Fig. 7 SWA for different absorption coefficients of the phantom, as a function of pulse energy. The
inset shows the initial part of the SWA.
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Temporal displacement profiles of the elastic wave in the chicken liver were extracted from
the spatiotemporal maps and are shown in Fig. 9. Both thermoelastic and ablative regimes share
many similarities with the wave profiles in the phantom model. The temporal profiles of dis-
placements in chicken liver appear mirror symmetric and mirror asymmetric for thermoelastic
and ablative regimes, respectively.

Fig. 8 Typical spatiotemporal displacement profiles for (a) thermoelastic regime (7.92 mJ) and
(b) ablative regime (11 mJ) in chicken liver.

Fig. 9 Typical temporal displacement profiles for (a) thermoelastic regime (7.92 mJ) and (b) abla-
tive regime (11 mJ) in chicken liver.
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As a further analysis, the SWAversus laser pulse energy in the chicken liver is compared with
two graphite phantoms of absorption coefficients 1.87 and 6.64 mm−1, as shown in Fig. 10. Two
representative data sets for chicken liver (green and magenta circles) were taken from the same
sample but at different measurement locations, and two different amplitude versus laser pulse
energy response plots were obtained.

One set of results shows the transition point from thermoelastic to the ablative regime, just as
in the agar phantom control experiments; while the other set demonstrates no transition point
energy. This result appears to demonstrate that the absorption coefficient of the chicken liver is
not homogeneous across the sample surface. Comparing with the results from graphite phan-
toms, it appears that some locations on the liver sample exhibit an absorption coefficient of
nearly 6.6 mm−1, while other locations likely fall below 1.8 mm−1.

As hemoglobin is considered the primary chromophore in the liver tissue, then it may be
expected to see the absorption coefficient as high as ∼30 mm−1 in the locations with high blood
concentration.53 Structural OCT images and microscope images of the chicken liver sample are
shown in Figs. 11(a) and 11(b), respectively. The en faceOCT image of the liver surface, taken at
the central wavelength of 1310 nm, cannot clearly show heterogeneity in the absorption coef-
ficient. In contrast, full-color microscopic images clearly indicate that some regions on the
chicken liver are darker than others due to the strong absorption of visible light by blood.
These color images qualitatively represent the heterogeneous absorption of the chicken liver
sample.

An optical attenuation measurement at 1310 nm for each A-line in the OCT image54 is shown
in Fig. 11(c). While optical attenuation at this wavelength is dominated by the scattering, OCT
optical attenuation map of the chicken liver sample has a strong correlation with the optical
image shown in Fig. 11(b). Netherveless, optical excitation in the areas of increased optical
attenuation results in the generation of the ablative elastic waves. In comparison, the same energy
of the optical excitation in the areas with reduced optical attenuation generates elastic waves in
the thermoelastic regime.

4 Discussion

In this study, we demonstrated that the transition from the thermoelastic to the ablative regime is
accompanied by the nonlinear increase in SWA as well as the transformation of the wave shape.
Such results are in agreement with the results of measurements of laser-generated acoustic
waves. In the low irradiance regime, before ablation takes place, the amplitude of the laser-
generated acoustic wave shows a linear increase with pulse energy.40,45 Also, it has been shown
that there is a large enhancement in the amplitude of the compressional acoustic wave generated
in the ablative regime.39,40,42 The momentum transfer during the ablation process can be repre-
sented by a force acting normal to the tissue surface. The direction of this force on the sample
surface is opposite to the force direction in the thermoelastic regime.34

Fig. 10 SWA comparison between chicken liver and different phantoms for two different energies
of laser pulse. Initial part of the SWA is shown in inset.
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Theoretical modeling for laser-generated ultrasound in metals has demonstrated that the
resulting force on the sample surface is a combination of a time-varying normal force and the
forces generated by thermal expansion.39–45 Therefore, the transformation of the surface wave
shape shown in Figs. 5 and 9 reflects the increasing influence of the normal forces generated by
the ablation of material.

Although the amplitude of the elastic waves depends on the distance between the excitation
and measurement locations, we assume the estimated transition point of the wave shape is in-
dependent of this distance. Indeed, the displacement amplitude on the sample is less than a
micron. Therefore, it can be considered that the deformation is in the linear elastic region, and
the dependence of the amplitude on the laser energy is defined only by the absorption coefficient
of the sample. However, the shape of the elastic wave presented in Figs. 5 and 9 could be differ-
ent at different distances from the excitation location, taking into account the source effect and
wave dispersion in the sample.

All-optical OCE has advantages of measuring tissue biomechanical properties using a single
shot excitation by a laser. However, there is a valid concern about the damage of tissue at the
excitation area. Since the phenomenon is basically the sudden thermal expansion of the localized
tissue by absorbing the laser irradiation, the temperature at the excitation position rises sharply.
Due to the laser-induced heating of the tissue, a change in microstructure in collagenous tissue
has been reported.13,14 While moderate tissue temperature rise (below 50°C) is unlikely to induce
permanent tissue damage,55 full characterization of tissue absorption at different wavelengths
and the quantitative evaluation of maximum permissible exposure will be required before tran-
sition for in vivo application.

5 Conclusion

This study described a methodology for determining the boundary region between thermoelastic
and ablative regimes of elastic wave generation. These can be used for the development of a safe

Fig. 11 (a) Top view of the structural image of the chicken liver taken using a swept-source OCT
system with central wavelength of 1310 nm. (b) Color microscopic image of the chicken liver
sample with different positions of excitation and measurement. (c) Attenuation map of the chicken
liver sample with excitation positions for two different sets of results indicated along with the
corresponding temporal profiles.
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method for completely noncontact, all-optical microscale assessment of tissue biomechanics
using laser-induced elastic waves. With the proper selection of laser wavelengths to match the
optical absorption of the target tissue, it may be possible to perform laser-induced elastography
without optical damage. These results open up the potential for nondestructive all-optical OCE
measurements in vivo.
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