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Abstract

Significance: Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to dis-
tinguish the unique molecular environment of fluorophores. FLIM measures the time a fluoro-
phore remains in an excited state before emitting a photon, and detects molecular variations of
fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple
biomedical processes including disease progression and drug efficacy.

Aim: We provide an overview of FLIM principles, instrumentation, and analysis while high-
lighting the latest developments and biological applications.

Approach: This review covers FLIM principles and theory, including advantages over intensity-
based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-
domains are summarized, along with recent developments. Image segmentation and analysis
strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed.
Finally, representative applications are provided including high-resolution FLIM of cell- and
organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging
protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and
limitations of FLIM are also discussed.

Conclusions: FLIM is advantageous for probing molecular environments of fluorophores to
inform on fluorophore behavior that cannot be elucidated with intensity measurements alone.
Development of FLIM technologies, analysis, and applications will further advance biological
research and clinical assessments.
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1 Introduction

Fluorescence microscopy is a core biomedical imaging tool that provides high-resolution images
of molecular contrast in living samples. Stokes coined the term “fluorescence” in 1852 for the
“remarkable phenomena of light” observed in the materials that emitted light at a different color
than the absorbed light.1 At that time, refraction (or refrangibility), internal dispersion, circular
dichroism, and other phenomena of light werewell studied. Stokes examined flower petals, leaves,
turmeric, calcium fluoride, and many other compounds. In the 20th century, fluorescence was
redefined as a short-lived emission of photons caused by the incidence of higher energy photons
and became a popular tool for studying molecular dynamics and characterizing compounds.
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In the mid-20th century, Weber used fluorescence properties of molecules such as depolari-
zation along with absorption and emission spectra to pinpoint molecular dynamics and reveal
kinetic parameters for biologically relevant processes such as enzyme binding.2 These experi-
ments advanced fluorescence as a major means for biophysical and biochemical investigation.
By the late 20th century, numerous brightly fluorescent small molecules had been categorized
and repurposed as markers bound to other molecules. Fluorescence-based targeting provided
unique molecular specificity in high-resolution microscopy. For example, mitochondria were
identified using a small fluorescent molecule called tetramethyl-rhodamine-ethyl-ester (TMRE),
which binds only to the mitochondrial membrane. This discovery has greatly advanced the study
of energy distribution in biological systems. A weaker endogenous source of fluorescence was
also identified within mitochondria. This inherent ability of many biological systems to fluoresce
without the addition of external fluorophores was termed “autofluorescence.”

Along with reduced pyridine nucleotides, oxidized flavins, and other metabolic agents, pro-
teins containing an abundance of amino acids, such as tryptophan, phenylalanine, and tyrosine,
are the major endogenous fluorophores in biological systems. Studies in the 1980s identified
the presence of a fluorescent protein expressed by jellyfish. This small protein was cloned into
a functionally expressible green fluorescent protein (GFP)3 and was genetically expressed in
Escherichia coli (E. coli) to create bacteria capable of green fluorescence.4 Thousands of vari-
eties of this protein that fluoresce at different parts of the spectrum have been engineered, and
their fluorescence behavior has been modified to cater to unique probing interests. The in vivo
imaging capabilities of GFP-tagged proteins within organisms have bolstered fluorescence
imaging as a robust and flexible assessment method for biomedical research.

Fluorescence lifetime imaging microscopy (FLIM), which exploits the lifetime property of
fluorescence, is a microscopy technique that has gained popularity because of its high sensitivity
to the molecular environment and changes in molecular conformation. FLIM has been exten-
sively used in autofluorescent molecular imaging to study cellular metabolism. FLIM of auto-
fluorescent molecules provides unique insights into cellular health in a nondestructive manner
and is often used to study live animals and as a contrast mechanism for fluorescence-guided
surgery.5–12 Exogenous fluorescent molecules that are capable of monitoring microenvironmen-
tal parameters, such as temperature, viscosity, pH, and ion concentration, are categorized as
FLIM-based sensors.13–15 Protein–protein interactions can be monitored using Förster resonance
energy transfer (FRET) sensors that are specific for cellular signaling, cellular proliferation,
cytokinesis, and other molecular interactions.16–19 Thus, leveraging both endogenous and exog-
enous fluorophores, FLIM can monitor numerous processes in cells and tissues, including dis-
ease progression and drug efficacy.

In this review, we discuss the principles and theory behind FLIM and its unique advantages
over intensity-based fluorescence microscopy methods. Then, we review FLIM instrumentation
and FLIM analysis methods including segmentation and population density modeling of cell
heterogeneity, and we close with a summary of FLIM applications in vivo and in vitro.

1.1 Fluorescence Lifetime

When a molecule in ground state (denoted as S0 in Fig. 1) absorbs light of energy equal or greater
than the higher energy levels (S1; S2; : : : ; Sn), an electron is excited to a higher energy level for
a short period. The electron will undergo vibrational relaxation to the lowest vibrational level
of the excited state (denoted as S1) by a nonradiative process called internal conversion. From
the S1 electronic state, molecules return to the ground state either by a radiative or nonradiative
process. Figure 1 represents the different luminescence phenomena that occur in these levels.

Fluorescence is a radiative process in which molecules (fluorophores) decay to the ground
state by emitting detectable photons (on the timescale of 10−9 s). The fluorescence emission
happens from the lowest excited electronic level (S1). This mandatory emission from the lowest
excited electronic level ensures that the emission spectrum remains the same and is independent
of the excitation wavelength. The energy of the emitted fluorescence photon is lower (i.e., emis-
sion occurs at a longer wavelength than the excitation) due to energy loss in vibrational relax-
ation and internal conversions. This shift in emission wavelength is referred to as the Stokes
shift. Another predominant luminescence process, phosphorescence, occurs when the excited
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electron energy transitions into a triplet energy level (T1; T2; : : : ; Tn) by a process known as
intersystem crossing (ISC). Electrons in the triplet state have parallel spins, and these electron
transitions are “spin-forbidden,” resulting in a slow transition to ground level by emission of a
phosphorescence photon or reversal of the ISC and emission of a delayed fluorescence photon.
Phosphorescence occurs on timescales on the order of milliseconds to hundreds of seconds. The
Jablonski diagram shown in Fig. 1 concisely illustrates these processes.

The quantum yield of the molecule is defined as the ratio of emitted photons to the absorbed
photons. Quantum yields for common fluorescent compounds include 80% for fluorescein,20

60% for eGFP,21 6% for tryptophan,22 and 2% for reduced nicotinamide adenine dinucleotide
(NADH).23 This emission efficiency of a molecule depends on (1) its spatial orientation with
respect to the incident electromagnetic wave’s electric field orientation (polarization), (2) the
electronic energy levels available for absorbing the incoming photon energy (absorption spec-
trum), (3) the efficiency of rearrangement of vibrational levels (fluorescence lifetime), (4) relax-
ation back to the ground state electronic energy level (Stokes shift), and (5) the population of
vibrational levels within this ground state (emission spectrum). Fluorophores are characterized
by their absorption spectrum, fluorescence lifetime, Stokes shift, and emission spectrum.

Conventionally, we define fluorescence lifetime ðτÞ as the average time that a fluorophore
remains in its excited state. In this interval, the intensity IðtÞ decreases to 1=e or 36.8% of its
original value. The decaying intensity at time t is given by a first-order kinetics equation summed
across all species, i, in the sample

EQ-TARGET;temp:intralink-;e001;116;266IðtÞ ¼
X
i

αie−t=τi ; (1)

where α is the pre-exponential factor or the amplitude of the exponential function. The mean
lifetime (τm) of a multiexponential mixture of species is the sum of each species lifetime (τi)
weighted by fractional contribution of each species (αi)

EQ-TARGET;temp:intralink-;e002;116;187τm ¼
X
i

τiαi: (2)

In addition, the number of excited molecules at a time t is given as

EQ-TARGET;temp:intralink-;e003;116;133nðtÞ ¼ nð0Þe−t=τ; (3)

where nðtÞ is the number of molecules in the excited state at time t.
Fluorescence lifetime can be measured in either the time-domain or frequency-domain, and

these methods will be covered in detail in Secs. 2 and 3. Briefly, for time-domain methods, the

Fig. 1 Schematic of Jablonski diagram.
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sample is excited by a short excitation pulse and the decay is calculated either from time-of-
arrival of photons that are binned into a histogram or by time-gated detection or pulse sampling
techniques. If multiple fluorescent species are present, all species are summed into a single histo-
gram. In frequency-domain methods, each photon is represented by its phase delay with respect
to the excitation photon, which is similar to the arrival time histogram. For multiple species, this
phase distribution is analyzed in Fourier space to extract the modulation and demodulation
parameters that separate multiple species. Both time-domain and frequency-domain offer unique
advantages and challenges in different FLIM scenarios including low photon budget imaging,
high dynamic range imaging, or high time resolution imaging.

1.2 Autofluorescence FLIM Measurements

Biological systems are rich in endogenous fluorophores that are used for autofluorescence
molecular imaging in a convenient, label-free manner. Endogenous fluorophores are powerful
biomarkers because their emission properties are often influenced by their microenvironment,
as well as the morphology, metabolic state, and pathological conditions of the sample. Notable
endogenous fluorophores along with their excitation and emission wavelengths and fluorescence
lifetimes are listed in Table 1. Imaging endogenous fluorophores is advantageous because it
avoids the administration of external fluorescent dyes, thus circumventing complications intro-
duced by these contrast agents including nonspecific binding, toxicity, and interference with the
biochemical and physiological functions of the sample. Furthermore, autofluorescence imaging
can be easily translated to in vivo monitoring in animal models and in humans for impactful
clinical measurements.

1.2.1 FLIM of NAD(P)H and FAD for metabolic imaging

Nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD) are two met-
abolic coenzymes that play a myriad of roles in cellular oxidation and reduction reactions. The
reduced form NADH and oxidized form NADþ are involved in mitochondrial function, energy
metabolism, calcium homeostasis, gene expression, oxidative stress, aging, and apoptosis. The
reduced NAD phosphate (NADPH) is associated with reductive fatty acid biosynthesis, steroid
biosynthesis, oxidative stress, and antioxidation, while the oxidized form (NADPþ) is involved
with calcium homeostasis.9 Real-time monitoring of cellular metabolism during pathophysio-
logical changes is possible by measuring the redox ratio (NADH=NADþ). NADH is the
principal electron acceptor in glycolysis, which results in two NADH molecules per glucose
molecule. The Krebs cycle also reduces NADþ to NADH in three of its reactions. During
oxidative phosphorylation, NADH is oxidized to NADþ by donating electrons to the electron
transport chain, and these electrons are ultimately accepted by oxygen.8,9 In the case of anaerobic
glycolysis, NADþ is converted to NADH and oxidative phosphorylation is diminished, which
creates an overall increase in NADH abundance. Thus, the reduction–oxidation pair NADH=
NADþ serves as an indicator of balance between oxidative phosphorylation and glycolysis.
Flavins such as FAD are also involved in cellular oxidation–reduction reactions. The reduced
form (FADH2) is oxidized to FAD in complex II of the electron transport chain, while FAD is
reduced to FADH2 in pyruvate decarboxylation and the Krebs cycle.

NADH and FAD are fluorescent while NADþ and FADH2 are not. The fluorescence of
NADH and NADPH are difficult to distinguish, and their combined fluorescence is referred
to as NAD(P)H. Due to the pivotal role of NADH, NADPH, and FAD in cell biology and
metabolism, these endogenous fluorophores have been used to monitor cellular redox reactions,
energy metabolism, and mitochondrial anomalies under different pathophysiological conditions.
Chance and others in the 1980s established NAD(P)H and FAD fluorescence for metabolic
imaging.44–48 The use of endogenous fluorescence enables noninvasive metabolic imaging of
cells and tissue in their native physiological environment without perturbations associated with
contrast agents. After the development of FLIM instrumentation, biophysicists began to relate
the fluorescence lifetimes of NAD(P)H and FAD to cellular metabolism.24,25,29 The fluorescence
lifetime of NAD(P)H is significantly shorter in the free state (∼400 ps) compared with the pro-
tein-bound state (∼1 to 5 ns) of the molecule.24,25,27 This is due to quenching in the free state as
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the NAD(P)H molecule folds and diminished quenching in the protein-bound state as the
NAD(P)H molecule extends. Conversely, FAD has a longer lifetime in its free state (2.3 to
2.9 ns) compared with its protein-bound state (<0.1 ns).29,30,49,50 Bird et al. used FLIM to dem-
onstrate a correlation between the redox ratio (NADH=NADþ) and the relative amounts of free
to protein-bound NAD(P)H.51

1.3 FLIM-FRET Microscopy

The fluorescence lifetime of a donor fluorophore changes when it undergoes FRET with an
acceptor molecule. As a result, FLIM can visualize changes in the proximity of FRET
pairs.17,18,52 Specifically, the quenching of the donor emission by FRET leads to a decrease

Table 1 Spectral characteristics and lifetimes of endogenous fluorophores.

Endogenous fluorophore
Excitation

(nm)
Emission

(nm) Lifetime (ns) Reference

Metabolic coenzymes

NAD(P)H free 340 (max) 470 (max) 0.4 (free), 1 to 5 (bound) 24–28

FAD, flavin 450 (max) 535 (max) 2.3 to 2.9 (free), <0.1 ns (bound) 26, 29, 30

Flavin mononucleotide (FMN) 444 (max) 558 (max) 4.27 to 4.67 31, 32

Structural proteins

Collagen 280 to 350 370 to 440 0.2 to 0.4, 0.4 to 2.5 32, 33

Elastin 300 to 370 420 to 460 0.2 to 0.4, 0.4 to 2.5 32, 33

Vitamins

Retinol 327 (max) 510 (max) 1.8, 5.0 (free), 0.7, 3.6, 12 (bound) 26, 34

Riboflavin 420 to 500 520 to 750 4.12 32

Vitamin B6 330 (max) 420 (max) 0.6 to 8.4 35, 36

Vitamin K 335 (max) 480 (max) — 26

Vitamin D 390 (max) 480 (max) — 26

Vitamin B12 275 (max) 305 (max) — 26

Pigments

Melanin 300 to 800 440, 520, 575 0.1 to 0.2, 0.5 to 1.8, 7.9 32–34

Eumelanin 355 520 0.058, 0.51, 2.9, 7 37, 38

Keratin 277 (max) 382 (max) 1.4 39, 40

Protoporhorphyrin IX 400 to 450 630, 690, 710 9.7 to 16 26, 41

Lipofuscin 340 to 395 540, 430 to 460 1.34 32, 35

Bilirubin 350 to 520 480 to 650 0.02 to 0.09, 1 to 2 42, 43

Amino acids

Phenylalanine 258 (max) 280 (max) 7.5 32

Tryptophan 280 (max) 250 to 310 3.03 32

Tyrosine 275 (max) 300 (max) 2.5 32
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in its lifetime. FRET has been used to detect conformational changes within proteins, receptor/
ligand interactions between proteins, hybridization or splitting of nucleic acid strands, membrane
lipid interactions and distributions,16 the activity of proteases, chromatin architecture,53 and
many other phenomena. Genetically engineered FRET pairs can be strategically expressed in
biological systems for any application in which distances between proteins or protein sub-
domains are of interest (Fig. 2). A detailed review of FRET can be found elsewhere.54

FLIM-FRET has a number of advantages over intensity-based FRET. In addition to the
advantages of FLIM over intensity imaging that will be discussed in Sec. 1.4, there are also
benefits specific to FRET interactions. Most importantly, FLIM-FRET only requires the meas-
urement of the donor lifetime, so direct excitation of the acceptor is not needed and acceptors
with poor quantum efficiencies can be used. In addition, less excitation intensity is required for
FLIM-FRET because wider emission filters can be used, allowing for FLIM-FRET pairs that are
less photostable. 55 A portion of the donor fluorophores can fail to excite in some FRET experi-
ments, which introduces additional errors in intensity-based FRET that are avoided in FLIM-
FRET. Finally, FLIM-FRET and multiexponential fitting can be used to quantify the proportion
of quenched and unquenched donor molecules.18 FRET events can be confirmed by photo-
bleaching the acceptor, which should result in a donor lifetime at pre-FRET levels. The draw-
backs of FLIM-FRET versus intensity-based FRET mirror those of using FLIM in general with
the additional stipulation that a carefully measured reference lifetime value for the donor alone
(without acceptor present) is needed for accurate calibration.

(a)

(d) (e)

(f) (g)

(b) (c)

Fig. 2 FLIM-FRET concept and applications. (a) At the Förster distance (R0, defined by the spe-
cific donor–acceptor pair), the efficiency of energy transfer between donor and acceptor is 50%,
such that large distances exhibit low efficiencies of energy transfer. At these large distances, the
fluorescence lifetime of the donor (τ) is not affected by FRET. (b) As the distance between donor
and acceptor decreases, FRET can occur, quenching the emission of the donor and shortening
the donor lifetime decay (τ 0). (c) Photobleaching of the acceptor can confirm that the change in
donor emission lifetime was due to a FRET interaction. (d), (e) Donor and acceptor pairs within the
same molecule can be used to detect changes in (d) protein confirmation or (e) cleavage of pro-
teins by proteases. (f), (g) Donor and acceptor pairs in separate molecules can be used to detect
(f) receptor/ligand binding and (g) hybridization or splitting of nucleic acid strands.
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A number of considerations need to be made to select FRET pairs (FPs) that are specifically
suited for use with FLIM-FRET (Table 2). Some pairs that are not useful for intensity FRET are
quite useful for FLIM-FRET. This is because intensity FRET requires spectral overlap between
donor and acceptor, while FLIM-FRET is optimized using pairs with well-separated emission
spectra.55,69 A donor fluorophore will ideally have a long, monoexponential decay. With simple
decay kinetics, it is easier to determine the distinct lifetime of the quenched donor using multi-
exponential fitting of the decay data.55 The unquenched single lifetime of the donor should also
be as long as possible to optimize the dynamic range of the FP. Donors should also have high
photostability and should not photoconvert, which could lead to an overestimation of quenching.
Acceptors should have a high absorbance coefficient but an extremely low quantum yield to
avoid acceptor emission in the donor channel. By choosing an optimal acceptor, donor emission
can be collected using a wider spectral window to increase signal while reducing excitation
power. In addition, another probe could be added to the acceptor spectral window to correlate
FRET interactions with the behavior of another labeled protein.55

New approaches to improve the FLIM-FRET continue to emerge. One goal of recent efforts
is fast FLIM-FRET to capture rapid cellular events, increase imaging throughput, and quickly
acquire volumes of three-dimensional (3-D) biological interactions. For example, Poland et al.70

developed a multifocal multiphoton system that simultaneously acquires multiple planes of
FLIM-FRET using an array of beamlets produced by a spatial light modulator. Other techniques
employ many parallel detectors to rapidly image protein–protein interactions in live cells.71

Recent developments in FLIM-FRET analysis techniques provide highly localized information
on molecular interactions. Phasor analysis (see Sec. 3.1.2) of FLIM-FRET data has quantified
chromatin organization at the nucleosome level, which is below the diffraction limit of most
imaging modalities.72 Here, increased FRET between fluorescent histones signals an increase
in nucleosome proximity.

1.4 Advantages of FLIM Over Intensity Imaging

FLIM offers many unique advantages over intensity-based fluorescence microscopy. Fluores-
cence intensity imaging provides information on the spatial distribution of fluorophores and can
discriminate between fluorophores with distinct spectral properties. However, intensity alone

Table 2 Examples of FRET pairs for FLIM-FRET imaging.

Donor Acceptor Reference

mCerulean3 YFP 56

mTurquoise YFP 56, 57

NowGFP tdTomato 58

NowGFP mRuby2 58

Clover mRuby2 59

TagRFP mPlum 60

mEGFP ShadowG 61

mEGFP mCherry 62, 63

mEGFP mRFP1 64

mTFP1 EYFP 65

mEGFP REACh 66

mEGFP sREACh 67

mEGFP ShadowY 68
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cannot distinguish fluorophores with similar spectra or distinguish unique molecular environ-
ments around the same fluorophore. FLIM can frequently discriminate spectrally overlapping
fluorophores using the fluorescence lifetime. For example, NAD(P)H often appears indistin-
guishable in different cellular environments based on fluorescence intensity and spectral infor-
mation, but it can be distinguished easily using FLIM (Fig. 3). Overall, FLIM is advantageous
in its ability to detect changes in the molecular environments of fluorophores to provide infor-
mation about fluorophore function and behavior that could not be elucidated with intensity
measurements alone.74

Unlike intensity-based measurements, FLIM is largely independent of fluorophore concen-
tration. This means that FLIM can determine whether a change in fluorescence intensity is due
to changes in quantum yield (e.g., fluorescence quenching), a variation in the overall concen-
tration of the fluorophore, or both. FLIM measurements are also less vulnerable than intensity
measurements to inner filter effects, which are absorption and scattering events that modulate the
detected fluorescence intensity. Therefore, FLIM is well-suited for accurate measurements of
quenching dynamics.75,76 Multiple configurations or states of a fluorophore can be detected with
FLIM at a single location or pixel. For example, both bound and unbound fluorophores, as well
as proteins with distinct folding states, will have different molecular environments that coexist
within the same pixel.

FLIM is a self-referenced measurement (i.e., independent of absolute detected intensity), so
FLIM experiments do not require the throughput calibration steps that are needed for intensity-
based experiments. Lifetime is an absolute measurement that can be repeated across numerous
device configurations (e.g., excitation intensity, detector sensitivity, and path length) after
accounting for the instrument response function (IRF) of that device. Thus, artifacts caused by
nonuniform illumination, which would greatly affect intensity measurements, are mitigated by
measuring the lifetime. This internal calibration has the added advantage of making FLIM
experiments more reproducible and comparable between different instrumentation configura-
tions. In addition, lifetime measurements are independent of excitation and emission light
scattering in cells and tissues, provided that any time delay is smaller than the resolution of
the timing electronics. In addition, confounding scattering profiles can be modeled in a fitting
routine by assuming a Gaussian spread of the IRF function. This is conventionally used in
commercial time correlated single photon counting (TCSPC) packages such as SPCImage77

(Becker & Hickl), allowing FLIM to be performed accurately at deeper penetration depths.

Fig. 3 FLIM provides metabolic contrast in 3-D tumor organoids treated with chemotherapy. The
τm of endogenous NAD(P)H is sensitive to the metabolic response to chemotherapy in patient-
derived pancreatic cancer organoids. NAD(P)H intensity measurements alone did not distinguish
treatment. Here, τm is calculated from a two-exponential decay of the free and protein-bound
lifetimes of NAD(P)H. Scale bar ¼ 50 μm. Adapted with permission from Ref. 73.
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The key downsides to time-resolved measurements include a long acquisition time that may
prevent visualizing fast events, requirements for time-resolved electronics and accurate IRF mea-
surements, and sensitivity to changes in temperature, pH, and viscosity that complicate data
interpretation. Promising new techniques have increased the speed of FLIM, which should
enable visualization of fast dynamics in the future.78–80

2 Instrumentation

FLIM measures the fluorescence decay rate of a fluorophore on the timescale of subnanoseconds
to hundreds of nanoseconds. For reference, light travels at a speed of 3 × 108 m=s or ∼1 foot in
1 ns. Fast electronics coupled with efficient photon detectors have been integral tools for FLIM
and other fast temporal measurements.

Time-domain and frequency-domain FLIM measurements are overviewed in Fig. 4, with
detailed descriptions below. Briefly, time-domain fluorescence lifetime measurements use a
short pulse of light for excitation (short relative to the lifetime of the sample) and then record
the exponential decay of fluorescent molecules either directly (i.e., by gated detection or pulse
sampling) or using time-resolved electronics that bin photons by their arrival times [Figs. 4(a)
and 4(b)].74,81–84 Alternatively, frequency-domain techniques can also measure fluorescence life-
times [Figs. 4(c) and 4(d)].85,86 Here, the excitation is continuous with amplitude modulation
over time as a sine wave. The fluorescence signal shifts in phase and amplitude with respect
to the excitation wave. The phase delay and amplitude modulation for a fluorophore are visu-
alized by plotting the phase changes over a range of modulation frequencies [Fig. 4(d)]. This
resulting fluorescence sine signal can be demodulated in the frequency-domain to quantify the
delay induced by the exponential decay of the fluorescence intensity.

The most common implementation of FLIM is with a fast electronic method called TCSPC
[Fig. 4(a)]. In TCSPC, a fast stop-watch measures the time between an excitation photon and

(a) (b)

(c) (d)

Fig. 4 Schematic of time-domain (TCSPC) and frequency-domain FLIM. (a) TCSPC FLIM acquis-
ition includes the short excitation pulse, single exponential fluorescence decay curve, and lifetime
(τ) defined at the 1= e value. Inset shows detected single fluorescence photons (red circles) at
different time periods within multiple excitation pulses. (b) Photon time of arrival histogram built
from the detection time of multiple fluorescent photons (red circles); green line represents the IRF,
and dotted red line represents the fit function. (c) Schematic diagram of frequency-domain mea-
surement with sinusoidally modulated excitation (exc) and the resulting phase shifted emission
(em) signal. The AC and DC components of each signal are also indicated. (d) Modulation and
phase versus frequencies for different lifetimes. TM, modulation lifetime; TP, phase lifetime.
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emission photon. This time defines each emission photon’s time-of-arrival. The fast clock time
is experimentally measured with a time–amplitude converter circuit (TAC), which converts the
photon time-of-arrival to an analog voltage that can be recorded. In conventional TCSPC, at high
photon count rates, most of the incoming photons will not be measured due to the instrument
dead time. This will lead to the pile-up effect where only the photons with shorter arrival times
will be recorded per excitation pulse. This loss of photons with longer arrival times will create an
incorrect photon histogram, leading to overall shortening of the measured fluorescence lifetime.
To avoid these effects, a low photon count at the detector is desirable, ideally <10% of the exci-
tation repetition rate. Thus, in general, time-domain methods detect one fluorescence photon
across several excitation pulses, so many excitation pulses are required to build a histogram
[Figs. 4(a) and 4(b)]. The signal-to-noise ratio (SNR) of FLIM measured by photon counting,
(SNRFLIM), depends on the number of photons detected per pixel (N), such that it changes with
the square root of N:87

EQ-TARGET;temp:intralink-;e004;116;580SNRFLIM ∝
ffiffiffiffi
N

p
: (4)

Therefore, to improve the SNRFLIM, the photon detection process is repeated thousands of times
to generate a distribution of time-of-arrivals of fluorescence photons, which is the measured
exponential fluorescence decay. This improves accuracy of FLIM data analysis by curve fitting,
which will be discussed in Sec. 3.

Practically, TCSPC employs an efficient method known as reverse-TAC to measure the time
between the emission photon and the next excitation photon. After the histogram is made with
reverse-TAC, the time axis is inverted. Reverse-TAC mode is advantageous over the forward-
TAC mode in systems with high repetition rates, such as laser sources in the range of 50 to
100 MHz, but with low photon count rates. In reverse-TAC mode, TAC is reset only when a
photon is detected, using the reset signal from the consequent laser pulse, thus avoiding the
requirement of additional TAC reset circuits. The measured decay is a convolution of the exci-
tation pulse and fluorescence decay [Figs. 4(a) and 4(b)]. For an ideal delta excitation pulse,
the measured fluorescence decay would equal the actual fluorescence decay. The alternative
to TAC is a time–digital converter (TDC), which converts the time to a digital value of delay.
Experimentally, both TAC and TDC are realized using a programmable logic gate array called a
field programmable gate array (FPGA), but TAC and TDC use different electronic means to
calculate the time delay between the excitation photon and detected photon. TAC systems are
often credited with higher quality timing due to reduced timing jitters (error in timing estima-
tion). Photon detection is usually achieved with a constant fraction discriminator (CFD) circuit to
read the analog voltage output from the detector. This discriminator circuit determines the pho-
ton counts and triggers the stop clock for TCSPC. These methods are discussed in detail in
previous publications.74,82

One of the main limitations of TCSPC is slow acquisition speed, which motivates new tech-
niques to expedite FLIM imaging. TCSPC and other FPGA-based architectures have long dead
times (tens of nanoseconds) between photon detection events.74,88 Therefore, recent adoption
of high-speed digitizers (subnanosecond sampling) aim to decrease dead times to two or less
nanoseconds between photon detection events, so fluorescent decays can be generated more
rapidly. These digitizers have been used for FLIM of endogenous and exogenous fluorophores
in cells and tissues78–80 and offer great promise for shorter FLIM acquisition times. Other strat-
egies to increase speed focus on minimizing dead times, parallelizing TCSPC, and implementing
TCSPC with multifocal excitation.88–94 A detailed discussion on challenges and current
approaches to improve FLIM can be found in a previous review.95

Other time-domain methods include time-gating (TG) and pulse sampling. In TG FLIM,
following a short excitation pulse, the fluorescence decay is directly sampled at two or more
time gates that are sequentially delayed from the excitation pulse.96–99 For a single exponential
decay, the lifetime ðτÞ can be calculated using two equal time gates at Δt time separation83,100

EQ-TARGET;temp:intralink-;e005;116;115τ ¼ Δt= lnðI1=I2Þ; (5)

where I1 and I2 are the intensities measured at the two gates, respectively. For multiple fluo-
rophores, however, two time gates would yield only a mean lifetime. Thus, multiple precisely
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synchronized gates, in combination with decay analysis techniques such as exponential fitting
and phasor approach, are employed for multiexponential lifetime calculation.83,98,101,102

Following the first demonstration of multiphoton laser scanning TG FLIM by Sytsma et al.,
the technique has been employed in multiple studies.103–105 The TG approach has been more
widely adopted for time-domain wide-field FLIM and will be discussed in Sec. 2.1.1. TG is
advantageous over TCSPC because the electronics dead time is significantly lower (about
1 ns) and the high count rates result in faster acquisition times.98 However, TG lacks the sensi-
tivity and time resolution of the TCSPC approach.106,107 Moreover, limitations in the number
of gates and counters might result in undersampling of the decay.87 Another consideration is
the convolution of the IRF with the intensity measured at the first time gate. This can be solved
by either correcting for the IRF or delaying the first time gate after the IRF. However, this delay
causes additional loss in photon efficiency.87 For a detailed discussion on TG FLIM and com-
parison with TCSPC, please refer to prior publications.98

Similar to TG, the time-domain pulse sampling approach involves direct measurement of the
decay signal after a short excitation pulse; it was first demonstrated by Steingraber and Berlman
in 1963.108 The fluorescence signal is continuously measured by a fast response detector and
sampled by fast digitizers.84,106 The decay is reconstructed from all detected photons for a single
excitation. The time-domain approach was traditionally employed for nonimaging point
measurements of time-resolved fluorescence spectroscopy.109–112 Recent developments include
pulse sampling coupled with optical fiber-based multispectral fluorescence lifetime imaging
(FLIm).113–117 The fast acquisition speeds make this approach attractive for spectroscopy in clini-
cal applications. Furthermore, the measured fluorescence signal is not affected by background
light, allowing data acquisition in a clinical setting including operating rooms without the need to
dim or turn off the room light.11,116 It has also been implemented with other imaging techniques
such as optical coherence tomography118 or ultrasound119 for bimodal imaging. Current imple-
mentation of FLIm includes microchannel plate (MCP) detectors and a high-speed (12.5 GS=s)
digitizer.116 In a recent development, a second pulsed laser was multiplexed in time with the
excitation laser traditionally used for endogenous fluorophores. This allowed additional exog-
enous fluorophores to be imaged.117 MCPs have a high response time but low gain; thus they
perform better with samples with high quantum efficiencies.74,106 The pulse sampling technique
also suffers from uncertain accuracies in the lifetime decay curve reconstruction since the instru-
ment noise characteristics are unknown.106 Pulse sampling techniques are discussed in detail in
prior publications.84

Frequency-domain lifetime measurements date back to 1927 when, for the first time, lifetime
was measured by Gaviola.120 Venetta in 1959 demonstrated lifetime measurements by coupling
a phase fluorometer to a microscope, one of the seminal works leading to present day FLIM.121

In frequency-domain FLIM, the sample is excited by an amplitude modulated light source at
high frequencies (MHz), and the harmonic response of the system is measured [Fig. 4(c)].122

The equation of this modulated excitation signal for a given frequency of modulation can be
written as123

EQ-TARGET;temp:intralink-;e006;116;256EðtÞ ¼ Eð0Þ½1þME sinðωtÞ�; (6)

where EðtÞ is intensity at time t and Eð0Þ is intensity at time ¼ 0. ME is the excitation modu-
lation factor, and ω is the angular frequency and is given by ω ¼ 2πf, where f is the linear
modulation frequency. With a sinusoidal excitation, the emission signal will also be modulated
sinusoidally.122,124 However, the emission signal will be phase shifted with respect to the exci-
tation due to delay between the absorption and emission. This can be written as

EQ-TARGET;temp:intralink-;e007;116;165 FðtÞ ¼ Fð0Þ½1þMF sinðωtþ ϕÞ�; (7)

where FðtÞ is the fluorescence intensity at time t and Fð0Þ is that at time t ¼ 0.124 MF is the
emission modulation factor, and ϕ is the phase delay between excitation and emission. The
modulation and phase shift of the emission is dependent on the relative values of the frequency
of modulation, f, and lifetime τ [Fig. 4(d)]. In the case of single exponential decays, the phase
lifetime (τP) is
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EQ-TARGET;temp:intralink-;e008;116;735 tan ϕ ¼ ωτP: (8)

The modulation factors can be expressed as the ratio of AC to DC components of the respective
excitation (EX) and emission (EM) signals

EQ-TARGET;temp:intralink-;e009;116;689ME ¼ ACEX

DCEX

MF ¼ ACEM

DCEM

: (9)

From this, we can estimate the relative modulation M as

EQ-TARGET;temp:intralink-;e010;116;629M ¼ ACEM

DCEM

�
ACEX

DCEX

: (10)

The relative modulation (M) and modulation lifetime (τM) are related by

EQ-TARGET;temp:intralink-;e011;116;568M ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτMÞ2

p : (11)

In the case of a single exponential decay, lifetimes from phase and relative modulation are equal,
(i.e., τP ¼ τM for all ω). However, for multiexponential decays, τP < τM and absolute values will
depend on the modulation frequency.123 The angular modulation frequency should be set to
roughly the inverse of the lifetime (i.e., ωτ ¼ 1) to give maximum sensitivity. Linear modulation
frequencies of ∼100 MHz to 1 GHz give picosecond temporal resolution, which is appropriate
for fluorescence lifetime measurements. Given these constraints on modulation lifetimes in
frequency-domain measurements, phase lifetimes are preferred to modulation lifetimes.

One major advantage of frequency-domain FLIM over time-domain FLIM techniques, such
as TCSPC, is acquisition speed, making frequency-domain an ideal technique for measuring
rapid cellular events. The slower processing electronics used in TCSPC can also limit the ability
to accurately measure lifetime in very bright samples with high photon count rates. Previously
described TG FLIM, pulse sampling techniques, and new faster TAC/TDC electronics (2 to
100 ns dead time) have improved current time-domain FLIM acquisition times, bringing them
closer to frequency-domain (0 ns electronics dead time). One of the latest advancements includes
implementation of frequency-domain FLIM in a multiphoton microscope capable of imaging
deeper than conventional systems.125 Finally, frequency-domain FLIM can be implemented
without the use of costly pulsed lasers.

On the other hand, TCSPC can provide better timing resolution and higher SNR for weakly
fluorescent samples due to its ability to time individual photons. Thus, frequency-domain may be
more advantageous for brighter, more dynamic samples, while TCSPC may be beneficial for
weakly fluorescent, static samples. These dynamic range limitation errors are pronounced for
fitting routines that use spatial binning for increasing accuracy, when the fitting would automati-
cally be biased by the larger number of photons from neighboring pixels. In addition, since
individual photons are timed, TCSPC can distinguish between individual components of a multi-
exponential decay with high accuracy. To resolve multiple components in the frequency-domain,
the signal must either be recorded using multiple modulation frequencies123,126 or digital
heterodyning aided with phasor analysis techniques.127,128 This is summarized in Table 3.

2.1 Microscopy

Two microscopy imaging schemes are used for FLIM: laser scanning microscopy (LSM) and
wide-field illumination (WFI) microscopy. LSM and WFI are compared in the FLIM imaging
schematic shown in Fig. 5. LSM systems are subdivided based on their excitation-detection
method as either confocal (CLSM) or multiphoton (MP-LSM). All of these microscopy tech-
niques offer optical sectioning, which allows 3-D FLIM imaging. However, it is important to
note that certain clinical applications such as surgical guidance, endoscopy, ophthalmoscopy,
and others do not always require sectioning and can work in a topological imaging modality
or a lensless imaging scheme.116,129 FLIM imaging optics require a light source for illumination
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and sensitive detection to distinguish the photons of interest from background photons. However,
the key component of FLIM is the electronics used to estimate the timing of detected photons
within each pixel. Numerous strategies are in development for more sensitive detection
methods.130–134

2.1.1 Wide-field FLIM

WFI uses a parallel illumination field at the focus of the objective lens and collects fluorescence
from the focal plane onto a camera (Fig. 5). Wide-field FLIM is often used for rapidly imaging
large sample areas since light from the entire field of view is collected using a camera-based
detection. Wide-field FLIM uses either time-domain techniques, such as TCSPC135 or TG, in
which a series of fluorescence images are collected by shifting a timing window (order of nano-
seconds) through the emission decay,136–138 or frequency-domain methods of demodulating the
fluorescence signal from the excitation frequency.139

Wide-field FLIM has the advantages of higher frame rates and less photodamage when com-
pared with LSM. However, camera sensitivity and SNR are not as high as that of LSM detectors,
which results in poorer axial resolution. In wide-field collection, every camera pixel simulta-
neously detects scattered light from all other pixels of the illuminated area, which intermixes
the timing-spatial coordinates.133 Assuming a fixed photon emission rate from the sample, image
optimization is a trade-off between either spatial or temporal resolution.133 Wide-field techniques
such as structured illumination and spinning-disk confocal can achieve higher spatial resolution
without compromising imaging speed.136,140–143 Other advantages of wide-field systems are their
simpler implementation and the low computational cost to assign photon detection times in each
pixel. Some of the advancements in wide-field FLIM include its implementation with Nipkow
disc microscopy for fast 3-D FLIM imaging,142 wide-field coupled with single plane illumination
microscopy for high-resolution 3-D FLIM,144 TG single photon avalanche diode (SPAD) cam-
eras for phasor-based high speed wide-field FLIM,145 multifrequency widefield,146,147 and image
gating by pockel cells.148 Current wide-field FLIM systems are discussed in detail by Suhling
and Hirvonen et al.149

Table 3 Advantages and limitations of time and frequency-domain FLIM techniques.

FLIM technique Advantages Disadvantages References

TCSPC • High accuracy of lifetime
estimation

• Requires costly pulsed lasers 85, 87
• Poor performance with high

photon count rates or dynamic
samples

• Provides better SNR for weakly
fluorescent samples

• Estimates multiple lifetime
components

Time gating • Lower electronic dead time than
TCSPC electronics

• Low sensitivity and time
resolution

87, 98, 106

• High count rates (no count rate
limitation)

• Poor performance with low
photon counts

• Fast acquisition speed • Undersampling of decay signal
due to limited gates and counters

Pulse sampling • Fast acquisition speed • Requires costly electronics and
pulsed laser

11, 74, 84,
106, 116• Relatively unaffected by

background light • Low gain of detector (MCP)
• Instrumentation noise

characteristics unknown

Frequency
domain

• Fast acquisition speed • Poor performance with low
photon counts

85, 87
• Performs well with bright

samples
• Can be implemented without

pulsed lasers
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2.1.2 Laser Scanning Microscope FLIM

Laser scanning microscopes have out-of-focus rejection methods that enable higher contrast and
spatial resolution than wide-field systems. In comparison with wide-field FLIM, LSM-FLIM
modalities are often coupled to faster electronics to generate precise photon detection times per
pixel. As discussed previously, these methods fall under two modalities of timing calculation:
TDC-based or TAC-based.

2.1.3 Laser sources

FLIM uses modulated laser sources for illumination. This can be achieved by many modern
pulsed laser diodes that are modulated with an internal trigger or the high power density, ultrafast
laser sources developed in the 1990s. These lasers have a remarkably short pulse duration (hun-
dreds of femtoseconds), durable repetition frequency (in the order of 0.1 GHz), and tunable wave-
lengths in the near-infrared region. These lasers are currently used extensively for in vivo and
small animal imaging due to their use as a multiphoton excitation (MPE) source (explained
in the section below). Pulsed light sources are popular because of numerous applications in digital
communications and remote sensing. Nonlinear light sources, such as supercontinuum sources,
are also popular because they achieve near continuum tunability over a large wavelength range.

Fig. 5 Schematic showing FLIM implementation in scanning and wide-field configurations. Two
imaging modalities are compared side by side: scanning TCSPC FLIM and wide-field TG FLIM.
The scanning beam of laser light from a galvanometric mirror is projected onto the back focal plane
of the objective lens (OL) using the scan lens (SL) and tube lens (TL). The size of the beam and
scan angle is often adjusted by varying the SL-TL pair. The light from the back focal plane is then
focused by the objective lens into an excitation light cone. The emission from the same light cone
is retraced back through a dichroic beamsplitter into a photon detector unit such as a photomulti-
plier tube (PMT). The electrical current from the PMT is amplified and read by an electronic board
to calculate photon arrival times. These photon times are linked to the pixel of illumination by the
computer (PC) that controls the scanner position in the image and thereby produces a histogram of
photon arrival times for each pixel as shown in the inset of the left. LSM FLIM typically achieves
4 to 10 frames per second (fps) acquisition speed, which is usually limited by the scanner speed.
(Right) Wide-field FLIM requires a focusing lens (FL) to achieve a field of illumination. The fluo-
rescence from the focus of the objective lens is magnified by a tube lens and then imaged onto
a camera sensor. FLIM in wide-field systems is achieved using a short frame exposure time
(ns per frame). However, wide-field FLIM requires repeated frame acquisitions over a total
time of milliseconds to seconds to collect sufficient photons for a complete histogram of fluores-
cence decay, as shown in the inset on the right side. Recent FLIM cameras intelligently select
modulation-demodulation waveforms to achieve faster FLIM frame rates of ∼15 fps.
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2.1.4 Confocal and multiphoton microscopes

Both CLSM-FLIM and MP-LSM FLIM are broadly used in applied sciences to study biology
and materials. Confocal imaging methods use a pinhole (small aperture) to reject out-of-focus
light. Most biomedical confocal systems use a low power laser for excitation and focus the light
at one point in space using a pair of galvanometric scanners (XY scanner). Precise movement of
the objective controls for the Z position. The fluorescence emission from the 3-D focal volume
retraces back through the XY scanner (thus descanned) and reaches the detector. The focused
spot is scanned across the sample to detect photon density pixel-by-pixel. A computer records
the photon density (i.e., fluorescence intensity) along with the location of the XY scanner and
Z position to generate a CLSM image. The difference between LSM and CLSM is the use of the
pinhole in CLSM that enables axial (Z-plane) selection. Comprehensive reviews of CLSM are
available elsewhere.150–152

Multiphoton FLIM uses MPE, generally two-photon (2P) or three-photon (3P) excitation,
which relies on high photon density to achieve nonlinear excitation of fluorescence. This high
density is achieved by lower energy, higher wavelength photons in the near-infrared region. In
2P excitation, two photons of half the energy spontaneously come together to excite the molecule
to a higher electronic energy level, which then follows its regular radiative decay (fluorescence)
route to relax back to the ground state. Multiphoton FLIM is widely used for tissue imaging
because near-infrared wavelengths achieve deeper penetration depths in tissues compared to the
visible wavelengths that are commonly used in single photon excitation. This is due to reduced
scattering and absorption in tissues within the near-infrared wavelength window. The nonlinear
excitation scheme of MPE limits the fluorescence excitation to a small focal volume comparable
to the confocal detection volume, but without a pinhole. This allows MP-LSM detectors to be
placed in the transmission mode (or nondescanned mode), instead of descanning through the
scanning optics. This nondescanned geometry enables higher detection efficiencies. Multiphoton
systems use tunable, mode-locked lasers that provide ultrashort, high intensity pulses. A popular
source is titanium–sapphire crystal lasers with tunability between 680 and 1100 nm. Most
MP-LSM systems include pulsed sources to achieve high photon density, so additional FLIM
capabilities only require the timing electronics to estimate photon arrival times. Therefore, many
MP-LSM systems likely include FLIM, unlike CLSM systems that conventionally use a continu-
ous-wave excitation source. MP-LSM systems often collect 3-D image tomograms over deeper
depths than CLSM. Reviews of MP-LSM are available from Refs. 152 to 156.

Simultaneous excitation of multiple fluorophores is advantageous over sequential imaging
because it minimizes FLIM acquisition times. Simultaneous FLIM of three endogenous fluo-
rophores in addition to second harmonic generation (SHG) signals have been achieved by
multiphoton wavelength mixing.6 Furthermore, one wavelength has been used to excite the two
intrinsic fluorophores, NAD(P)H and FAD.157 In addition, two single-photon wavelengths have
been temporally interleaved to alternately excite NAD(P)H and FAD.158

2.1.5 Detectors

Detectors in LSM are often characterized by their sensitivity, reproducibility, quantum efficiency,
photon-counting capability, narrow temporal responses, relatively fast transit time, low dark counts,
and high SNR. Most LSM detectors are photomultiplier tubes (PMTs) that can be used in a photon-
counting mode, which uses discriminators as described above. MCPs, avalanche photodiode,
SPAD, hybrid PMTs, and SPAD arrays are also used for FLIM detection, each with merits and
challenges. For example, SPAD arrays are capable of 256 × 256 pixels including a TDC in each
pixel, so an entire FLIM image can be acquired with <100 picosecond resolution.159,160 However,
SPAD arrays suffer from lower quantum efficiency at 460 nm (<35%) and a low fill factor
(additional microlens arrays can help to effectively guide light), which results in lower photon
collection efficiency.161 A detailed discussion on current detectors is given by Bruschini et al.160

Cameras with integrated FLIM capabilities have recently gained popularity. Chen et al. dem-
onstrated wide-field FLIM using a frequency-domain CMOS FLIM camera,162 while Mitchell
et al. implemented a frequency-domain CMOS FLIM camera in a lightsheet microscopy
system.163 Raspe et al. developed single-image fluorescence lifetime imaging microscopy
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(siFLIM) with a modulated electron-multiplied-charged couple device FLIM camera capable of
simultaneously recording phase-shifted images.164

3 Analysis of FLIM Data

Quantitative analysis of FLIM images provides insights into cell function, structure–function
relationships, and spatial heterogeneity that are not apparent with qualitative observations of
the images. Analytical tools for fluorescence lifetime estimations, image segmentation, and

Table 4 Comparison of commonly-used fluorescence lifetime estimation methods.

Lifetime estimation
methods Advantages Disadvantages References

Curve fitting methods

Least squares
fitting

• High accuracy for high SNR data • Poor accuracy for low SNR data 165, 166
• Easy to implement • Assumes Gaussian-distributed

noise
• Requires pixel binning

Maximum likelihood
estimation

• High accuracy for low and high
SNR data

• Assumes Poisson-distributed
noise

165, 167

• Easy to implement • Requires pixel binning
• Provides flexible bin widths

Global analysis • Applicable to time-domain and
frequency-domain data

• Long computation times 168–171

• Incorporates spatial information
to improve accuracy

Bayesian analysis • High accuracy for low and high
SNR data

• Susceptible to error from initial
assumption of decay parameters

172–174

• Adaptable for fit-free analysis • Long computation times
• Avoids pixel binning

Phasor methods

Phasor analysis • Fit-free • Poor accuracy for low SNR data 172, 175,
176• Intuitive representation of

lifetime estimates
• Susceptible to error from

instrument response
• Useful for large time-domain or

frequency-domain datasets
• Visualizes lifetime heterogeneity

Deconvolution methods

Stretched
exponential
analysis

• Rapid fitting procedure • Poor fitting for decays greater
than three components

177, 178
• No prior assumption of the decay

distribution • Requires prior knowledge of
fluorescent species present• Visualizes lifetime heterogeneity

Lifetime moment
analysis

• No prior assumption of IRF • Poor accuracy for low SNR data 81, 179
• Poor accuracy for exceptionally

long lifetimes
• Visualizes lifetime heterogeneity

Transformation
(e.g., Fourier,
Laplace)

• Rapid fitting procedure • Poor accuracy for low SNR data 170
• Requires increased sampling of

decay curve

Laguerre
deconvolution

• Fit-free • Poor accuracy compared with
other fit-free techniques

176, 180
• Rapid fitting procedure
• Precise (low variation) lifetime

estimates
• Poorly suited for estimating

exceptionally short or long
lifetimes
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heterogeneity analysis are introduced in this section. Many popular methods are highlighted and
summarized in Table 4, but this is not an exhaustive list of tools. Innovations in these areas are
ongoing, and new FLIM analysis tools are frequently adopted from disparate disciplines.

3.1 Fluorescence Lifetime Estimation

3.1.1 Curve fitting

Fluorescence lifetime measurements often capture multiple fluorophores within each pixel,
resulting in multiexponential decays. In TCSPC, each photon is assigned to a time bin within
a lifetime histogram.74 Histograms are fit to multiexponential decay functions described in
Eq. (1).76 An IRF is measured from a sample with an instantaneous lifetime (e.g., SHG signal
from a urea crystal for two-photon microscopy), which accounts for the temporal response of the
optical system.74 Curve fitting analysis requires some prior assumptions, including the number
of lifetime components, temporal offset of detected signals, and sources of background fluores-
cence.74 This method is also highly dependent on the number of photons detected per pixel as
higher photon counts will improve the accuracy of the fit. The multicomponent exponential
decay estimate is then convolved with the IRF and compared with the experimentally measured
lifetime decay curve [Fig. 6(a)].74 The chi-squared (χ2) goodness-of-fit test is used to evaluate
agreement between the fit and the measured data. Parameters of the model (ai, τi) are iterated to
achieve a chi-squared value closest to 1, indicating the best model fit to the experimental data.74

These parameter estimates and fit quality measurements can be determined from analytical
approaches, such as least squares fitting, maximum likelihood estimation, and Bayesian analy-
sis.165,168,172 These methods describe the likelihood of detecting specific photon counts within
each time bin from the experimental decay, based on statistical assumptions unique to each
method. For example, least squares fitting minimizes the squared difference between measured
fluorescence and estimated signal and assumes Gaussian noise, whereas maximal likelihood

Fig. 6 Examples of fluorescence lifetime estimation methods. (a) Curve fitting analysis determines
lifetime decay variables ðαi ; τi Þ by fitting an estimated decay function and estimated or measured
IRF to experimental data. This process is iterated with the measured data to optimize goodness-of-
fit parameters (χ2). (b) Fit-free methods for estimating lifetime parameters of time-domain or fre-
quency-domain lifetime data also exist. The phasor approach is one such technique frequently
used for intuitive representation of fit-free lifetime estimation. Here, measured lifetime data can be
transformed into phasor space to visualize pixels with similar lifetime values [Eqs. (12)–(15)].
Universal circle shown as blue semicircle. Example phasors for single exponential species ðτ1; τ2Þ
and a two-component mixture of τ1 and τ2 illustrate the rule of linear addition. (c) Neural net-
works can be trained with simulated or experimental FLIM data for fast generation of fluorescence
lifetime maps. Adapted under CC BY-4.0 with permission from Ref. 181.
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methods assume Poisson-distributed noise.165–167 Both approaches provide comparably accurate
estimates of fluorescence decay parameters for lifetime histograms with high photon counts,
though maximum likelihood analysis performs better for low photon counts.165 Maximum like-
lihood analysis also allows for varied bin widths.172,182

Global analysis is another approach to estimating fluorescence lifetimes from low SNR
images.168–170 One implementation of global analysis assumes that all fluorescent species are
present within each pixel.171 This assumption improves estimation accuracy for data with low
photon counts or high background signal. Lifetime parameters of the frequency-domain or trans-
formed time-domain data are estimated by fitting for phase shift and modulation values at multiple
frequencies, as shown in Fig. 4(d).169,171 Alternatively, simultaneous analysis of per-pixel lifetimes
assumes fixed lifetime values across all pixels and iterates lifetime parameter ðτi; αiÞ estimates to
improve a whole-image goodness-of-fit measure.183–185 This approach provides better parameter
estimates by conserving the spatial information typically lost from averaging photon counts across
pixels.169 Lifetime estimates can also improve with segmentation prior to global fitting, which is
important when shorter acquisition times are needed to capture fast dynamics.170,186

Bayesian analysis has also been used to improve lifetime estimations. This method empiri-
cally determines both the prior distribution of the fluorescence decay (not limited to Gaussian
distributions) and the likelihood function173 to establish the posterior distribution of parame-
ters.172,187 Parameter estimates are iterated to maximize the posterior distribution and provide
reliable lifetime estimates.187 In general, this method yields optimal lifetime fits even with high
noise and low total photon counts, but careful selection of the prior distribution is critical to
ensuring accurate estimates.173,187 Recent developments in Bayesian fluorescence lifetime esti-
mation can bypass fits to the measured data and therefore bypass assumptions of the prior
distribution of lifetime parameters, which can bias the lifetime estimates.172,174,188

3.1.2 Phasor analysis

Phasor analysis is a fit-free technique in which the fluorescence decay from each pixel is trans-
formed into a point in two-dimensional (2-D) phasor space. Phasor representation provides a
visual distribution of the molecular species in an image by clustering pixels with similar lifetimes
[Fig. 6(b)]. Phasor analysis is instantaneous because it does not require an iterative fit procedure,
and visualization in phasor space is especially advantageous for large FLIM datasets.175,189 In
phasor analysis, phasor distributions corresponding to similar lifetimes (decays) can be selected
to locate the corresponding pixels in the image with similar lifetimes, even if they are spatially
separated.175

Phasor analysis can be applied to both time-domain and frequency-domain FLIM measure-
ments. If Pði; jÞ represents a pixel in the FLIM image with coordinates ði; jÞ and Ii;jðtÞ is the
fluorescence intensity decay at that pixel, the corresponding coordinates in the phasor plot ðg; sÞ
for time-domain measurements are given as190

EQ-TARGET;temp:intralink-;e012;116;266gi;jðωÞ ¼
R
T
0 Ii;jðtÞ cosðωtÞdtR

T
0 Ii;jðtÞdt

; (12)

EQ-TARGET;temp:intralink-;e013;116;203si;jðωÞ ¼
R
T
0 Ii;jðtÞ sinðωtÞdtR

T
0 Ii;jðtÞdt

; (13)

where ω ¼ 2πf and f ¼ 1=T is the laser repetition rate. Notably, variations in background signal
or the temporal response of the optical system may introduce error into time-domain lifetime
measurements transformed into phasor space, which should be considered when performing
phasor transformations.176

In the case of frequency-domain measurements, the coordinates are given as

EQ-TARGET;temp:intralink-;e014;116;115gi;jðωÞ ¼ Mi;j cosðϕi;jÞ; (14)

EQ-TARGET;temp:intralink-;e015;116;70si;jðωÞ ¼ Mi;j sinðϕi;jÞ; (15)
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whereMi;j is the modulation and ϕi;j is the phase shift of the emission signal with respect to the
excitation. The phasor coordinates can also be expressed in terms of lifetime and angular laser
repetition frequency (ω). In the case of a single exponential decay, the g and s coordinates are
given as

EQ-TARGET;temp:intralink-;e016;116;687gi;jðωÞ ¼
1

1þ ðωτÞ2 ; (16)

EQ-TARGET;temp:intralink-;e017;116;631si;jðωÞ ¼
ωτ

1þ ðωτÞ2 : (17)

From the equations of phasor coordinates, ðg; sÞ, [i.e., Eqs. (16) and (17)], the following can be
derived:123

EQ-TARGET;temp:intralink-;e018;116;586s2i;j þ ðgi;j − 1=2Þ2 ¼ 1=4: (18)

From this equation, it can deduced that all single exponential lifetimes will fall on a semicircle
of radius 1=2 and center ð1=2;0Þ. Since all possible single exponentials fall on this circle, it is
referred to as the universal circle [Fig. 6(b)]. A short lifetime having a smaller phase will lie near
the point (1,0), which corresponds to τ ¼ 0, while a long lifetime will fall near the universal
circle coordinates (0,0), which corresponds to τ ¼ ∞.

Phasors follow the rule of linear addition. For example, the phasor location of a mixture of
two species falls on a straight line joining the phasor location of the two individual species on the
universal circle [Fig. 6(b)].189,191 The position on this line is determined by the relative fractional
contributions of each species. Similarly, the phasor distribution of a three-exponential species
will fall in the triangle formed by the three individual phasor locations and similarly for higher
order exponentials.192,193 Hence, the phasor distribution of a heterogeneous sample will have a
position inside the universal circle. This representation also provides a straightforward interpre-
tation of the biological significance of lifetime values compared with other lifetime estimation
analyses.102

3.1.3 Deconvolution analysis

Deconvolution methods recover the lifetime decay from the measured fluorescence signal by
deconvolving the estimated optical system response. Deconvolution includes variations on the
least squares approach discussed above, stretched exponential/lifetime moment analysis, and
methods of transformation (e.g., Fourier and Laplace transforms).177,179,194–198 Stretched expo-
nential and lifetime moment methods are fundamentally similar because the lifetimes of indi-
vidual species are estimated from the total measured decay distribution.177,179 Stretched
exponential and lifetime moment methods have specific implementations for time-domain or
frequency-domain data. Furthermore, Fourier and Laplace techniques transform the measured
decay curve to be proportional to the product of the transformed source excitation pulse and
system response.196,197 The lifetime and contribution of each species are then recovered from
the transformed system response.196,197,199,200 Deconvolution methods avoid assumptions about
the instrument response but still share limitations associated with standard model fitting
methods.

Laguerre deconvolution is an alternative to model fitting for fluorescence lifetime estimation.
Here, the measured fluorescence decay is transformed and represented in the form of Laguerre
polynomials, resulting in a series expansion of the decay and convolved IRF.176,180,195,201 This
Laguerre transformation produces linearly independent functions that enable expansion of
decays with low susceptibility to noise and proportionality between fluorescence intensity and
lifetime decay.176,180 The pixelwise linear combination of Laguerre coefficients provides the per-
pixel fluorescence decay.180,201 The Laguerre method is less accurate but more precise in lifetime
estimates compared with the similarly fit-free phasor method, especially for values at either
extreme.176
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3.1.4 Machine learning analysis

Machine learning techniques are another alternative to time-intensive curve fitting procedures.
A few key algorithms commonly used for this purpose are highlighted here. Simple neural net-
works can estimate fluorescence lifetimes directly from TCSPC data by learning weights from
examples of curve fitted pixels.181 Variations of convolutional neural networks (CNNs) can also
rapidly calculate fluorescence lifetimes. Briefly, CNNs downsample recorded images through
kernel convolution and window pooling steps, resulting in a low-resolution image on which
predictions of pixel class membership are made (i.e., contraction).202 Pixel positions from the
initial pooling steps are recalled to assign class predictions to pixels in upsampled images
(i.e., expansion).202 This computational structure has been used to analyze hyperspectral fluo-
rescence lifetime images and to dynamically monitor fluorescence lifetimes in vitro and in vivo
[Fig. 6(c)].203,204 Neural networks continue to improve, including simultaneous prediction of
fluorescence lifetimes and object segmentation masks, which will be discussed below.

3.2 Fluorescence Lifetime Heterogeneity Analysis

3.2.1 Pixel-level analysis

Pixel-level analysis of fluorescence lifetimes can inform on subcellular and cell-level hetero-
geneity within a sample. Lifetime histograms provide a useful quality check of curve fitting
from TCSPC pixels, confirm the presence of distinct fluorescence lifetimes, and/or confirm
expected changes in lifetime values from an experimental condition or FRET interaction.205

Distributions of pixels within phasor space provide complementary information on the identity
of fluorophores in the sample and lifetime changes throughout an experiment.175,205 Pixel-level
FLIM analysis has been previously used to quantify lipid membrane integrity and heterogeneity,
immune cell heterogeneity, cell development, protein conformation and organization, and other
phenomena.206–211

3.2.2 Object-level analysis

Object-level analysis provides a biological context for interpreting FLIM images by averaging
lifetime values across all pixels within a single object of interest (e.g., cells, organelles, and
bacteria).32 This approach quantifies diversity across cells, organelles, and other features in a
similar manner to established techniques such as flow cytometry or colony counting. Segmen-
tation is required for object-level analysis. Automatic segmentation can be achieved with com-
putational approaches such as multiresolution community detection and morphological filtering
and thresholding.212–214 In addition, unsupervised clustering techniques (e.g., K-means cluster-
ing) can segment single cells and intracellular compartments for phasor-based lifetime data.215

Open source packages such as FLIMfit and FLIM-FRET analyzer have been developed for
multiple functionalities, including automatic segmentation, lifetime decay fitting, and data
visualization.216,217

Machine learning is also popular for image segmentation due to its high accuracy and gen-
eralization across imaging formats. Neural networks can learn features of pixels within objects
to generate segmentation masks.202 Several architectures have been designed to improve seg-
mentation performance, primarily for intensity-based segmentation of cellular compartments.
Variations of CNNs have been developed for object segmentation. These variations include
UNets, feature pyramid networks, and Mask-RCNN.202 UNet employs the standard CNN frame-
work, described earlier, but maintains symmetrical contraction and expansion branches, and
concatenates contracted layers with expansion layers to better preserve the initial structure of
the image.218 Feature pyramid networks follow this scheme, but they sum convolutional layers
from contraction and expansion to inform image upsampling.219 Similarly, mask-RCNN uses
feature pyramid networks to generate feature maps for regions of interest (ROIs) before convolu-
tional steps that classify pixels within an ROI for object masks.220 Modified versions of these
algorithms have been used to segment numerous cell types and intracellular features across im-
aging platforms,202 and a combination of these algorithms has enabled nuclei segmentation
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across image types [e.g., hematoxylin and eosin (H&E) and immunofluorescence].221 This is not
an exhaustive list of machine learning approaches for fluorescence image segmentation, but it
provides an overview of some object-level segmentation and classification tools.

Segmentation of autofluorescence images is challenging due to low SNR and poor spatial
specificity of the fluorescence signal. CellProfiler has been used to isolate cells, nuclei, and
cytoplasms from two-photon NAD(P)H autofluorescence images.222 This approach identifies
nuclei within a specified size range by thresholding pixels above the background fluorescence
but below cytoplasmic fluorescence values. Whole cell masks are defined by propagating out-
ward from nuclear masks. Nuclear masks are subtracted from cell masks to isolate cytoplasmic
areas. Similarly, a collection of ImageJ plugins have been developed for integrated lifetime decay
fitting (SLIM curve) and object segmentation (Trainable Weka Segmentation).223 This approach
first requires input of a small subset of fluorescence images in which the user annotates the
objects of interest. A number of ImageJ-based filters and transformations are applied to the
images to extract features specific to annotated objects.224 A suite of machine learning algorithms
(Weka) are then applied to annotated inputs and extracted features to classify pixels in unlabeled
images.225 CellProfiler has developed a similar annotation-based method, Ilastik, optimized for
fluorescent proteins and dyes but applicable to autofluorescence images.226

Histograms of lifetime values can be plotted across numerous objects for population distri-
bution analysis. This approach visualizes heterogeneity within an object class (e.g., cells or mito-
chondria) under basal conditions or in response to perturbations. Histograms can be fit with
population density models to summarize the distribution of objects and to identify distinct sub-
populations of objects. Gaussian mixture modeling is a common population density modeling
approach in which multiple Gaussian probability density functions are iteratively fit to each
frequency histogram [Fig. 7(a)].227,230 Goodness of fit is assessed by the minimum Akaike

Fig. 7 Heterogeneity analysis of fluorescence lifetime data. (a) Histograms of lifetimes per object
are fit to distribution models to describe subpopulations and variability in the data. TheH-index and
wH-index are derived from these fits [Eqs. (19) and (20), respectively]. Here, pi is the proportion of
each subpopulation, di is the distance between subpopulation median and global median, and σi
is the subpopulation standard deviation. (b) Distribution density models fit to cell-level NAD(P)H
mean lifetimes can accurately identify distinct breast cancer cell lines (MDA-MB-231 and SKBr3)
in mixed cocultures (proportion of mixtures indicated above plots). Errors (Err) in the model pre-
dictions for mean (x ) and proportion (p) of each population are given within each plot. Adapted with
permission from Ref. 227. (c) H-index of in vivo FaDu tumor cell NAD(P)H mean lifetime (right)
correlates with in vivo treatment response (left). Adapted with permission from Ref. 228. (d) Cell
autofluorescence wH-index is similar for (left) in vitro organoids derived from primary PyVmT
tumors and (right) in vivo PyVmT tumors with vehicle and combination treatment. Adapted with
permission from Ref. 229.
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information criterion.230,231 However, this approach is limited by assumptions about the number
of populations within the data and the Gaussian distribution of the data.232,233 Approaches
have been developed to circumvent these assumptions, including density-based clustering
[Fig. 8(a)].235 Density-based clustering defines subpopulations within data such that the highest
density datapoints define the cluster for the nearest remaining points.235 Previous studies have
shown that population distribution analysis of autofluorescence lifetimes can classify cell types,
drug response, and disease states [Fig. 7(b)].32,227–229,236–238 In addition, lifetime distributions can
identify objects without prior segmentation. Variations in lifetime distributions have identified
other molecular features such as tagged neurons in C. elegans and metabolic activities within
tumors.239,240 Overall, population distribution analysis provides unique insights into sample
heterogeneity.

Heterogeneity in lifetime measurements is commonly quantified from coefficients of varia-
tion (CV).179,241–245 The CV is the standard deviation divided by the mean of a measurement,
which enables comparisons of variability between samples. However, the CV does not define
whether distinct subpopulations exist within the lifetime data. Alternatively, quantitative metrics
of heterogeneity can be derived from population density models, so the behavior of subpopu-
lations can be compared between conditions. A heterogeneity index (H-index) was previously
defined to quantify cell subpopulations of fluorescence lifetimes using population density mod-
els of cells in vivo in head and neck cancer.228 This H-index is based on the Shannon diversity
index, widely used in ecological studies, and is defined as

EQ-TARGET;temp:intralink-;e019;116;189H-index ¼ −
X
i

dipi ln pi; (19)

where di is the distance between the medians of each subpopulation and the median of the
overall distribution and pi is the proportion of each subpopulation [Fig. 7(a)]. Here, increases
in the H-index reflect increases in the number of subpopulations within a sample, increases in
the separation between subpopulations, and equality of population proportions. This H-index
continues to be adapted for different applications. Specifically, a weighted heterogeneity index
(wH-index) was developed to assess metabolic heterogeneity across in vitro and in vivo breast
cancer models.229 The wH-index includes subpopulation standard deviations and is defined as

Fig. 8 Spatial analysis of fluorescence lifetime distribution. Spatial statistical analyses can
quantify spatial heterogeneity in fluorescence lifetimes. Here, spatial heterogeneity in cell-level
autofluorescence lifetimes is used as an example. (a) Density-based clustering defines cell
subpopulations that are mapped back onto lifetime images. Relative proximity measurements
define spatial distributions within (intrapopulation proximity) and between (interpopulation proxim-
ity) cell subpopulations. (b) Multivariate spatial heterogeneity is quantified with spatial autocorre-
lation and spatial principal components analysis. Adapted under CC BY-4.0 with permission from
Ref. 234.
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EQ-TARGET;temp:intralink-;e020;116;735wH-index ¼
X

½1 − pi lnðpi þ 1Þ� × ðσi þ diÞ; (20)

where σi is the standard deviation of each subpopulation and p and d denote their proportions
and distances from the overall median of the distribution, respectively [Fig. 7(a)].

These heterogeneity metrics have provided valuable insight into diversity within biological
systems. The H-index of cell autofluorescence in vivo in tumors shows more homogeneous
activity across cells (lowerH-index) for treatments that significantly reduce tumor volume (com-
bination treatment), and more heterogeneous activity across cells (higherH-index) for treatments
that do not change tumor volume (cetuximab or cisplatin alone) [Fig. 7(c)]. In addition, wH-
index values of cell autofluorescence for control and treated conditions are similar between
in vitro tumor organoids and in vivo tumors, indicating similar treatment-induced changes in
metabolic heterogeneity in vivo and in vitro for the same tumor model229 [Fig. 7(d)]. Collectively,
these studies show that quantitative metrics of fluorescence lifetime heterogeneity provide
powerful tools to study diversity in biological systems.

3.3 Analysis of the Spatial Distributions of Fluorescence Lifetimes

False-colored fluorescence lifetime images can be generated from curve fitting parameters (e.g.,
τ1, τ2, α1, and α2) or phasor values (e.g., g and s).175,205 These images are used for qualitative
assessments of molecular distribution in biological samples. For example, FLIM images can map
lifetime sensors of intracellular molecules (e.g., magnesium, calcium, chromatin, myoglobin,
and antigens), pH, oxygen, or temperature.246–248 FLIM images of endogenous fluorophores
provide qualitative information on the distribution of subcellular and cellular metabolism, bio-
genesis, and structure.51,80,205,209,243,249–252 Furthermore, tissue-level lifetime images can distin-
guish cellular compartments across diverse tissue types (e.g., stroma, endothelium, epithelium,
and cancerous tissue).11,208,241,253,254

Quantitative metrics of spatial heterogeneity have also been developed for FLIM. Spatial
statistical analyses have quantified cell-level spatial heterogeneity in autofluorescence lifetimes
across in vitro and in vivo tumor models. This approach uses density-based clustering to identify
populations with distinct lifetimes, map them back to image space, and then extract proximity
measurements to assess spatial distributions within a population and between populations
[Fig. 8(a)].234,235 Multivariate spatial autocorrelation and spatial principal components analysis
can further define patterns based on multiple fluorescence lifetime fit parameters and multiple
fluorophores [e.g., NAD(P)H and FAD] [Fig. 8(b)]. Additional quantitative methods have been
developed to evaluate spatial variations in intracellular fluorescence, though these have not been
translated for lifetime data. For example, QuantEv measures the localization of fluorescently
tagged proteins as a function of the global structure of a cell,255 and a similar approach was
designed for spatial analysis of GFP-expressing plant Golgi proteins.256 Quantitative methods
to assess fluorescence lifetime spatial distributions will be critical to exploiting the wealth of
information in FLIM images.

3.4 Multiparametric Analysis of Fluorescence Lifetime Data

Fluorescence lifetime images usually have multiple variables per pixel (e.g., curve fit parameters,
fluorescence intensity, and phasor values) that can be used in multivariate classification models
to identify distinct cell subsets or functions. For example, partial least squares–discriminant
analysis of autofluorescence lifetimes has been used to classify cell-cycle state in heterogeneous
samples.257 Specifically, this model included NAD(P)H and FAD fluorescence lifetimes and
intensities to separate apoptotic, proliferating, and quiescent tumor cells in FLIM images. Other
studies used discriminant analysis of fluorescence intensity, lifetime, and morphological param-
eters to classify cell types (keratinocytes, adipocytes, myoblasts, cardiomyocytes, and stem cells)
in response to metabolic perturbations (growth factor and nutrient starvation/supplementation
and environmental stimuli).258 Multivariate FLIM analysis can also use more complex models
including nonlinear classifiers (e.g., logistic regression and random forests) and CNNs. These
models also achieve high accuracy for multigroup classification based on autofluorescence
lifetimes, specifically for T-cell subtypes and activation states (e.g., quiescent/activated,
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CD3/CD4/CD8 coexpression).259,260 These studies illustrate the strength of multivariate classi-
fication models based on fluorescence lifetime data, which provide robust separation of cell
types and cell function.

4 Examples of FLIM in Biology and Medicine

Numerous studies have used FLIM to understand molecular features of biological systems and
changes due to disease progression or drug treatment. Below are a few examples of autofluor-
escence FLIM, FLIM of exogenous molecular probes, and FLIM-FRET.

4.1 Autofluorescence FLIM Applications

4.1.1 In vivo autofluorescence FLIM

Numerous sources of molecular contrast make FLIM attractive for in vivo imaging. One of the
earliest in vivo FLIM studies was performed with intrinsic sources of contrast in human skin.
Koenig et al. investigated changes in autofluorescence and SHG that occur with human skin
disease in vivo.33 SHG is a frequency doubling process with instantaneous lifetime (for a review
of SHG, see Ref. 261). Collagen fibers create strong SHG signals in skin. Koenig et al. showed
that FLIM resolves changes in the autofluorescence lifetime of skin cells within different layers
of the skin. Furthermore, FLIM detected cells that had become diseased due to melanoma or
fungal infections.33 This study pioneered the use of FLIM for clinical applications.

Similarly, the first in vivo FLIM studies in animal models also focused on autofluorescence.
Skala et al. identified differences in the autofluorescence lifetime between normal, low-grade,
and high-grade precancerous epithelia in the hamster cheek pouch in vivo.241,262 Later, in vivo
FLIM was used to predict treatment response in mouse tumor models. Specifically, NAD(P)H
lifetime changes were found to directly correlate to standard tumor response measurements
(i.e., tumor volume).228 Importantly, FLIM detected treatment-induced changes in tumors in vivo
only 2 days post-treatment, which is earlier than detectable changes in tumor volume [6 days
post-treatment, Fig. 7(c)]. A recent study also demonstrated that in vivo FLIM can measure the
efficacy of chemotherapy agents in a mouse model of colorectal cancer.263 Furthermore, auto-
fluorescence FLIM can capture metabolic features of specific cell types in vivo. Work by
Szulczewski et al. indicated that macrophages have a fluorescence lifetime that differs from
mammary tumor cells such that macrophages can be identified and monitored in vivo without
labels264 [Fig. 9(a)]. Other in vivo applications of autofluorescence FLIM focus on metabolism in
the mouse brain. For example, NAD(P)H lifetimes reveal metabolic preferences in the brain
using a well-defined set of inhibitors that target-specific metabolic reactions7,266 [Fig. 9(b)].

In addition, autofluorescence FLIM has been performed in numerous non-mammalian in vivo
models to study organs and whole-body processes that are not easily visualized in mammals.
For example, the metabolic gradient along the germline of C. elegans was visualized with auto-
fluorescence FLIM,6 which provided new insights into metabolic changes with germline differ-
entiation. FLIM has also been performed in plants such as Arabidopsis, where FLIM estimated
vacuolar pH inside intact plant cells with the lifetime of anthocyanin.267

4.1.2 Three-dimensional in vitro autofluorescence FLIM

3-D in vitro cultures, including organoids and cell constructs within microdevices, have also
been assessed with FLIM. Optical sectioning techniques such as CLSM and MP-LSM are espe-
cially attractive for FLIM of 3-D cultures due to their high spatial resolution and volumetric
imaging capabilities. Numerous cancer studies have focused on predicting in vivo drug response
using primary tumor organoids. These organoids retain all of the cells of the original tumor in a
3-D matrix so that in vivo cell–cell interactions and relevant gradients of oxygen, nutrients, and
drugs are preserved.268–271 For example, MP-LSM FLIM indicates that autofluorescence life-
times in primary tumor organoids can predict in vivo response in mouse models across a range
of treatment conditions in breast265 and head and neck cancer.272 Furthermore, FLIM can detect
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differences in the metabolism of primary patient-derived tumor organoids based upon their sur-
face marker expression [Fig. 9(c)]. FLIM has been used to investigate treatment response in
patient-derived tumor organoids across multiple cancer types including breast,265 pancreatic,273

and colorectal cancer.274 In addition, FLIM of colorectal cancer organoids was used to inform a
patient treatment regimen.274 Organoids provide important 3-D architecture for in vitro studies,
but microdevices improve the relevance of 3-D cultures by mimicking in vivo structures.
Specifically, FLIM monitored changes in the metabolism of ductal carcinoma in situ cells during
invasion in a lumen microdevice model. FLIM captured changes in metabolism based on the
position of a cell within the lumen or invading branch.275

Tissues ex vivo have also been imaged to determine whether FLIM can guide surgical resec-
tion of tumors.276 First, Lukina et al. compared NAD(P)H FLIM of in vivo and ex vivo samples
using mouse models of colorectal cancer, lung carcinoma, and melanoma to determine optimal
tissue maintenance protocols to preserve in vivo signals within ex vivo samples. Then, Lukina
et al. used these protocols to perform NAD(P)H FLIM in postoperative samples obtained from
colorectal cancer patients and found significant differences in NAD(P)H lifetimes between
normal and malignant specimens.

(a) (b)

(c)

Fig. 9 Autofluorescence FLIM applications. (a) NAD(P)H FLIM of a mammary mouse tumor (heat-
map) overlaid on an SHG image of collagen (grayscale). Scale bar ¼ 100 μm. Adapted with per-
mission from Ref. 264 (b) Mean NAD(P)H lifetimes in solution and in the rat cortex in vivo after
metabolic inhibition. [2DG, 2-deoxy-d-glucose; IAA, iodoacetic acid; KCNm, potassium cyanide;
FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; BMI, bicuculline methiodide; ETC,
electron transport chain.] * indicates significantly different from baseline in vivo measurement;
Error bars indicate standard error across all pixels over all measurements. Reproduced with per-
mission from Ref. 7 (c) Optical redox ratio [NAD(P)H/FAD; first row], NAD(P)H τm (second row),
and FAD τm (third row) images of organoids generated from primary human breast tumors
obtained from resection surgeries. TNBC, triple negative breast cancer; ER, estrogen receptor.
Scale bar ¼ 100 μm. Adapted with permission from Ref. 265.
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4.1.3 Autofluorescence FLIM in two-dimensional samples

Autofluorescence FLIM of 2-D in vitro cultures provides simple and repeatable systems to test
perturbations of autofluorescence lifetime properties. For example, Walsh et al. showed that
NAD(P)H lifetimes can detect metabolic differences due to breast cancer subtype.236 In addition,
the fluorescence lifetime of NAD(P)H correlates with the differentiation potential of neural pro-
genitor and stem cells.190 Similarly, changes in the relative fluorescence lifetimes of NAD(P)H
and lipid droplet associated granules discriminated differentiated and undifferentiated human
embryonic stem cells,277 as well as human induced pluripotent stem cell-derived cardiomyocytes
under oxidative stress.278 Further autofluorescence FLIM studies in 2-D culture discriminated
activation states in multiple types of immune cells including macrophages209 and T cells.259

Finally, autofluorescence FLIM can resolve subcellular features to study intracellular dynam-
ics, including communication between organelles, subcellular features of whole cell processes
such as cell division, and bioenergetic demands of different cell types. Mitochondrial organi-
zation is often altered to accommodate cellular bioenergetics and biosynthetic demands.
Changes in metabolism are also a hallmark of many diseases including cancer. Therefore, mito-
chondrial imaging has been especially popular for subcellular FLIM applications. Fluorescent
dyes such as TMRE can measure mitochondrial membrane potential, which is closely related to
cell health.279 However, mitochondrial dyes can alter cellular respiration,280 and therefore label-
free methods are in development. NAD(P)H and FAD fluorescence signals are brightest in the
mitochondria, which enables label-free visualization of mitochondria. Pouli et al. showed that
FLIM of NAD(P)H and FAD can capture rapid changes in mitochondrial spatial dynamics and
metabolism using high-resolution imaging of individual mitochondria within cells.281

4.2 FLIM of Exogenous Molecular Probes

4.2.1 Exogenous molecular probes for in vivo applications

Numerous optical probes have been developed for both in vivo and in vitro applications to capi-
talize on the sensitivity of FLIM to physical conditions, including viscosity,282 temperature,283

acidity,284 and oxygenation.104,247,285 Additional molecular probes have been generated that allow
for FLIM-based monitoring of drug delivery.

Mouse models are widely used for in vivo FLIM studies of exogenous molecular probes.
Ardeshirpour et al. detected mouse tumors in vivo that express human epidermal growth factor
receptor (HER2) with FLIM of a fluorescent anti-HER2 antibody.286 Similarly, FLIM showed
that the near-infrared fluorescence dye cypate localizes to mouse tumors in vivo [Fig. 10(a)].
FLIM of two fluorophores, cypate and bacteriochlorophyll, can identify the unique distribution
of each fluorophore in vivo,239,287,290 which is difficult with intensity-based imaging alone. FLIM
has also evaluated renal function in mice using the fluorescence lifetime reporter LS-288, which
has a distinct lifetime when free in solution vs. bound to proteins. This approach provides
contrast between the protein-rich viscera and the mostly protein-free bladder in mice in vivo
[Fig. 10(b)].288 Furthermore, pH-sensitive fluorescence lifetime probes that provide a nontermi-
nal method to quickly determine the acidity of a region in vivo have been developed.291 Overall,
FLIM in conjunction with the development of these sophisticated probes is promising in cancer
detection and other in vivo applications.

In non-mammalian in vivo models, fluorescence lifetime probes that change with both
temperature292,293 and concentration of ions have been developed. For example, Zhang et al.
generated a phosphorescent lifetime probe that is temperature dependent and demonstrated this
temperature dependence in vivo in a zebrafish model.283 Another example of a non-mammalian
application of fluorescence lifetime probes includes imaging chloride ion concentrations in
cockroach salivary glands done by Hille et al.294

4.2.2 In vitro molecular probe FLIM

Many fluorescence lifetime probes exist for in vitro applications to measure whole cell changes
and localize molecular trafficking within a cell. For example, a fluorescence lifetime probe was
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developed to track the location and use of Zn2þ within a cell. These probes can be localized to
understand ion use within individual organelles. Other fluorescence lifetime probes have been
developed to detect intracellular prodrug trafficking,295 as well as pH296 and oxygenation
changes. Oxygen sensing via phosphorescent lifetime imaging has become a well-established
method to monitor intracellular oxygen tension. Furthermore, simultaneous measurement of
NAD(P)H FLIM and oxygen sensing by phosphorescence lifetime imaging of Ruthenium
tris-(2,2′-bipyridyl) has also been demonstrated in 2-D cell cultures.297

4.3 FLIM-FRET Applications

4.3.1 FLIM-FRET for in vivo applications

Finally, FLIM can be used to better capture extracellular and subcellular interactions on the
nanoscale both in vivo and in vitro via FLIM-FRET. FLIM-FRET interactions can be used
to measure protein activity, gene regulation, and subcellular dynamics. For example, an activat-
able FRET probe has been developed with a donor–acceptor pair that can be cleaved by matrix
metalloproteinases (MMP). This probe was used in a mouse model of breast cancer to monitor
MMP activity.298 FLIM-FRET has also identified patterns in RhoA activity in vivo using a GFP-
RFP Raichu-RhoA reporter. These studies found that active RhoA, which is associated with
cellular cytoskeleton organization, has subcellular localization to the leading edge of invasion
in a pancreatic cancer mouse model.299
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Fig. 10 Molecular probes for FLIM and FLIM-FRET. (a) Near-infrared fluorescence lifetime image
of Cyp-GRD distribution (heatmap) in an A549-tumor-bearing mouse at 24-h postinjection.
Adapted with permission from Ref. 287 (b) Fluorescence lifetime (heatmap) of mouse abdomen
acquired 90 min after intravenous injection of LS-288. The low fluorescence lifetime region in the
center of the abdomen is the filled urinary bladder. Adapted with permission from Ref. 288.
(c) FLIM maps of the weighted mean fluorescence lifetime of T2AMPKAR-NES, a sensor for
AMPK activation, in HEK293 spheroids. The blue end of the colormap indicates increased
AMPK activation. Scale bar ¼ 100 μm. Adapted with permission from Ref. 289.
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FLIM-FRET probes have also been used in non-mammalian in vivo models including plants
and zebrafish. In Arabidopsis roots, FLIM-FRET probes have been developed to investigate the
role of transcription factors that regulate plant cell fates.300 In zebrafish, FLIM imaged a time-
course of apoptosis after radiation treatment in 3-D over the entire zebrafish body using a FRET
sensor,301 which provided an important whole-body context for the apoptotic process. These are
just a few of the many non-mammalian in vivo applications of FLIM-FRET.

4.3.2 FLIM-FRET for in vitro applications

Subcellular dynamics can also be monitored with FLIM-FRET in vitro. T2AMPKAR-NES is a
FLIM-FRET sensor for AMPK activation that was shown to detect spatial changes in the activity
of AMPK between the inner and outer layers of human embryonic kidney spheroids in a 3-D
culture [Fig. 10(c)].289 FLIM-FRET has also been used in a 2-D culture of mouse pituitary cells
to detect dimerization between the transcription factor CAATT and the enhancer binding protein
alpha. This dimerization corresponds with increased gene expression and adipogenesis.302

Finally, autofluorescence FLIM-FRET can detect molecular interactions within live cells as well,
specifically between NAD(P)H and tryptophan. In these studies, tryptophan is the FRET donor
and NAD(P)H is the FRET acceptor [i.e., NAD(P)H quenches tryptophan fluorescence]. These
studies found that doxorubicin increases the abundance of FRET interactions between trypto-
phan and NAD(P)H.303 New developments in super-resolution FLIM can localize molecular
features within smaller structures and is growing in popularity along with other super-resolution
techniques.133,304

4.4 Challenges and Solutions in FLIM Applications

FLIM provides insight into molecular features of living systems, yet challenges remain. FLIM
instrumentation is more costly than intensity-based measurements. In addition, FLIM analysis
requires specific expertise, and the computational cost of FLIM analysis is often higher than
intensity-based imaging. Furthermore, FLIM acquisition is generally slower than intensity im-
aging because more photons are needed to accurately estimate a fluorescence lifetime for each
pixel. This can be limiting for biological processes that occur rapidly.305 Additionally, fluores-
cence lifetimes are affected by numerous factors (e.g., molecular interactions/binding activity,
environmental factors such as pH, temperature, and viscosity), which can complicate the inter-
pretation of fluorescence lifetime changes in biological systems. Like all light microscopy, FLIM
suffers from scattering that limits SNR and resolution at deep imaging depths and/or highly
scattering samples. The effects of scattering can be improved with MP-LSM, but imaging depths
are still limited to <2 mm in most tissues.106 For in vivo applications, motion artifacts from
animal breathing and heartbeat require specific sample preparation and/or image gating to main-
tain quality during FLIM acquisition,306 also in a similar fashion to other light microscopy
techniques.

Endogenous fluorophores have quantum yields that are orders of magnitude lower than tra-
ditional dyes,76 which presents challenges for autofluorescence FLIM. Furthermore, disentan-
gling the contributions from multiple endogenous fluorophores can be difficult when lifetime
values overlap, such as NADH and NADPH or FAD and FMN.49,307–310 Numerous drugs also
naturally fluoresce, and these properties must be known when measuring fluorescence lifetime
changes due to drug treatment. For example, Mohammed et al. could not separate the over-
lapping lifetimes of NAD(P)H and zinc-oxide nanoparticles, so their contribution was com-
bined into one lifetime component.311 Other experimental parameters including cell density,
media conditions, 2-D versus 3-D culture, and coatings on culture dishes can have significant
effects on autofluorescence lifetime values.51,205,237 To minimize these challenges, care should
be taken to keep parameters consistent across samples and a daily control sample should be
imaged. Furthermore, drugs that can directly modulate autofluorescent molecules, such as
duroquinone, which has been shown to modulate the ratio of NAD+ to NADH, might aid in
interpretation.312

FLIM of molecular probes is often challenged by the nonspecific binding of the probe.
Molecular probes in vivo also suffer from high background due to autofluorescence. FLIM
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probes with long lifetimes (>8 ns) can remove autofluorescence background, but acquisition
must be optimized for these longer lifetimes. FLIM-FRET probes must also be designed to accu-
rately measure protein interactions without interfering with the interaction, which is especially
difficult when the labeled molecules are overexpressed and likely disrupt the normal state of the
cells.313 Therefore, careful management of the experimental conditions and appropriate controls
are needed for robust FLIM studies. Overall, FLIM is an enabling technique that requires specific
training for reproducible results and appropriate data interpretation.

5 Conclusion

FLIM is a widely used tool for biomedical imaging and has advanced the field of microscopy in
the past few decades. In this review, we discussed FLIM as a technique to measure biophysical
changes at the molecular scale. FLIM coupled with fluorescence lifetime probes can quantify
chemical and physical changes to molecules including changes in temperature, viscosity, pH,
and others. Unlike intensity-based measurements, lifetime is self-referenced and independent of
the absolute number of photons. Therefore, FLIM is not corrupted by variations in intensity
between pixels.

FLIM instrumentation can be deployed in either the time-domain or frequency-domain,
which generates either a photon timing histogram or a phase-frequency plot to measure the expo-
nential decay rate of the fluorescence. Analytical equations describe the decay rate and fluores-
cence lifetime. FLIM images can be acquired either in a WFI scheme using a camera-based
detection or by raster-scanning a focused point of excitation across a sample using a single chan-
nel detector. Instrumentation schemes are flexible and can be optimized for the desired field of
view, spatial–temporal resolution, imaging speed, and other considerations. Multiphoton FLIM
provides a unique tool for 3-D optical sectioning and deeper imaging depth into tissues, which
is especially advantageous for in vivo and in situ imaging. Current fast-FLIM systems use
electronics with short dead times to increase frame rates for medical applications in surgery.
Algorithms for FLIM analysis are under rapid development to improve image segmentation,
quantify multidimensional heterogeneity, and perform multiparametric analysis. These computa-
tional tools unravel spatial and molecular features of cellular physiology that are not apparent
with qualitative observation of FLIM images.

Numerous biomedical applications were discussed including autofluorescence FLIM as a
label-free method to monitor metabolism and protein–enzyme interactions with the endog-
enous fluorophores NAD(P)H and FAD. Autofluorescence FLIM has provided insight into
metabolism in cancer, stem cells, immune cells, and the brain across diverse sample types
including 3-D organoids, microfluidic physiological systems, in vivo mouse models, and
human skin. FLIM-FRET sensors have also quantified molecular interactions related to cellular
signaling, cellular proliferation, and cytokinesis. In the future, FLIM technologies, analysis,
and applications will continue to develop toward advancements in biological research and
clinical assessments.
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