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Abstract

Significance: Photoacoustic-based visual servoing is a promising technique for surgical tool tip
tracking and automated visualization of photoacoustic targets during interventional procedures.
However, one outstanding challenge has been the reliability of obtaining segmentations using
low-energy light sources that operate within existing laser safety limits.

Aim:We developed the first known graphical processing unit (GPU)-based real-time implemen-
tation of short-lag spatial coherence (SLSC) beamforming for photoacoustic imaging and
applied this real-time algorithm to improve signal segmentation during photoacoustic-based
visual servoing with low-energy lasers.

Approach: A 1-mm-core-diameter optical fiber was inserted into ex vivo bovine tissue.
Photoacoustic-based visual servoing was implemented as the fiber was manually displaced
by a translation stage, which provided ground truth measurements of the fiber displacement.
GPU-SLSC results were compared with a central processing unit (CPU)-SLSC approach and
an amplitude-based delay-and-sum (DAS) beamforming approach. Performance was addition-
ally evaluated with in vivo cardiac data.

Results: The GPU-SLSC implementation achieved frame rates up to 41.2 Hz, representing
a factor of 348 speedup when compared with offline CPU-SLSC. In addition, GPU-SLSC
successfully recovered low-energy signals (i.e., ≤268 μJ) with mean ± standard deviation of
signal-to-noise ratios of 11.2� 2.4 (compared with 3.5� 0.8 with conventional DAS beam-
forming). When energies were lower than the safety limit for skin (i.e., 394.6 μJ for 900-nm
wavelength laser light), the median and interquartile range (IQR) of visual servoing tracking
errors obtained with GPU-SLSC were 0.64 and 0.52 mm, respectively (which were lower than
the median and IQR obtained with DAS by 1.39 and 8.45 mm, respectively). GPU-SLSC addi-
tionally reduced the percentage of failed segmentations when applied to in vivo cardiac data.

Conclusions: Results are promising for the use of low-energy, miniaturized lasers to perform
GPU-SLSC photoacoustic-based visual servoing in the operating room with laser pulse repeti-
tion frequencies as high as 41.2 Hz.
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1 Introduction

Visual servoing1–3 is a promising approach for maintaining visualization of surgical tools during
minimally invasive procedures and keeping track of the location of nearby anatomical targets
within the body. This approach broadly refers to vision-based robot control, and the robot
“vision” that we focus on in this paper is provided through photoacoustic images.4,5

Photoacoustic imaging is achieved by transmitting pulsed light to a structure of interest, which
absorbs the light, undergoes thermal expansion, and generates an acoustic response that is
received by a conventional ultrasound probe.6–8 This photoacoustic imaging technique was pre-
viously demonstrated for multiple applications that require surgery or interventions, such as
visualization of brachytherapy seeds,9,10 intravascular imaging,11 cardiac catheter visualization,5

fetal surgeries,12 prostate surgeries,13 and endonasal surgeries.14–16 In these applications, struc-
tures of interest include blood vessels, nerves, drill tips, and catheter or needle tips.5,17,18 One or
more optical fibers may be coupled to the tool, catheter, or needle tips to transmit the light
pulses.11,19–21 Alternatively, a fiber or fiber bundle may be operated independently to provide
photoacoustic-based anatomical guidance in the absence of surgical tools.22–24

With the rise of robotic surgery,25–28 we can reasonably envision photoacoustic system com-
ponents that are robotically controlled to enable more successful surgeries and interventions.29

A summary of the procedures required to achieve photoacoustic-based visual servoing, in par-
ticular, is shown in Fig. 1, starting with a robot-held ultrasound probe that receives photoacoustic
signals. Receive beamforming techniques are then applied to create a photoacoustic image, and
an image segmentation algorithm locates features of interest within the image. Beamforming
techniques are implemented rather than photoacoustic reconstruction techniques such as back-
projection due to two considerations. First, beamforming is sufficient to accurately quantify the
position and size of photoacoustic sources,30 which are two parameters of primary interest for
photoacoustic-based visual servoing. Second, conventional linear or phased array ultrasound
probes would be placed externally for the proposed visual servoing application, rather than the
ring arrays (i.e., spherical or cylindrical detection surfaces) that are more favorable for back-
projection algorithms and quantitative photoacoustic applications.30 After beamforming and
image segmentation, the ultrasound probe motion is controlled by the robot to ensure that targets
of interest remain at the center of the image.

Previous photoacoustic-based visual servoing studies have implemented conventional delay-
and-sum (DAS) receive beamforming.4,5 However, DAS photoacoustic images contain poor sig-
nal-to-noise ratio (SNR) when using low laser energies, which compromises the performance of
the segmentation step shown in Fig. 1. This limitation may be overcome by increasing the inci-
dent laser energy or otherwise enhancing the amplitude of photoacoustic signals. Although sta-
ble segmentation is often achieved with high laser energies, these energies tend to introduce side
lobes and other artifacts. Therefore, alternative options for signal amplitude enhancement would
be more suitable. For example, frame averaging enables the use of lower energies and simulta-
neously reduces incoherent noise and artifacts,31,32 but this option introduces motion arti-
facts,33,34 which negatively impact the overall accuracy of visual servoing.

Alternatives to DAS beamforming have demonstrated potential to overcome the limitations
of poor target visibility without assistance from frame averaging. For example, minimum

Fig. 1 Overview of photoacoustic-based visual servoing.
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variance (MV) beamforming has been shown to suppress off-axis signals and improve spatial
resolution by decreasing main lobe widths.35 However, MV beamforming is sensitive to sound
speed changes and requires subarray averaging,36 more than one stage of MV calculations, or the
combination of weighting factors.35,37 These additional steps increase the computational burden
of this beamforming alternative. Similarly, a synthetic aperture focusing (SAF) approach is ben-
eficial with regard to enhancing lateral resolution along the depth (or axial) dimension38,39 and
reducing reverberation artifacts.40 However, these techniques require a combination of delay
sequences for each pixel in the reconstructed image,41 which increases computational burden.
Additional beamforming alternatives include coherence factor (CF) weighting42 or a combina-
tion of beamforming methods (e.g., DAS + CF,43 SAF + CF,44 and MV + CF37), and these
options suffer from challenges similar to those stated above.

Short-lag spatial coherence (SLSC) beamforming45–48 is another option that has shown sub-
stantial promise in multiple interventional tasks.9,15,16,29,49 Therefore, SLSC is considered to be
one of the more suitable beamforming options available to improve photoacoustic-based visual
servoing. SLSC beamforming requires multiple normalized cross-correlations of delayed data to
directly display measurements of aperture-domain spatial coherence rather than amplitude.
Although SLSC beamforming is known to be insensitive to signal amplitude,48,50 the proposed
application of visual servoing and surgical tool tracking does not require this sensitivity. The
benefits of using SLSC beamforming for the proposed application are that it enhances the con-
trast of single-frame photoacoustic images (i.e., no frame averaging required)15,46,51 and triples
effective penetration depths when compared with DAS beamforming.9,46 In addition, SLSC
beamforming improves the quality of photoacoustic signals acquired with low laser energies,52

which is advantageous because the use of low laser energies can help to ensure laser safety.
Miniaturized low-energy light delivery systems (such as pulsed laser diodes52–54 or light-emitting
diodes55) are additionally beneficial for portability in the operating room and increasing frame
rates when compared with Q-switched lasers. Therefore, we are interested in exploring capa-
bilities and limitations of SLSC beamforming with regard to low-energy light sources.

Drawing on this history of promise and success, this paper extends our two previous
conference papers,56,57 which describe elements of the first known real-time implementation
of the SLSC beamformer for photoacoustic imaging, utilizing the graphical processing unit
(GPU) of an FDA-approved joint clinical and research Alpinion E-CUBE 12R ultrasound sys-
tem. The new contributions of this paper include a detailed assessment of the relationships
among SLSC beamforming parameters, processing time, and image quality and reports of photo-
acoustic signal-to-noise ratios (SNRs) obtained with a range of laser energies, target depths, and
SLSC beamforming parameters. This information is then used to evaluate the two essential vis-
ual servoing tasks of fiber tip tracking and probe centering and to compare these tasks with both
the real-time SLSC beamformer and the DAS beamformer. Finally, our presented GPU-SLSC
approach is evaluated with in vivo data.

This paper is organized as follows. Section 2 details the framework of our GPU-SLSC photo-
acoustic implementation and describes the methods used to assess performance. Section 3 dem-
onstrates GPU-SLSC feasibility for real-time applications, as well as the improved SNR and
increased tracking accuracy achieved with GPU-SLSC during visual servoing with low laser
energies. Section 4 discusses these findings and their implications. Finally, Sec. 5 concludes
the paper with a summary of the major technical contributions and achievements of this work.

2 Method

2.1 GPU Implementation of Photoacoustic SLSC Imaging

The steps to implement real-time SLSC imaging with photoacoustic data acquired with an
Alpinion E-CUBE 12R system are shown in Fig. 2. First, raw channel data were acquired by
the ultrasound system, which was triggered by a signal from the laser system. Depending on the
ultrasound system memory allocation and the number of available channels, a regrouping proc-
ess (i.e., “Regroup channels” in Fig. 2) was performed and transferred to the device texture
memory as an Ni × Nz matrix, where Ni is the number of elements and Nz is the number
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of axial samples. The total number of acquisitions needed before processing the data is an integer
computed as NA ¼ Ni∕Nc, where Nc is the number of channels.

The ordered raw data were stored in texture memory [i.e., read-only cached memory that
optimizes physically adjacent two-dimensional (2-D) operations]. DC removal was then com-
puted by applying one-dimensional convolutions of time-domain kernels, executed independ-
ently along the axial dimension. This operation is graphically displayed to the right of the
“Remove DC” block in Fig. 2, showing operations at the compute unified device architecture
(CUDA) kernel level when transitioning from texture memory to global memory (i.e., the gen-
eral memory of the GPU device that lasts for the duration of the process). The Hilbert transform
was then computed along the axial dimension using the fast Fourier transform (FFT) libraries
embedded in CUDA (NVIDIA, Santa Clara, CA, USA). Here, FFT kernels ran independently
across the element dimension Ni.

Next, synthetic receive aperture imaging was performed to generate a specific number of
scanlines, Nx, determined by the user as an input parameter, obtaining an Ni × Nx × Nz matrix.
This operation is graphically displayed to the right of the “Receive delay” block in Fig. 2, show-
ing operations at the CUDA kernel level when transitioning from texture memory to global
memory. The computation of receive delays was performed in the device texture memory, opti-
mized for 2-D linear interpolation, and kernels were distributed with a ratio of one thread per
axial sample, executed independently across elements.

The SLSC computations were the same as those described for a comparative Verasonics
ultrasound system implementation58 developed by Hyun et al.59 These processes are denoted
as the dark gray boxes in Fig. 2. In contrast to the original SLSC implementation,45 the GPU
approach computes a single ensemble correlation coefficient from an ensemble sum of coherence
factors Cij, Cii, and Cjj rather than an average over each coherence value from element pairs
separated by a lag m, as described by the following equations:

EQ-TARGET;temp:intralink-;e001;116;101Cijðz; x; mÞ ¼
XNi−m

i¼1

siðz; xÞsiþmðz; xÞ�; (1)

Fig. 2 Workflow for acquiring a real-time photoacoustic SLSC image with the Alpinion ultrasound
system. The diagrams on the right show graphical displays of GPU kernel distributions for the
“Remove DC”, “Receive delay”, and “Norm. log compress” (normalize and log compress) steps
of real-time photoacoustic SLSC imaging. The x , y , D, and d shown in the CUDA kernels denote
the input memory, output memory, high-pass filter coefficients, and receive delays, respectively.
Variables t , q, and l are indices for axial sample, channel, and scanline, respectively.
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EQ-TARGET;temp:intralink-;e002;116;723Ciiðz; x; mÞ ¼
XNi−m

i¼1

jsiðz; xÞj2; (2)

EQ-TARGET;temp:intralink-;e003;116;682Cjjðz; x; mÞ ¼
XNi−m

i¼1

jsiþmðz; xÞj2; (3)

where siðz; xÞ is a complex signal at element i, scanline x, and axial sample z, and * denotes the
complex conjugate. The coherence factors (Cij, Cii, and Cjj) were stored in the device global
memory and then compounded across an axial kernel size, k, and a cumulative lag, M, which is
defined as the cumulative sum up to the first M lags, as follows:

EQ-TARGET;temp:intralink-;e004;116;604SLSCðz; xÞ ¼
XM
m¼1

P
ẑ∈kCijðẑ; x; mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ẑ∈k
Ciiðẑ; x; mÞP

ẑ∈k
Cjjðẑ; x; mÞ

r : (4)

Finally, the negative SLSC values were set to zero,60 and the SLSC image was then normal-
ized and log-compressed. The maximum term for normalization was computed using logarith-
mic reduction strategies.61 A graphical representation of the logarithmic reduction is shown to
the right of the “Norm. log compress” block in Fig. 2 for two consecutive CUDA kernels. The
first CUDA kernel computed the maximum value across the lateral dimension given a specific
depth. This computation was performed by calculating a vector of maximum values from a layer
of element pairs. The vector of maximum values was then distributed to a smaller layer of
element pairs until a single maximum remains. The maximum value across the lateral dimension
was stored in an axial vector, where a second CUDA kernel calculated the maximum value of
the image with the same steps as the first CUDA kernel.

The entire GPU-SLSC photoacoustic implementation shown in Fig. 2 was executed on a
GeForce GTX 1080 GPU (NVIDIA Corporation, Santa Clara, CA, USA), with 8 GB of
Video Random Access Memory and a core clock speed of 1733 MHz. This GPU was installed
on the Alpinion E-CUBE 12R ultrasound research system.

2.2 Processing Time Assessments

Processing times of the GPU-SLSC photoacoustic implementation were assessed as functions of
beamforming parameters,M and k, and as a function of the overall image depth, d.M was varied
from 5 to 35 in increments of 5, k was evaluated as 3, 11, 19, and 31 axial samples, and d was
evaluated as 5- and 15-cm axial depths. An axial depth of 15 cm was evaluated as a worst-case
scenario in which memory transfer between the central processing unit (CPU) and GPU would
limit real-time imaging capabilities.

To provide computation time measurements that are not limited by the laser pulse repetition
frequency (PRF) (i.e., 10 Hz), the external trigger from the laser (needed for synchronization of
the laser and ultrasound systems to perform photoacoustic imaging) was disabled. Although no
synchronization between the laser system and ultrasound system results in meaningless photo-
acoustic data, this absence of synchronization does not affect algorithm processing times nor the
speed of the GPU-SLSC algorithm. In the absence of wait times for synchronization, each
acquisition and beamforming process was performed immediately after the previous frame was
displayed on the ultrasound software of the Alpinion E-CUBE 12R. The inverse of the frame rate
displayed with the laser trigger disabled was reported as the processing time estimate of the real-
time GPU-SLSC algorithm. Robustness in the estimation of computation times was achieved by
averaging 10 readings of the frame rate obtained over a time span of 10 s.

In addition to measuring overall processing times, the processing time for each stage of the
flow diagram shown in Fig. 2 was measured for the GPU and CPU versions of SLSC beam-
forming (with the selected optimal values of M, k, and d defined in more detail in Sec. 2.3).
CPU-SLSC computations were conducted in a MATLAB environment using the host CPU of the
Alpinion E-CUBE 12R system, which is an Intel Xeon E5-1620 with a 3.5-GHz clock speed and
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32-GB RAM. The processing times from 10 CPU-SLSC executions were averaged to achieve
robust estimates.

2.3 Image Quality Assessments

The experimental setup to assess image quality consisted of photoacoustic signals originating
from an optical fiber tip inserted in ex vivo bovine muscle. The optical fiber was used to transmit
900-nm wavelength laser light from a Phocus Mobile laser (Opotek Inc., Carlsbad, CA, USA)
with an energy of 726 μJ at the fiber tip. Photoacoustic signals were received by an L3-8 linear
array ultrasound probe that was attached to a Sawyer robot arm (Rethink Robotics, Boston, MA),
as shown in Fig. 3. To incorporate the effects of acoustic scattering and the expected depth-
dependent image degradation, the optical fiber tip was located at depths of s ¼ 4 cm and
s ¼ 7 cm. Considering that the primary source of photoacoustic signals is expected to originate
from the tip of the fiber in interventional applications,5 we did not attach the fiber to any surgical
tools in this study.

The overall image depth, d, was adjusted based on the target depth (i.e., d ¼ 5 cm when
s ¼ 4 cm, and d ¼ 10 cm when s ¼ 7 cm). M and k were additionally varied for each target
depth using the same ranges and increment sizes described in Sec. 2.2 (i.e., M was varied from
5 to 35 in increments of 5 and k was evaluated as 3, 11, 19, and 31 axial samples). The selection
of optimal M and k values for these experiments was obtained by implementing three optimi-
zation criteria: (1) maximizing the differentiation between photoacoustic signals and background
noise, (2) minimizing side lobes, and (3) minimizing temporal resolution (i.e., processing times).

The generalized contrast-to-noise ratio (gCNR)62–64 was used to assess the likelihood of
discrimination between regions of interest (ROIs) of beamformed photoacoustic data and after
normalization but before the log compression stage (i.e., the first optimization criterion for
parameter selection).

EQ-TARGET;temp:intralink-;e005;116;423gCNR ¼ 1 −
X1
x¼0

min
x
fpiðxÞ; poðxÞg; (5)

Fig. 3 Photoacoustic acquisition setup. An optical fiber was attached to the translation stage and
inserted into ex vivo bovine tissue. As the optical fiber was translated, an ultrasound probe con-
nected to a robot arm performed visual servoing.
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where pi and po are the probability density functions of signal amplitudes within ROIs inside
and outside the target, respectively. The probability density functions were calculated from histo-
grams computed with 256 bins. The inside ROI was a 3 mm × 3 mm rectangle centered on the
target center, which was defined as the brightest pixel within the photoacoustic image. The out-
side ROI was the same size and shifted 5 mm to the right of the lateral center of the target.

The lateral width of the photoacoustic target, rΔ, was assessed to quantify the extent and
minimize the presence of side lobes (i.e., the second optimization criterion for parameter selec-
tion). This assessment was obtained by measuring the full width at half maximum (FWHM) of
line plots passing through the center of the photoacoustic target, defined as

EQ-TARGET;temp:intralink-;e006;116;628rΔ ¼ FWHM: (6)

To determine the minimum possible energy limits for SLSC and DAS beamforming, the
same experimental setup shown in Fig. 3 and described above was implemented with a shallower
target depth of s ¼ 2.5 cm. Although the real-time parameters were optimized for deeper depths,
it is reasonable to assume that similar or better image quality will be achieved at shallower
depths. Given the 1-mm-core-diameter optical fiber geometry and the current standards for
skin,65 the maximum permissible exposure (MPE) was 50 mJ∕cm2. This MPE translates to
a maximum energy safety limit of 394.6 μJ. The laser energy was varied relative to this
MPE (i.e., laser energies of 118, 184, 268, 364, 463, 570, and 645 μJ) for multiple photoacoustic
image acquisitions.

The resulting SNR for each laser energy was evaluated with real-time SLSC and offline DAS
beamforming as follows:

EQ-TARGET;temp:intralink-;e007;116;463SNR ¼ μi
σo

; (7)

where μi is the mean value within an ROI of beamformed photoacoustic data inside the target
(after normalization but before the log compression stage) and σo is the standard deviation within
an ROI of beamformed photoacoustic data outside the target (after normalization but before the
log compression stage). The ROI for the signal was manually defined as a rectangle of approx-
imately 2.5 mm × 2.5 mm, centered on the target. Five independent background ROIs of
the same size were placed 10 to 15 mm to the left of the lateral center of the target to obtain
5 SNR measurements that were used to report the mean ± standard deviation of SNR measure-
ments. For each laser energy, SNR differences between DAS and either CPU-SLSC or GPU-
SLSC, as well as SNR differences between CPU-SLSC and GPU-SLSC, were each evaluated
using a repeated-measure analysis of variance to determine statistical significance (p < 0.05).

2.4 Application to Visual Servoing

The visual servoing process (outlined in Fig. 1 and detailed as the velocity-based visual servoing
procedure reported in our previous publication5) initiated with the acquisition of a real-time
photoacoustic image that was then sent to a postprocessing algorithm for target detection.
Fast computation and transferring of the photoacoustic image is a critical component of the
visual servoing algorithm to avoid bottlenecks and to enable smooth ultrasound probe motions.
Morphological operations such as dilation and erosion were then performed on the beamformed
photoacoustic image to detect a single connected component and calculate its centroid. The lat-
eral position of the centroid ~p was then saved and compared with the lateral center line of the
image ~p0. The lateral difference was similarly computed (Δ~p ¼ ~p − ~p0). Finally, the ultrasound
probe was positioned with the goal of minimizing Δ~p, effectively centering the ultrasound probe
on the fiber tip.

Two visual servoing experiments were conducted in the ex vivo bovine muscle to assess the
performance of visual servoing with real-time SLSC (i.e., GPU-SLSC) and real-time DAS beam-
forming. The first visual servoing experiment consisted of a probe centering test.4 During the
initialization of this experiment, the probe was placed on the surface of the bovine tissue, and
the length of the optical fiber was aligned with the imaging plane (i.e., Δ~p ¼ 0). Then, the tip of
the optical fiber was laterally displaced 6 mm from the center of the image. Visual servoing was
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deployed with the goal of ensuring that the final position of the lateral center of the ultrasound
probe coincided with the segmented location of the fiber tip.

The second visual servoing experiment was performed after the ultrasound probe was cen-
tered. This experiment tested the ability of the visual servoing system to follow the fiber tip over
a total distance of 10 mm, using a translation stage to achieve fiber advancement in tissue and to
obtain ground truth displacement measurements. We refer to this second experiment as the fiber
tracking experiment. The two visual servoing experiments (i.e., probe centering and fiber
tracking) were performed with laser energies of 169, 248, and 322 μJ, which were lower than
the maximum energy required to achieve laser safety with our system configuration (i.e.,
394.6 μJ at the fiber tip, as described in Sec. 2.3). The statistical significance of performance
differences between real-time SLSC and real-time DAS was evaluated with a Mann–Whitney
U test.66

2.5 In Vivo Segmentation Assessment

Ideally, the experiments described in Sec. 2.4 would be repeated in an in vivo setting. However,
the use of low laser energies was difficult to detect with DAS beamforming and repeated fiber
tracking, and probe centering experiments were anticipated to unnecessarily extend the duration
of an in vivo study, potentially causing unnecessary animal discomfort.

Therefore, we implemented an alternative plan. The segmentation performance with DAS,
CPU-SLSC, and GPU-SLSC imaging was tested with in vivo data obtained from a previously
completed experiment consisting of an optical fiber inserted in a porcine heart, as described in
more detail in our previous publication.5 To summarize the data acquisition procedure, the opti-
cal fiber was first inserted into a cardiac catheter, and then the fiber–catheter pair was guided to
the right atrium of the heart. The fiber emitted a laser wavelength of 750 nm with a pulse energy
of 2.98 mJ. A total of 10 frames of resulting photoacoustic data were acquired with an Alpinion
SP1-5 phased array ultrasound probe. This study was approved by the Johns Hopkins University
Animal Care and Use Committee.

Considering the relatively high laser energy that was utilized in this previous experiment,5

Gaussian-distributed noise was added to the raw in vivo channel data as a surrogate for decreas-
ing the laser energy. The resulting channel SNR of the raw in vivo data was evaluated as follows:

EQ-TARGET;temp:intralink-;e008;116;363SNRc ¼ 20 log10

�
signalrms

noiserms

�
; (8)

where the rms refers to the root-mean-square of either the signal or the noise. The signal was
defined as the entire channel data recording, and the noise was defined as the Gaussian random
matrix added to the channel data. The channel data with added noise were then beamformed
using DAS, CPU-SLSC, and GPU-SLSC, and photoacoustic signals were segmented using the
algorithm described in our previous publication.5 The locations of the segmented signals were
compared with ground truth segmentations derived from corresponding in vivo channel data with
no noise added. A failed segmentation was defined as either no segmentation result or no overlap
of the segmented signal with the ground truth segmentation.

3 Results

3.1 Selection of Beamforming Parameters

Figure 4 shows GPU-SLSC processing time results for several pairs of M and k at two imaging
depths. These processing times are limited by the maximum pulse repetition period (PRP) of any
laser, which equals 100 ms for our laser, which has a 10-Hz PRF. Ideally, the processing times
would be maintained below this limit (indicated by the dashed line) to avoid bottlenecks due to
signal processing.

At 5-cm image depth, GPU-SLSC imaging reconstructs frames below this limit. At 15-cm
image depth (which represents a worst-case scenario for internal light delivery with external
ultrasound probe placement9,15,46,49,67), the majority of possible M and k parameters also fell
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below this limit. Specifically, pairs of [M > 20, k ≥ 31] and [M > 25, k ≥ 19] resulted in
processing times above the laser PRP indicated by the dashed line. In addition, the observed
increase in standard deviation as M increased is proportional to the increased number of oper-
ation loops associated with the CUDA kernels.

Figure 5 shows image quality metrics as functions of M, k, and d. The discrimination
between the source and the background provided by the gCNR metric [Figs. 5(a) and 5(b)]
is the worst for both depth values when k ¼ 3, although the gCNR is generally good in most
of these cases. The mean ± one standard deviation of gCNR values shown in Fig. 5 is 0.97�
0.02 and 0.89� 0.70 when d ¼ 5 cm and d ¼ 10 cm, respectively. When d ¼ 10 cm, the
lowest M and k values in Fig. 5(b) show decreased gCNR, and gCNR is otherwise constant
as M increases. Figures 5(c) and 5(d) show that lateral resolution improves as M increases,
which is expected.9,45,48

Fig. 5 Image quality comparisons of (a, b) gCNR and (c, d) lateral resolution as functions of
cumulative lag and axial kernel size for imaging depths of (a, c) d ¼ 5 cm and (b, d) d ¼ 10 cm.

Fig. 4 GPU-SLSC processing times for a single image frame, acquired with d ¼ 5 cm and
d ¼ 15 cm imaging depths while varying the cumulative lag M and axial kernel size k .
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The optimal M and k values were selected based on our observations of Figs. 4 and 5.
Specifically, lateral resolution improvement was minimal when M > 25 (Fig. 5) and temporal
resolution generally remained below the 100-ms PRP limit at M ¼ 25 (Fig. 4). Therefore,
M ¼ 25 was selected as optimal. The optimal k value was selected by maximizing gCNR, con-
sidering that successful discrimination between target and background is critical for the visual
servoing segmentation algorithm. A value of k ¼ 11 was chosen because this value results in a
gCNR of approximately 1 and increasing k beyond this value is expected to decrease temporal
resolution and axial resolution, as previously reported for ultrasound SLSC implementations.59,68

3.2 Speedup of GPU-SLSC Compared with CPU-SLSC

A depth of d ¼ 5 cm and the optimal values determined in Sec. 3.1 (i.e., M ¼ 25 and k ¼ 11)
were implemented to compare computation times. The size of the raw data was a 3328 × 128

matrix of 16-bit resolution for this evaluation. Figure 6 shows the average processing times for
each stage of the SLSC beamforming flow diagram with GPU-SLSC and CPU-SLSC imple-
mentations. GPU-SLSC imaging reduced computation times for each of the processing stages
in comparison to CPU-SLSC imaging, with speedups of 13.5×, 49.7×, 12.1×, 711.2×, 550.9×,
and 16.9× for the “Reorder,” “No DC,” “Hilbert,” “Delays,” “SLSC,” and “Normalize” stages,
respectively.

Comparing the sum of the processing times (i.e., 15.91 ms) with the computation time
between frames (i.e., 24.3 ms) resulted in a measured overhead of 8.39 ms. This overhead, likely
due to memory transfer and intrinsic subroutines of the ultrasound software of the Alpinion
E-CUBE 12R, was included when assessing the overall performance of our real-time implemen-
tation. With this inclusion, GPU-SLSC provided an overall speedup of 348.7× when compared
with CPU-SLSC. Translating the computation time to real-time imaging scenarios, GPU-SLSC
enabled a frame rate up to 41.2 Hz.

3.3 Performance in Ex Vivo Tissue

Figure 7 shows examples of beamformed photoacoustic images of the fiber tip acquired with a
laser energy of 268 μJ [Fig. 7(a)] along with SNR measurements as a function of laser energy
[Fig. 7(b)]. The SLSC and DAS images in Fig. 7(a) were normalized, log-compressed and dis-
played with a dynamic range of 15 dB. The mean ± one standard deviation of the SNR mea-
sured in the DAS, CPU-SLSC, and GPU-SLSC images of Fig. 7(a) were 3.5� 0.9 dB,
11.4� 2.9 dB, and 12.1� 4.2 dB, respectively. As illustrated in Fig. 7(a), SLSC imaging con-
sistently outperformed DAS imaging and visualized low-energy signals (≤268 μJ) with a mean
SNR of 11.2� 2.4 (p < 0.05) The corresponding DAS SNR was 3.5� 0.8. The mean SNR
difference between the CPU-based and GPU-based SLSC implementations was 1.14. This dif-
ference was not statistically significant (p > 0.05).

Fig. 6 Processing times for each stage of SLSC beamforming using GPU and CPU
implementations.
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Figure 8 shows the results of the probe centering experiment. Photoacoustic images acquired
with one low laser energy (i.e., 110 μJ) and one higher laser energy (i.e., 645 μJ) are shown in
Fig. 8(a). For the higher laser energy (which is higher than the safety limit of 394.6 μJ), visual
servoing with either DAS or GPU-SLSC beamforming successfully accomplished the probe
centering task. The left side of Fig. 8(a) shows the position of the fiber tip before and after the
execution of visual servoing. The segmented target (denoted by the blue circle) is present and
constant in both DAS and SLSC images at 645 μJ. The right side of Fig. 8(a) shows a corre-
sponding result for the lower laser energy. While visual servoing with DAS generally failed to
segment the target due to the low SNR, visual servoing with SLSC beamforming successfully
performed the probe centering task.

Probe centering errors measured between desired centering locations and the actual robot
positions are shown in Fig. 8(b) for three energies below the safety energy limit and within the
range of energies shown in Fig. 8(a). These probe centering errors were obtained over a time
period of 12 to 15 s after the first intersection of segmented target position with the center of the

Fig. 8 (a) Example of probe centering results for high and low laser energies with DAS and GPU-
SLSC photoacoustic images. The first and second columns for each energy show the initial and
final position of the fiber before and after probe centering, respectively. The dashed blue line rep-
resents the center of the image. The blue circle denotes the target detected by the segmentation
algorithm. Video 1 contains a real-time display of these results, including additional photoacoustic
images acquired between the before and after still frames (Video 1, MP4, 8.34 MB [URL: https://doi
.org/10.1117/1.JBO.25.7.077002.1]). (b) Probe centering experiment errors.

Fig. 7 (a) Photoacoustic images of the optical fiber inserted into ex vivo bovine muscle at 25 mm
axial depth, operating at 268 μJ laser energy. Images were reconstructed with DAS, CPU-SLSC,
and GPU-SLSC beamformers. (b) SNR results from the optical fiber inserted into ex vivo bovine
muscle as a function of the laser energy.
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image. Five error measurements were computed for each energy. The horizontal line inside each
box displays median error. The upper and lower edges of each box represent the first and third
quartiles of the data set, respectively. The vertical lines connected to the boxes extend to the
minimum and maximum values in each data set.

With 169-μJ laser energy, the median and interquartile range (IQR) of tracking errors were
1.71 and 0.71 mm, respectively, with DAS-based visual servoing and 1.11 mm and 0.39 mm,
respectively, with SLSC-based visual servoing. Similarly, with 248-μJ laser energy, there was a
higher median tracking error with DAS beamforming (i.e., 1.11 mm) than that obtained with
SLSC beamforming (i.e., 0.52 mm). However, SLSC beamforming had a higher IQR of tracking
errors (i.e., 0.79 mm) when compared with DAS beamforming (i.e., 0.29 mm) at the same laser
energy. With 322-μJ laser energy, the median and IQR of tracking errors were 0.46 mm and
0.05 mm, respectively, with DAS-based visual servoing. These errors were lower than the
median and IQR of tracking errors obtained with SLSC beamforming, which were 0.77 mm
and 0.47 mm, respectively. Overall, for the three laser energies (i.e., 169, 248, and 322 μJ), the
median and IQR of tracking errors were 1.10 mm and 0.85 mm, respectively, with DAS and
0.81 mm and 0.68 mm, respectively, with SLSC. For each laser energy in Fig. 8(b), the
differences between the median probe centering error results with SLSC- and DAS-based visual
servoing were statistically significant (p < 0.01).

Figure 9 shows the results of the fiber tracking experiment. The trajectories of the robot-held
ultrasound probe obtained during DAS- and SLSC-based visual servoing are compared with the
desired trajectory in Fig. 9(a). Ideally, the trajectories generated with visual servoing would be
closely related to the desired trajectory performed manually with the translation stage and indi-
cated with the dashed line. Both DAS- and SLSC-based visual servoing followed the fiber dis-
placement during the 0- to 18-s time interval. After 18 s, the noise present in the DAS image
contributed to failed segmentations, resulting in a visual servoing failure, which is shown as the
circles in Fig. 9(a).

When consecutive instances of failed segmentation were recorded over a 1-s time period, the
robot performed a search around the current region in the lateral and elevation ultrasound probe
directions. This searching algorithm was responsible for the increased deviation of the seg-
mented target locations from desired locations with DAS-based visual servoing, as observed
in the red shaded region of Fig. 9(a) (i.e., within the 21- to 38-s time interval). During this time
interval, the median and IQR of tracking errors were 10.64 mm and 7.68 mm, respectively, with
DAS-based visual servoing. When excluding this interval, the median and IQR of the difference
between actual and desired trajectories were 2.02 mm and 0.41 mm, respectively, with DAS
beamforming and 1.17 mm and 0.68 mm, respectively, with SLSC beamforming. Therefore,
the real-time SLSC approach produced less deviations from the desired trajectory overall.

Tracking errors measured between the desired locations and the measured robot positions are
summarized in Fig. 9(b). These errors were computed from visual servoing data obtained
between two timestamps. The first timestamp was acquired when both the robot position and
the desired location were initialized (i.e., ~p ¼ ~p0, t ¼ 0). The second timestamp was acquired
after the fiber was displaced by 10 mm with the translation stage. Generally, tracking errors were
larger with DAS compared with SLSC beamforming for each laser energy shown in Fig. 9(b).

Fig. 9 Fiber tracking results. (a) Example of robot positions with fiber tracking at 248 μJ. The
circles represent time stamps when the visual servoing algorithm failed to segment the photo-
acoustic signal. (b) Fiber tracking errors at mid-range energies.
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Overall, for the three laser energies (i.e., 169, 248, and 322 μJ), the median and IQR of tracking
errors were 2.01 mm and 8.97 mm, respectively, with DAS beamforming and 0.64 mm and
0.52 mm, respectively, with SLSC beamforming. For each laser energy, the differences between
the median tracking error results with SLSC- and DAS-based visual servoing were statistically
significant (p < 0.01).

3.4 In Vivo Performance

Figure 10(a) shows in vivo images created with DAS, CPU-SLSC, and GPU-SLSC beamformers
after adding noise resulting in −30-dB channel SNR [i.e., SNRc in Eq. (8)]. The percentage of
failed segmentations measured from 10 frames of photoacoustic data is shown as a function of
channel SNR in Fig. 10(b), represented as the mean ± one standard deviation of measurements
obtained after varying the amplitude threshold in the segmentation algorithm from 35% to 66%
of the maximum amplitude within each photoacoustic image. At −36-dB channel SNR, each
beamforming method completely fails to segment the photoacoustic target (i.e., 100% failure).
As channel SNR improved, the percentage of failed segmentations was reduced with CPU-SLSC
and GPU-SLSC beamforming, measuring an average of 2.5% from −28- to −20-dB channel
SNR. On the other hand, DAS beamforming resulted in a higher percentage of failed segmen-
tations for the same range of channel SNRs. For channel SNRs > −20 dB, the noise levels were
not sufficient to affect the segmentation performance of each beamformer, which is consistent
with our observations at higher laser energies.

4 Discussion

Image-guided interventions often require visualization and tracking of important targets and
structures. This requirement is well-suited to photoacoustic-based visual servoing of surgical
tool tips. GPU-SLSC beamforming in particular provides three advantages to photoacoustic-
based visual servoing in comparison with DAS and offline SLSC implementations. The first
advantage is the reduction in computation times when compared with CPU-SLSC with minimal
alterations to the precision of the coherence value estimations, as qualitatively observed in
Fig. 7(a). The SNR difference between CPU-SLSC imaging and GPU-SLSC imaging is
1.14� 3.99. Although minimal and not statistically significant, this difference is likely due
to the single-precision libraries and linear interpolation in the GPU texture memory.

Fig. 10 (a) Examples of in vivo DAS, CPU-SLSC, and GPU-SLSC photoacoustic images, created
from the same raw data after adding Gaussian-distributed noise to achieve −30-dB channel SNR.
The segmentation algorithm failed on the DAS image and succeeded with the CPU-SLSC and
GPU-SLSC images. (b) For each channel SNR, the percentage of failed segmentations is rep-
resented as the mean ± one standard deviation of 10 measurements obtained after varying the
amplitude threshold in the segmentation algorithm from 35% to 66% of the maximum amplitude
within each photoacoustic image.
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Specifically, the GPU-SLSC algorithm utilizes CUDA embedded functions, such as the inverse
square root, power, and cosine functions. These single-precision functions have unit in the last
place errors of 9, 2, and 2, respectively,69 which decreases the precision of the coherence factors
and the overall SLSC value. In addition, a GPU-SLSC imaging frame rate of 41.2 Hz, as
described in Sec. 3.2, allows for visual servoing without overlapping subsequent acquisitions
controlled by the laser trigger, which had a PRF of 10 Hz. After the SLSC image generation, a
wait time of approximately 75 ms was required until the next trigger event, because raw data
were acquired every 100 ms and the GPU-SLSC implementation with our 10 Hz laser generated
a photoacoustic image every 24.3 ms.

The second advantage of GPU-SLSC beamforming is the improvement of photoacoustic
signals at low energy levels, as shown in Fig. 7(b). We focus on low-energy lasers for two rea-
sons. First, low laser energies enable miniaturization of the light delivery system. Second, low
laser energies ensure minimal risk of damage to tissues for cases in which no safety limits cur-
rently exist (which is true for most tissues except for skin and eyes65). Although we can increase
the laser energy, the presence of artifacts may be misinterpreted by the visual servoing algorithm
if the energy is too high, and in other cases within the safety limit, a smaller increase in laser
energy does not affect the GPU-SLSC visual servoing performance, as shown in Figs. 8(b) and
9(b). From this perspective, the focus of this work is targeted toward clinical applications that
will require miniaturized systems with reduced risk of laser exposure for patients. With the
experimental setup shown in Fig. 3, the laser safety limit for skin is 394.6 μJ, as determined
by the diameter of the optical fiber and wavelength of excitation. An optical fiber with a smaller
diameter would produce a lower safety limit at this same excitation wavelength (e.g., 142 μJ for a
0.6-mm-diameter optical fiber). Because GPU-SLSC can successfully recover signals obtained
with energies as low as 118 μJ (particularly in cases in which DAS beamforming failed), our
results indicate that GPU-SLSC will be beneficial in smaller and more portable light delivery sys-
tems,52 which is a necessary design requirement for effective visual servoing in the operating room.

The third advantage of GPU-SLSC beamforming is the robustness of SLSC-based visual ser-
voing to segmenting and tracking signals at low (e.g., 110 μJ) and mid-range (e.g., 169 to 322 μJ)
laser energies, when compared with photoacoustic-based visual servoing with DAS images. This
robustness is particularly advantageous when considering that the visual servoing algorithm ini-
tiates a search process after a series of unsuccessful segmentation events are recorded.5 The probe
centering and fiber tracking results [Figs. 8(a) and 9, respectively] indicate that the search process
would be triggered more often with DAS than SLSC (see example provided in Video 1). This
search motion would hinder effective tool tracking during surgery and add delays to the overall
surgical or interventional procedure. GPU-SLSC beamforming has the potential to avoid these
interruptions, which is additionally supported by the in vivo results shown in Fig. 10.

One detail that may be considered unsupportive of these three advantages of SLSC beam-
forming is the similar probe centering errors obtained at the mid-range energies shown in
Fig. 8(b). However, DAS beamforming produced considerably higher fiber tracking errors than
SLSC beamforming [i.e., the difference between the IQR of tracking errors shown in Fig. 9(b)
was 8.45 mm]. Based on the combined outcome of these two experiments and the minimal
overall percentage of failed segmentations with GPU-SLSC, GPU-SLSC is preferred over
DAS when considering clinical photoacoustic-based visual servoing applications utilizing ener-
gies within existing laser safety limits.

The computation times shown in Fig. 4 suggest that real-time GPU-SLSC imaging is achiev-
able for most clinical scenarios in which the photoacoustic source is located as deep as 10 cm,
with a laser PRP of 100 ms or higher. Figure 4 shows that image depth d has the largest effect on
the processing time (of the three parameters varied), as frame rate decreases by a factor of ∼2
when increasing d from 5 to 15 cm. While the feasibility of real-time imaging modalities
depends on the amount of data to process, an imaging depth of 15 cm is uncommon for most
interventional applications of photoacoustic imaging, including cardiac,5 abdominal,70 intravas-
cular,71 hysterectomy,72 and spinal fusion surgery51,73 applications, suggesting that image depths
as large as 15 cm are an unlikely concern for the real-time feasibility of GPU-SLSC in a majority
of these cases. Nonetheless, the presented results at this 15-cm depth provide us with a worst-
case scenario for system speed with internal light delivery and external ultrasound probe place-
ment in these interventional applications.

Gonzalez and Bell: GPU implementation of photoacoustic short-lag spatial coherence imaging. . .

Journal of Biomedical Optics 077002-14 July 2020 • Vol. 25(7)

https://doi.org/10.1117/1.JBO.25.7.077002.1


The frame rate of 41.2 Hz (i.e., processing time of 24.3 ms) obtained with GPU-SLSC is
either similar to or better than that obtained with GPU implementations of other advanced beam-
forming techniques. For example, real-time, 4-cm-deep DAS, delay-multiply-and-sum (DMAS),
DAS + CF, or DMAS + CF imaging was achieved with processing times of 7.5, 7.6, 11.1, or
11.3 ms, respectively (with the exclusion of memory transfer times between the GPU and
CPU).43 A variation of DMAS, namely the multiple DAS with enveloping beamformer, was
implemented on a Quadro P5000 GPU to reconstruct 512 × 512 images in 41.62 ms.74

Another version of DMAS, proposed by Miri Rostami et al.,75 reported a 12-ms processing time
for images of size 256 × 256 pixels. The reported GPU-SLSC frame rate is better than that
achieved with these beamformers and with a parallel backprojection algorithm reporting 17-Hz
frame rates when reconstructing 1024 × 512 duplex images.76 A more detailed comparison of
processing speeds requires standardization of factors such as input data size, output image size,
memory transfer evaluation, GPU hardware, and overhead.

Photoacoustic targets reconstructed with SLSC beamforming generally produced signals
with different shapes when compared with targets reconstructed with DAS beamforming, as
shown in Fig. 8(a). This change in signal morphology is caused by the degradation in axial
resolution with the chosen axial kernel size of k ¼ 11 and the improved lateral resolution with
the chosenM ¼ 25. Although an axial kernel size of k ¼ 11 was chosen to maximize the gCNR
value between signal and background regions, the associated axial resolution degradation does
not significantly affect the performance of our visual servoing algorithm, which tracks the dis-
placement of the optical fiber in the lateral dimension. In addition, the target size reduction in the
lateral dimension benefits the performance of the visual servoing algorithm, as the estimation
accuracy of the target centroid is enhanced in this dimension. Therefore, the modified target size
is either neutral to or beneficial for the clinical application of visual servoing.

One study limitation is that the number of scanlines and high-pass filter coefficients was not
varied nor evaluated. However, we determined that a line density of 1 (i.e., 128 scanlines) was
sufficient to visualize an optical fiber with a core diameter of 1 mm, considering that the res-
olution in the lateral dimension is approximately half the element pitch (i.e., 0.15 mm). Although
an increased number of high-pass filter coefficients ensures the removal of DC components with-
out compromising the frequency spectrum of the radio frequency signals of interest, in practice,
the radio frequency signals are bandpass filtered to the operation range of the ultrasound probe
before being stored in memory. Therefore, increasing the high-pass filter coefficient is not
expected to affect the overall quality of the SLSC images.

Future work will advance implementation of GPU-SLSC beamforming for clinical visual
servoing applications with the primary goal of reducing the risk of ionizing radiation exposure
by substituting fluoroscopy usage with the proposed approach.5,77 For example, the in vivo setup
described in our previous publication5 implemented visual servoing with DAS beamforming to
guide a cardiac catheter tip using a fluence of 365.5 mJ∕cm2, which is higher than the
25.2-mJ∕cm2 safety limit for skin at the same 750-nm wavelength.65 SLSC-based visual servo-
ing has the potential to provide similar visual servoing performance to higher energy DAS results
when using energies below existing safety limits, as indicated by the results in Fig. 10. In addi-
tion, the SNR enhancement provided with GPU-SLSC is expected to be beneficial in other appli-
cations with high noise and high acoustic scattering or attenuation, such as navigating inside
bony anatomy during spinal fusion surgeries51 or endonasal transphenoidal surgeries16 and
navigating within liver tissue during surgeries, biopsies, or radio frequency ablations.70,78

5 Conclusion

This paper presents the first known implementation of real-time SLSC beamforming for photo-
acoustic imaging, which was enabled by GPUs and parallel processing techniques. When select-
ing optimal beamforming parameters for visual servoing tasks, a factor of 348 speedup was
achieved when compared with CPU-SLSC implementations. This speedup allows for real-time
visualization of photoacoustic images for any laser with pulse repetition frequencies up to
41.2 Hz. Ex vivo results with bovine tissue and in vivo results from cardiac data demonstrate
that GPU-SLSC imaging has the potential to enable visualization of photoacoustic signals
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obtained with low laser energies during photoacoustic-guided interventions, which is promising
for the miniaturization of lasers to perform photoacoustic-based visual servoing in the operating
room or interventional suite. In addition, GPU-SLSC imaging outperformed DAS imaging when
jointly comparing probe centering, image segmentation, and fiber tracking tasks in the presence
of low channel SNRs and when using laser energies that meet existing laser safety requirements.
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