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Abstract

Significance: The potential of fluorescence lifetime imaging microscopy (FLIM) is recently
being recognized, especially in biological studies. However, FLIM does not directly measure
the lifetimes, rather it records the fluorescence decay traces. The lifetimes and/or abundances
have to be estimated from these traces during the phase of data processing. To precisely estimate
these parameters is challenging and requires a well-designed computer program. Conventionally
employed methods, which are based on curve fitting, are computationally expensive and limited
in performance especially for highly noisy FLIM data. The graphical analysis, while free of fit,
requires calibration samples for a quantitative analysis.

Aim: We propose to extract the lifetimes and abundances directly from the decay traces through
machine learning (ML).

Approach: The ML-based approach was verified with simulated testing data in which the life-
times and abundances were known exactly. Thereafter, we compared its performance with the
commercial software SPCImage based on datasets measured from biological samples on a time-
correlated single photon counting system. We reconstructed the decay traces using the lifetime
and abundance values estimated by ML and SPCImage methods and utilized the root-mean-
squared-error (RMSE) as marker.

Results: The RMSE, which represents the difference between the reconstructed and measured
decay traces, was observed to be lower for ML than for SPCImage. In addition, we could dem-
onstrate with a three-component analysis the high potential and flexibility of the ML method to
deal with more than two lifetime components.

Conclusions: The ML-based approach shows great performance in FLIM data analysis.
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1 Introduction

Fluorescence is one of the relaxation pathways after a fluorophore is promoted by a photon to its
electric excited state. The resulting fluorescence emission can be characterized by its intensity
(I), frequency (ω), and lifetime (τ). Out of these parameters, the lifetime τ is independent of the
measurement parameters, such as the excitation intensity and fluorophore concentrations. It is
also unaffected by photobleaching. However, the variations in the microenvironment, such as the
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pH values, temperature, polarity, and the presence of quenchers, are well reflected in the lifetime
changes.1,2 Thus, the fluorescence lifetime can provide new insights into samples that cannot be
characterized by its fluorescence intensity because of overlapping florescence spectra. These
facts make fluorescence lifetime imaging microscopy (FLIM) increasingly popular as a powerful
complement to fluorescence intensity imaging and is believed useful especially for the study
of dynamic biological processes. FLIM in combination with Förster resonance energy transfer
(FRET) enabled the investigation of protein–protein interactions, biosensor activities, and
ligand-receptor engagements.3 The potential of FLIM was reflected in studying the metabolic
activities,4 the drug delivery and release,5 the basic mechanisms of diseases,6 and medical
diagnostics.7–9

In practice, the measurement of fluorescence lifetime can be achieved in frequency or
time domain.10–12 The frequency-domain FLIM uses modulated sinusoidal or pulsed excitation
and measures the changes of the modulation depth and phase of the fluorescence emission
with respect to the excitation signal. Measurement in time-domain is conducted by either time-
correlated single photon counting (TCSPC) or time-gated detection. The two techniques are
based on laser scanning microscopes or white light microscopes, respectively. Systems of the
former case record the arrival time of each single photon and eventually construct a histogram of
the photon counts over time bins. In the latter case, the photons are collected periodically after
the excitation, forming a fluorescence decay over time. In this paper, we will focus exclusively
on the TCSPC measurements as it was used in our experiments. Nonetheless, the two time-
domain measurements put no fundamental difference in the subsequent data analysis, and
we can refer by “decay trace” to both of the histogram and the fluorescence decay without
discrimination.

The output of an FLIM system is normally a three-dimensional (3-D) data cube, with x- and
y-axes as the spatial coordinates and the t-axis as the time coordinate. That is to say, a decay trace
is acquired at each of the measurement positions ðx; yÞ, which is represented as Eq. (1). This
model is composed of exponential decay traces superposed from all lifetime components in the
sample, and the result is convolved by the instrumental response function (IRF) R in the time
domain:

EQ-TARGET;temp:intralink-;e001;116;388IðtÞ ¼
Z

t

0

Rðt − TÞ
X
i

αi exp

�
−
T
τi

�
dT: (1)

The essence of applying FLIM, regardless of the measurement mechanisms, is to extract the
lifetime information τi and their abundances αi. The results of τi are essential for identifying
molecular species within the samples, whereas the abundances αi represent the concentration
of the molecular species. In this context, it is required to precisely estimate the lifetimes τi
and abundances αi from the measured decay traces. The straightforward approach is curve
fitting,13–15 in which τi and αi are optimized so the reconstruction from Eq. (1) matches the
measured decay trace. This method is often based on algorithms such as maximum likelihood,
least squares fit, or Bayesian analysis. The fit can be conducted in either an individual or global
manner. The individual fit calculates the lifetimes τi and abundances αi for each decay trace
separately, which largely preserves the spatial characteristics of the sample. However, the fit
procedure is computationally intensive. Approaches such as variable projection can speed up
the calculation but are still time-consuming.16 An adequately fast curve fit requires advanced
technologies such as parallel computation or optimizations using GPUs (graphic processing
units), which adds to the cost of the device significantly. In addition, the fit is sensitive to noise
and it is extremely challenging to fit data with low photon-counts. Preprocessing steps, such as
denoising17 or photon count upgrading,18 may help to improve the fits, but these methods can
introduce a bias as well. Alternatively, it is possible to assume that the lifetimes are homogeneous
in the sample so the lifetimes can be optimized based on all decay traces together, and only the
abundances are calculated individually. This represents the idea of a global fit.15 It is faster and
more robust to noise. However, this technique applies only if the lifetimes do not change spa-
tially and are inadequate for heterogeneous samples. In this context, the stretched-exponential
function was shown to produce better results,19 which was yet limited to a single-component fit.
A common issue of these fit-based methods is that their performance is very dependent on the
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parameter settings, especially the initialization of the quantities to be estimated. Another draw-
back of fit-based methods is that they perform inferior if more than two lifetime components
exist. The objective function becomes more complex if a larger number of lifetime components
are fitted, making it extremely difficult to produce an optimal solution. In addition, the optimi-
zation of the multiple lifetime components can interact with each other dramatically. It is chal-
lenging to ensure an optimal solution for all lifetime components. Therefore, a common
understanding is that curve fitting methods in both the global and individual fit regimes are
limited to two-component and at maximum three-component analyses.

Alternatively, a pattern-based method was proposed to calculate the abundances based on
decay patterns constructed with preselected lifetimes.20 Without the need of lifetime estimation,
the method can be very fast and capable of multiple-component analysis. However, it is appli-
cable only if the lifetimes are known a prior with a high precision. Another option is graphical
analysis, which has gained more and more attention as it is a fit-free approach.21 While providing
excellent and intuitive visualization of lifetimes, graphical analysis does not directly provide the
abundance information and its use for quantitative analysis requires calibration samples.21

In this contribution, we propose a machine learning (ML)-based method to achieve a fit-free
and automatic FLIM data analysis. Herein, the chemometric models were trained with artificial
training data and used to predict real-world data. These models took the decay traces as input,
and the output was the required lifetimes and abundances. The training data were composed of
simulated decay traces with known lifetimes and abundances. The parameters of the simulation,
i.e., the number of lifetime components and the range of lifetimes, are predefined according to a
rough knowledge of the data to be predicted. The prediction of the testing data is composed
mainly of a Laguerre polynomial decomposition (LPD) followed by the prediction with the che-
mometric models. The approach was verified with both simulated testing data and real-world
testing data measured from biological samples. The analysis was conducted for both the two- and
three-components tasks. The performance was benchmarked from two aspects: (1) the deviation
of the prediction from true values for the simulated testing data and (2) the root-mean-square
error (RMSE) between reconstructed and measured decay traces for the real-world datasets.
In addition, we compared the ML-based method with the commercial software SPCImage22

according to the results of the RMSE.

2 Methods and Experiments

Different data sets are used in this work. We utilized artificial generated training data to construct
our models. These trained models are evaluated using independently generated artificial test data
and independent experimental testing data.

2.1 Datasets

2.1.1 Measured testing datasets

The cell data were measured from a single fibroblast cell on the system described in Ref. 23.
Briefly, two synchronized picosecond (ps) pulse trains generated by a Ti: sapphire laser
(831.7 nm) and an optical parametric oscillator (APE, Germany) (672.3 nm) are focused onto
the cell by a 40× objective (C-Apochromat, NA 1.1, Zeiss, Germany). The laser power at the
sample was 30 mW at 672.3 nm and 10 mW at 831.7 nm, which ensures the count rate of the
FLIM detector below 1 MHz. The fluorescence signal is filtered by a dichroic mirror and two
filters (short pass 650 nm, bandpass 458∕64 nm, Semrock) and finally is detected by a 2P-FLIM
system. The 2P-FLIM system is composed of a hybrid GaAsP detector HPM-100-40 (Becker &
Hickl, Germany) and a TCSPC system SPC-150 (Becker & Hickl, Germany). The measurement
was done by laser scanning the sample to cover the whole cell area (48.8 × 48.4 μm) at 12.8 μs
pixel dwell time and averaging of 274 frames. In the end, we obtained an FLIM data of 128 ×
128 pixels and 1024 time channels, which spanned the time range of 12.5 ns.

The liver samples were cryosections of the liver specimen of 82-years-old women diagnosed
with massively differentiated hepatocellular carcinoma. This specimen was collected during the
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liver resection operation (right hemihepatectomy) from the area of tumor border. The four FLIM
datasets shown in Figs. 3 and 4 and Figs. S4–S9 in the Supplemental Materials were measured
at the same setup as described above. The liver tissue specimen is 450 μm in size and measured
by a 20× NA 0.8 objective (Planapochromat, Zeiss, Germany) using 512 × 512 pixel, 1024 time
channels, 1.61 μs pixel dwell time, averaging of 95 frames at a laser power of 25 mW at
671.5 nm and 35 mW at 832 nm.

Fetal calf serum (Thermo Fisher Scientific, Waltham, Massachusetts) and pooled human
citrated plasma (obtained from the Institute for Transfusion Medicine, Jena University Hospital,
Germany) were dripped onto a slide for measurements. The FLIM data (Figs. S11–S14 in the
Supplemental Materials) were measured at the setup described above by a 20× NA 0.8 objective
(Planapochromat, Zeiss, Germany), with 128 × 128 pixels, 1024 time channels, 2.56-μs pixel
dwell time, and averaging of 100 frames at a laser power of 42 and 54.7 mWat 670.8 nm for the
two samples, respectively.

2.1.2 Simulated testing dataset

The simulated data featured a spatial dimension of (128 × 128) and 921 time channels that are
identical with the measured data. The two- and three-components testing data were constructed
with the lifetimes and abundances randomly selected within the ranges given in Table S2 in the
Supplemental Materials. The abundances of different components were scaled to

P
N
i¼1 αi ¼ 1.

With the broad lifetime ranges, we intended to test if the proposed method is able to handle data
featuring different lifetimes without being retrained with new training data. The decays were
calculated following Eq. (2), where P represents Poisson noise added to the decay traces.
The IRF ðRÞ was taken from the cell data. The number 150 was implemented to simulate the
maximal photon counts of 150:

EQ-TARGET;temp:intralink-;e002;116;434IðtÞ ¼
Z

t

0

Rðt − TÞ
X
i

150 × αi · exp

�
−
T
τi

�
dT þ P: (2)

2.2 Preprocessing

As the first step of the preprocessing, we cut off the time channels before the 40th bin (photon
counting did not start) and after the 960th bin (counting already stopped). This results in 921
time points for each decay trace. The time channel was adjusted to make sure it started with 0 ns.
Thereafter, a constant offset representing the dark current response of the detector and ambient
light was subtracted from each decay trace. The value of the offset was determined by averaging
the time channels preceding the rise of the decay trace. The resulting decay traces were subject
to a deconvolution procedure described in the following [see Eq. (3)] and finally an l2-norm
normalization [Eq. (4)] was applied.

As it is shown in Eq. (1), a measured decay trace is a convolution of the exponential decay
with the IRF. A deconvolution is to reverse the convolution and retrieve the real fluorescence
decay traces. This was achieved via an LPD as summarized in Eq. (3).24,25 In particular, Eq. (3a)
gives the definition of the Laguerre polynomial, with two parameters: the order n and the scale α.
The variable x represents the time values in our study. To achieve the deconvolution, the
Laguerre polynomial (Bα

n) is first convolved with the IRF following Eq. (3b), where k denotes
the index of data points. Thereafter, the decay traces (Im×p) were projected onto the convolved
Laguerre polynomials (Lα

n) via a constraint least squares algorithm [Eq. (3c)].26 Eventually, the
deconvolved decay traces were obtained by multiplying the coefficients matrix (Cm×K) with the
Laguerre polynomials [Eq. (3d)]. Herein, the term K gives the number of Laguerre polynomials
employed. The parametersm and p represent the dimension of the FLIM data, i.e., the number of
decay traces and number of time points. Note that we used the continuous instead of the discrete
Laguerre polynomials in Refs. 24 and 25, because the latter requires a factorial calculation. A
64-bit computer allows factorial of a number at maximum 150 (k > 150), which makes the
calculation impossible for data with 921 points in our study (k ≤ 921):
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EQ-TARGET;temp:intralink-;e003c;116;650Im×p ¼ Cm×K ×LK×p; (3c)

EQ-TARGET;temp:intralink-;e003d;116;627Im×p
d ¼ Cm×K ×BK×p; (3d)

EQ-TARGET;temp:intralink-;e004;116;604IðtiÞ ¼ IðtiÞ∕
X
j

IðtjÞ2: (4)

2.3 Modeling and Prediction

The essence of our ML-based approach is the construction of a chemometric model translating
the decay traces to the lifetimes and abundances of interest. This requires training data for which
the lifetimes and abundances are known exactly and span a broad range covering all values
expected from a sample to be predicted. Such training data, however, are extremely difficult
to acquire in real-world, due to many restrictions of an FLIM measurement. Foremost, the life-
time is dependent on the microenvironment, which cannot be completely controlled. Moreover, a
successful FLIM measurement is possible only if the system matches well to the optimal exci-
tation and emission properties of a fluorophore. This limits the possible fluorophores to be mea-
sured on a given system, even for a single-component sample. To measure samples containing
multiple lifetime components is a lot more complicated, where we have to guarantee the com-
ponents do not interact. In addition, the multiple fluorophores have to be carefully selected to
avoid FRET. Because of these practical issues, lifetimes are limited to certain values instead of
spanning a broad range in a real-world measurement, which is insufficient as training data.

A more feasible and cost-effective solution is to construct artificial training data, which can
be generated with a large sample size and over a wide range of lifetimes. Given the lifetime τi and
abundance αi of each component, we can easily generate a decay trace according to the model in
Eq. (5). Thereby, N gives the number of lifetime components within the sample. P represents
Poisson noise added to the decay traces. The lifetime τi and abundance αi of the i’th component
in each decay trace are randomly selected from predefined ranges ½τli; τhi � and ½ali; ahi �. The abun-
dances of different components are rescaled to unit sum before the decay trace is generated. The
values of N, τli, τ

h
i , a

l
i, and ahi can be determined according to a prior knowledge of the samples

of interest. This property contributes to the flexibility of the method to be tailored for different
studies. Given the range of the lifetime and abundance is sufficiently broad, a model is supposed
to be usable for multiple studies without retraining. Noteworthy, the training data are simulated
as exponential decays without any convolution to IRF. The idea is to make sure the trained
models are independent of the measurement system (i.e., IRF) and able to be used among differ-
ent measurement systems:

EQ-TARGET;temp:intralink-;e005;116;226IðtÞ ¼ 150 ×
XN
i

αi exp

�
−

t
τi

�
þ P; const: τi ∈ ½τli; τhi �; αi ∈ ½ali; ahi �;

XN
i¼1

αi ¼ 1: (5)

With the training data available, we are ready to build 2N chemometric models, each re-
sponsible for the lifetime or abundance of a different component. Training a different model
separately for each quantity (i.e., lifetime or abundance) allows us to extract their values inde-
pendently. The models all shared the same structure and hyperparameters: the decay traces were
subject to a principal component analysis (PCA) for dimension reduction, following a random
forest-based model using the first 15 PCA components. The random forest was composed of
500 trees, each tree trained with 63.2% of training data based on 12 randomly selected fea-
tures (parameters ntree ¼ 500, samplesize ¼ 0.632, and mtry ¼ 12 in the R package of
“RandomForest”27). This bootstrapping-based training procedure is the standard training
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procedure for random forests, but it is not related to the training-testing data split but represents a
local separation (for every tree) into training and validation data. The model is trained based on
this procedure and then applied to independent data (either experimental data or artificial testing
data). A random forest was applied, as the model does not make assumptions about the data
being modeled.

After being trained, the chemometric models are ready to predict the real-world data. To start,
the FLIM data is preprocessed with previously described steps. The prediction of the model is
then conducted on the resulting deconvolved decay traces, with the lifetimes and abundances of
all components as outputs. The predicted abundances αi are then rescaled as

P
N
i¼1 αi ¼ 1. The

results of the lifetimes and abundances can then be stored and visualized for further interrogation
by biologists or physicians.

3 Results and Discussion

Following the description of the workflow of our method, we now move to the results in this
section. Herein, the analysis was carried out for both the two- and three-component modeling
using the simulated and the measured test datasets. To start, the chemometric models were
trained with 3000 decay traces constructed with two or three lifetime components, respectively.
The parameters of the training data, τli, τ

h
i , a

l
i, and ahi , are summarized in Table S1 in the

Supplemental Materials. These values were chosen based on three considerations. Foremost,
the lifetime of a biological autofluorophore, which is of top interest in our daily research, is
usually no larger than 7 ns.28 Moreover, we aimed to span as broad range of lifetimes as possible
in the training data so that the models can predict different samples with minimal requirement of
retraining. In addition, the lifetime ranges of different components partly overlap. This allows the
model to resolve different components even if their lifetimes are close to each other.

After the training procedure, the models are applied to predict multiple testing samples with-
out retraining. To do so, the testing data were first preprocessed and deconvolved with the LPD
method to retrieve the exponential decays. In particular, the LPD was conducted based on 15
Laguerre polynomials (α ¼ 2, n ¼ 1∶15). These polynomials and the results from the convo-
lution with the IRF of the data to be processed are shown in Figs. S1(a) and S1(b) in the
Supplemental Materials. The parameters of the Laguerre polynomials were determined by
an trial-and-error to make sure that the decay traces can be well reconstructed from C ×L.
This is an important prerequisite to successfully derive the lifetimes in the next step. The means
of the reconstructed and the raw decay traces are given in Figs. S1(c) and S2 in the Supplemental
Materials for all datasets. In summary, all traces show good fit quality. The mean of the decon-
volved decay for the cell data can be found in Fig. S1(d) in the Supplemental Materials.
Noteworthy, the IRF used in our study was exported for each dataset from the software
SPCImage. It can be replaced in real-world applications with a fluorescence decay recorded
from an infinitely short fluorescence lifetime.

The decay traces after deconvolution were fed into the chemometric models to obtain the
lifetimes and abundances. The results are presented in the following for both the simulated and
measured testing datasets. The performance of the analysis was verified from two aspects. On
one hand, the predicted quantities were compared with their true values for the simulated testing
data, which acted as the basic benchmark of the models. On the other hand, we compared the
analysis of the real-world data with that of the SPCImage, which was performed on the time
channels 40-960, with either two- or three-component fit. To do so, we reconstructed the decay
traces following Eq. (1) using the predicted quantities for the ML method and the exported life-
times (τi) and abundances in percentage (αi%) for the SPCImage. The reconstruction was bench-
marked with the RMSE defined by Eq. (6), which characterizes the derivations between the

reconstructed (Î) and measured decay traces (I). In the next sections, we will first present the
results on simulated data, following those on the real-world data:

EQ-TARGET;temp:intralink-;e006;116;114RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðIi − ÎiÞ2
s

: (6)
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3.1 Prediction on Simulated Testing Data

As the first verification, the chemometric models were used to predict the simulated testing
data. The differences between the true and predicted values are shown as boxplots in Figs. S3(a)
and S3(c) in the Supplemental Materials. The average values are shown to be around zero in all
cases, which means an unbiased prediction. In the same time, the confidence interval (CI) was
�10 ∼ 15% for the lifetimes (CI∕t%) and �5 ∼ 10% for the abundances (CI%). This means the
models were able to extract the quantities of the two lifetime components satisfactorily. The
predicted results also allowed us to retrieve the decay traces following Eq. (1), as it was dem-
onstrated by the means of the reconstructed and the raw traces in Figs. 1(b) and 1(d). These
results indicate a high possibility of the ML method to predict datasets of various lifetimes
without being retrained on new training data.

3.2 Real-World Testing Data

For a further verification, the chemometric models were used to predict measured data after
being preprocessed by the previously mentioned steps. The results from the cell data are shown
in Figs. 1 and 2 in the cases of the two and three components, respectively. The lifetimes and
abundances are shown with the unit of ps and percentage (%), respectively. The regions in black
are excluded from the analysis, where the maximum photon counts of the decay trace were below
9. These regions did not contain cell information and represent mostly the substrate. The first two
lifetimes were found at around 200 to 300 and 2000 to 3000 ps, respectively, and were located at
the central region of the image where the cell is located. These are in line with a prior knowledge
on the lifetimes of free and protein-bound NAD(P)H. In Figs. 1(e) and 2(g), the predicted life-
times were visualized as box plots in blue color along with the results from the SPCImage analy-
sis in red color. Therein, we could see that the results match roughly but not exactly. To make a

Fig. 1 Results of the two-component analysis of the cell testing data. To ensure a good contrast,
all false-color plots were generated based on 0.001 to 0.999 percentiles of the values to be visu-
alized. (a)–(d) Lifetimes and abundances of the two components. (e) Results of the ML method
(blue) along with the SPCImage (red), which are generally similar but do not match exactly.
(f) Difference between the means of the reconstruction and the raw data. The RMSE was
0.452 and 0.474 for the ML and SPCImage, respectively.
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more conclusive comparison, we additionally reconstructed the decay traces based on the result-
ing quantities from the ML method and SPCImage. The average differences between the recon-
struction and the true decay traces are given in Figs. 1(f) and 2(h) for the two methods in two- and
three-component analyses, respectively. The reconstruction error (RMSE) was observed lower
for the ML analysis, especially in the case of the three-component analysis. This indicates most
probably that the ML method fits better to the decay traces than the SPCImage analysis. A sim-
ilar conclusion could be drawn from the results of the liver tissue as shown in Figs. 3 and 4 and
Figs. S4–S9 in the Supplemental Materials. In these plots, the lifetimes of 200 to 300 and 2000
to 3000 ps are expected for free and protein-bound NAD(P)H. The black regions shown in the
images are excluded from the analysis as the maximal photon counts of the decay traces are
below 5. The results from ML method are consistent with a prior knowledge both in two- and
three-component analyses.

In Figs. 1–4 and Figs. S4–S9 in the Supplemental Materials, it can be seen that the values of
the first two lifetimes in the three-component analysis are closer to their expected results, 200 to
300 and 2000 to 3000 ps for free and protein-bound NAD(P)H, respectively. This shows to a
large extent that the different lifetime components were better resolved by additionally including
a slower component as the third component, which indicated that these samples very likely con-
tain a third lifetime component. This is different in the cases of the FSC and plasma datasets.
According to the results in Figs. S11–S14 in the Supplemental Materials, the results are better
in line with a prior knowledge of the lifetime range (200 to 300 and 2000 to 3000 ps) for the
two-component analysis.

To make the above discussions more quantitative, we calculated the RMSE of each decay
trace between the reconstruction and the raw data for both methods, e.g., ML and SPCImage.
The results are shown in Fig. S10 in the Supplemental Materials, in which each subplot cor-
responds to one dataset. The labels on the x axis, “SPC2,” “SPC3,” “ML2,” and “ML3” specified
the cases of two- and three-component analyses by SPCImage and ML method, respectively.
The medians are summarized in Table 1, where a smaller RMSE was observed for ML than for
SPCImage in all cases but the FSC data. In particular, lower RMSEs were seen in the cell
and liver data for the three-component analysis in comparison with the two-component analysis.
This again demonstrated the fact that the former five datasets are more likely three-component
systems while the latter two samples (FSC and plasma data) are two-component systems.

Fig. 2 Results of the three-component analysis on the cell testing data. To ensure a good contrast,
all false-color plots were generated based on 0.001 to 0.999 percentiles of the values to be visu-
alized. (a)–(f) Lifetimes and abundances of the three components. (g) Results of the ML method
(blue) along with the SPCImage (red), which are generally similar but do not match exactly.
(h) Difference between the means of the reconstruction and the raw data. The RMSE was
0.439 and 0.474 for the ML and SPCImage, respectively.
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Fig. 4 Results of the three-component analysis of the first liver tissue testing data. To ensure a
good contrast, all false-color plots were generated based on 0.001 to 0.999 percentiles of the
values to be visualized. (a)–(f) Lifetimes and abundances of the two components. (g) Results
of the ML method (blue) along with the SPCImage (red), which are generally similar but do not
match exactly. (h) Difference between the means of the reconstruction and the raw data. The
RMSE was 0.576 and 0.602 for the ML and SPCImage, respectively.

Fig. 3 Results of the two-component analysis of the first liver tissue testing data. To ensure a good
contrast, all false-color plots were generated based on 0.001 to 0.999 percentiles of the values to
be visualized. (a)–(d) Lifetimes and abundances of the two components. (e) Results of the ML
method (blue) along with the SPCImage (red), which are generally similar but do not match
exactly. (f) Difference between the means of the reconstruction and the raw data. The RMSE was
0.577 and 0.602 for the ML and SPCImage, respectively.
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We visualized additionally the ratio of each decay trace between the RMSE of SPCImage and
ML method in Fig. 5. The dash line in Fig. 5 marked the ratio of 1, i.e., equal RMSE for the two
methods. The ratios are mostly above 1, which demonstrated again a lower RMSE for the ML
than the SPCImage analysis.

Before ending this section, it is worth to mention another work published lately,29 in which a
fit-free analysis of two lifetime components was achieved by a 3-D convolutional network
named FLI-Net. In comparison with FLI-Net, our method is meant to push the fit-free FLIM
analysis further in three aspects. First of all, the analysis was conducted on each decay trace
separately; thus the method has no constraint on the spatial dimension of the data and can
be used without retraining for data of different spatial dimensions. Moreover, we have largely
minimized the need of model retraining encountering different datasets/measurements. We were
able to analyze all the datasets, both simulated and measured, using the same chemometric mod-
els without retraining. This was ensured by the LPD procedure, which makes the ML method
independent of IRF and paves the way to cross-system/measurement prediction of the models
without retraining. In addition, the parameters for the training data were made to cover a broad
range of lifetimes, which helps the ML method to generalize to datasets featuring different life-
times. The prediction on the simulated testing data, which contains lifetimes of large ranges, well
demonstrated the generalization of the ML method without retraining. Nonetheless, a retraining
will be necessary if the lifetime range of the training data do not well represent the expected
lifetimes, i.e., training data with different τli, τ

h
i would be required. Furthermore, we extended

the analysis to more than two lifetime components, demonstrated by the good results of the
three-component task.

Table 1 The median RMSE (ϵ) between the raw and reconstructed decay traces for all datasets
in the cases of SPCImage and ML analysis. The RMSE for the ML method is generally smaller
than for the SPCImage-based results.

Cell Liver 1 Liver 2 Liver 3 Liver 4 FSC Plasma

ML2 0.465 0.584 0.529 0.588 0.598 0.141 0.108

ML3 0.450 0.562 0.517 0.559 0.597 0.120 0.121

SPC2 0.476 0.586 0.537 0.596 0.632 0.093 0.126

SPC3 0.473 0.566 0.520 0.562 0.623 0.110 0.123

Fig. 5 RMSE ratios between the SPCImage and ML analysis calculated from each decay trace
separately. Boxes in red and blue represent the results of two- and three-component analyses,
respectively. The ratios are generally above 1 except for the FSC data, indicating a better
performance of the ML method than SPCImage.
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3.3 Time Considerations

Besides the goodness of the reconstruction, another important criterion for FLIM analysis is the
time required for the analysis. In our method, the time is consumed mainly by the LPD decon-
volution and the prediction of the chemometric models. Accordingly, we recorded the time
required after importing data to the end of the prediction for all testing datasets. In comparison,
the time required for SPCImage was recorded on the same computer. The results are summarized
in Table 2. The terms “ML2” and “ML3” represent the two- and three-component analyses,
respectively. The ML method takes longer than SPCImage. However, it should be noted that
the analysis was simply done on CPU based on Microsoft Open R at this concept-proof stage.
As both the LPD and the prediction can be easily parallelized, we see a large space to speed up
the method and will proceed this in the near future.

4 Conclusion

We demonstrated in this contribution an ML-based method for a fit-free and automatic analysis
of FLIM data. In combination with an LPD deconvolution, we could make the method inde-
pendent to the measurement system and able to be transferred across measurements. We verified
the method on both simulated and measured datasets. The prediction was proven to match well
with the true values for both two- and three-component analyses according to the simulated
testing data. As the simulated testing data featured lifetimes of broad range, the satisfactory
prediction also illustrated the generalizability of the model to data of different lifetimes without
retraining. In addition, the comparison between the ML and the SPCImage methods showed that
the ML method gives smaller RMSE between the reconstructed and the raw decay traces. The
improvement of the fits is in the range of 5%, which might be important in clinical scenarios
where the difference between, e.g., inflammation and cancer growth is often extremely small.
Any improvement in the data processing may lead to better and more stable diagnostics.
In addition, the improvement of the reconstruction from SPCImage to ML is more pronounced
for decays with higher noise, as is shown in Fig. S15 in the Supplemental Materials. This means
that our ML method is better suited to handle noisy datasets, which is often encountered in
clinical data. Furthermore, the satisfactory results in three-component analysis showed high
potential of the method in FLIM data of multiple-components, which is necessary to push
FLIM to more complex applications.
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