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Abstract

Significance: Despite its advantages in terms of safety, low cost, and portability, functional near-
infrared spectroscopy applications can be challenging due to substantial signal contamination
from hemodynamics in the extracerebral layer (ECL). Time-resolved near-infrared spectroscopy
(tr NIRS) can improve sensitivity to brain activity but contamination from the ECL remains an
issue. This study demonstrates how brain signal isolation can be further improved by applying
regression analysis to tr data acquired at a single source–detector distance.

Aim: To investigate if regression analysis can be applied to single-channel trNIRS data to further
isolate the brain and reduce signal contamination from the ECL.

Approach: Appropriate regressors for trNIRS were selected based on simulations, and perfor-
mance was evaluated by applying the regression technique to oxygenation responses recording
during hypercapnia and functional activation.

Results: Compared to current methods of enhancing depth sensitivity for trNIRS (i.e., higher
statistical moments and late gates), incorporating regression analysis using a signal sensitive to
the ECL significantly improved the extraction of cerebral oxygenation signals. In addition, this
study demonstrated that regression could be applied to trNIRS data from a single detector using
the early arriving photons to capture hemodynamic changes in the ECL.

Conclusion: Applying regression analysis to trNIRS metrics with different depth sensitivities
improves the characterization of cerebral oxygenation signals.
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1 Introduction

The interest in near-infrared spectroscopy (NIRS) for mapping regional brain activation
associated with functional tasks is growing rapidly, as reflected by the increasing number of
commercial systems.1–3 Despite advantages in terms of safety, low cost, and portability, func-
tional near-infrared spectroscopy (fNIRS) applications using continuous-wave (CW) technolo-
gies are limited in insolating signals from the brain. Substantial signal contamination can result
from changes in hemodynamics in the extracerebral layer (ECL).4,5 As a consequence, a num-
ber of techniques have been proposed to reduce the influence of ECL signal contributions.
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An increasingly popular approach is to collect light intensities at a short source–detector sep-
aration (i.e., rSD ∼ 1 cm), which is predominately sensitive to scalp hemodynamics while simul-
taneously collecting data at a larger separation (rSD ≥ 3 cm).6 Assuming the two signals contain
the same ECL contributions, the short separation signal can be used as a regressor to filter the
ECL interference from the main signal, improving the quality of the recovered brain signal.6–8

An alternative strategy is to enhance the depth sensitivity of the measurements using time-
resolved NIRS (trNIRS), which uses picosecond light pulses and fast detectors to record the
distribution of times-of-flight (DTOF) of diffusely reflected photons.9 As DTOFs contain both
time and intensity information, absorption changes at different depths can be resolved since
photon arrival times are proportional to path lengths. The most popular depth-enhancing meth-
ods are based on calculating the statistical moments of a DTOF10,11 or integrating the photon
counts within time windows/gates.12,13 In both cases, the goal is to focus on late-arriving photons
since they have the greatest probability of interrogating the brain. Previous studies using layered
tissue-mimicking phantoms, animal models, and human subjects have shown that trNIRS pro-
vides superior sensitivity to cerebral hemodynamics compared to conventional CW NIRS.13–17

Moreover, studies conducted on healthy subjects and patients have shown that signals extracted
using either approach provide superior correlation with hemodynamic changes in the brain.9,18

Despite the enhanced depth sensitivity of trNIRS, signals weighted toward late-arriving pho-
tons can still be influenced by hemodynamic fluctuations in the ECL.19 This was demonstrated in
a recent trNIRS study focused on measuring cerebrovascular reactivity in response to a global
vascular stimulus (hypercapnia).20 Contamination from the scalp was evident by distortions in
the oxy- and deoxyhemoglobin signals recorded at rSD ¼ 3 and 4 cm that mirrored the record-
ings at rSD ¼ 1 cm. By applying higher moment analysis, these effects were substantially dimin-
ished but not completely removed.20 Alternatively depth sensitivity can be further enhanced by
subtracting higher moments of DTOFs recorded at two source–detector distances;21 however, the
application of this approach is challenging due to the substantial reduction in contrast-to-noise
ratio compared to analyzing individual DTOFs.22

In this study, an alternative technique was investigated that combines trNIRS with a regres-
sion approach analogous to short source-detector measurements used in CW fNIRS studies.6,7

Unlike CW NIRS that requires an additional channel to act as the regressors, regression can be
applied to trNIRS data from a single detector by utilizing the depth information provided in the
recorded DTOFs. In this application, a signal that is predominately weighted by the ECL can be
extracted from a DTOF by focusing on early arriving photons and subsequently used as a regres-
sor to remove ECL interference from signals with greater depth sensitivity, such as those
obtained from higher moments or later gates. An additional advantage of trNIRS is that both
the regressor and the dependent variable are extracted from data collected by the same detector.
This avoids potential artifacts that can arise when the two signals are recorded by sensors located
at different locations, considering the regression approach is based on the assumption that the
regressor and dependent variable contain the same physiological nuisance signal. It has been
demonstrated that the correlation between physiological signals recorded using separate sensors
diminishes with an increasing distance between each sensor due to time delays and spatial var-
iations in the hemodynamic properties of superficial tissue.8,23

The ability to improve the isolation of the brain signal by adapting regression analysis to
trNIRS was evaluated using data from two previous studies using trNIRS to measure oxygena-
tion responses to hypercapnia20 and functional activation.24 The former was chosen because the
rapid and relatively large increase in end-tidal carbon dioxide pressure (∼15 mmHg) elicited a
substantial systemic effect, as indicated by a significant change in arterial blood pressure, in
addition to the expected cerebral response. Differences in ECL and cerebral contributions were
evident by comparing signals recorded at rSD ¼ 1 and 3 cm. Consequently, this data set was used
to evaluate the ability of the regression approach to remove ECL contributions when applied to
DTOFs recorded at rSD ¼ 3 cm. The functional study24 involved a motor imagery task that
invoked activation in motor planning regions and was included to demonstrate the feasibility
of applying the regression approach to functional trNIRS data. Both applications involved two
common approaches used to extract depth information from DTOFs, time gating and statistical
moment analysis.10,13 In addition to these applications, this study includes a sensitivity analysis
conducted to select the appropriate trNIRS metrics for regression analysis.
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2 Methods

All experiments were approved by the Western University Health Sciences Research Ethics
Board, which adheres to the guidelines of the Tri-Council Policy Statement for research involv-
ing humans. Written informed consent was obtained from each subject prior to the experiment.
All subjects had no history of neurological or psychiatric disorders.

2.1 Instrumentation

All data were collected using an in-house built trNIRS system.25–27 The device included two
pulsed laser heads emitting at λ ¼ 760 and 830 nm, controlled by a Sepia II laser driver operating
at 80 MHz (PicoQuant, Germany). The laser heads were coupled to multimode bifurcated fiber
[φ ¼ 0.4 mm, numerical aperture ðNAÞ ¼ 0.39, Thorlabs] to deliver the light to the scalp. A set
of four detection fiber bundles (φ ¼ 3.6 mm, NA ¼ 0.55, Fiberoptics Technology) collected
diffusively reflected light from the scalp. Each bundle was coupled to a hybrid photomultiplier
tube (PMA Hybrid 50, PicoQuant, Germany).28 A time-correlated single-photon counting mod-
ule (HydraHarp 400, PicoQuant, Germany) was used to generate the photon arrival times and
DTOFs were generated by in-house software written in LabVIEW (National Instruments).21

All data collected in the hypercapnia and motor imagery protocols described in Secs. 2.2 and
2.3 were acquired continuously at a sampling rate of 3.33 Hz. At the end of every study, the
instrument response function (IRF) was measured using a custom-built light-tight box that con-
nected the emission fiber to a detection probe with a separation of 6 cm. On average, the full
width at half maximum was 0.579� 0.005 ns at 760 nm and 0.653� 0.006 ns at 830 nm.

2.2 Experimental Protocol: Hypercapnia

Data were obtained from a previous study that involved 11 healthy participants (three females,
eight males, aged 25 to 36 y,mean ¼ 28� 3 y).20 Subjects sat on a reclining chair while wearing
a facemask connected to a computer-controlled gas delivery circuit (RespirAct™, Thornhill
Research Inc, Toronto, Canada). A custom-designed probe holder was placed on the subject’s
forehead and secured by a velcro headband. Two detection fiber bundles were placed at rSD ¼ 1

and 3 cm [Fig. 1(a)]. The experimental protocol consisted of three 2 min periods of hypercapnia
in which end-tidal carbon dioxide pressure (PETCO2) was increased by 15 mmHg above each
subject’s normocapnic PETCO2 value, as determined by the gas delivery circuit. The first period
started two minutes after baseline recordings and each hypercapnia period was followed by 5 min
of normocapnia.

2.3 Experimental Protocol: Functional Activation

Data were extracted from a previous study involving 11 healthy participants (three females, eight
males, aged 24 to 40 y, mean ¼ 28� 4 y).24 With each participant seated, trNIRS probes were

Fig. 1 Schematic of the design and location of the probe holders used in (a) the hypercapnia
protocol and (b) the functional activation protocol.
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positioned on the head to detect activation in the motor planning regions (supplementary motor area
and the premotor cortex). The emission fiber was centred over FCz, according to the international
system for electroencephalography, and the detection fibers bundles were secured in a cross pattern
at a source-detector separation of 3 cm [Fig. 1(b)]. The activation paradigm consisted of a 30-s
baseline period followed by five 30-s sequential blocks of motor imagery for a total acquisition time
of 5.5 min. During the task periods, participants were asked to remain as still as possible and
imagine hitting a tennis ball repeatedly as if they were playing a vigorous game of tennis.

2.4 Time-Resolved Depth Sensitivity—Theory

Two approaches for extracting depth information from DTOFs are by time gating and calculat-
ing the first three statistical moments: the zeroth moment (total number of photons, N),
the first moment (mean time of flight, hti), and the second central moment (variance, V).
Higher moments are more sensitive to late-arriving photons due to the positive skewness of
the DTOF.10,11 With the former approach, each DTOF is divided into time gates, and the photon
count is integrated within each gate.12,29 Similar to higher moments, gates positioned on the tail
of a DTOF provide the greatest depth sensitivity, whereas the gates located on the left side of the
DTOF are more sensitive to more superficial layers. Based on these considerations, combina-
tions of statistical moments and time gates can be used to extract signals with different depth
sensitivities from a single DTOF.

Figure 2 shows an example of a theoretical DTOF and the corresponding sensitivity profiles
of the signals extracted from various gates and moments. The DTOF was generated using the
analytical solution to the diffusion approximation for a semi-infinite homogeneous medium for
a source-detector separation of 3 cm, an absorption coefficient (μa) of 0.1 cm−1, and a reduced
scattering coefficient (μs 0) of 10 cm−1.30 The sensitivity profiles were also generated from the
solution to the diffusion approximation for a semi-infinite homogeneous medium following the
approach outlined by Kacprzak et al.31 Briefly, the medium was divided into a grid of 0.1 × 0.1 ×
0.1 cm3 voxels and the signal response to a change in μa of 0.01 cm−1 was recorded within each
consecutive voxel. Next, the sensitivity factors for consecutive layers (each with a thickness of
1 mm) were generated by summing the sensitivity values for all voxels within a layer. The same
optical properties used to generate the theoretical DTOF were used to define the background
optical properties for calculating the sensitivity profiles.15,21,32 Figure 2(a) shows the three stat-
istical moments, as well as early and late gates (gate width ¼ 250 ps). The sensitivity profiles for
these two gates and the three moments are shown in Fig. 2(b). Observable differences in these
sensitivity profiles indicate that signals weighted differently by the ECL and brain can be
extracted from data recorded using a single source–detector separation.

(a) (b)

Fig. 2 (a) Theoretical DTOF generated for rSD ¼ 3 cm. Overlaid on the DTOF is the locations of
early and late gates (width ¼ 250 ps) and the first three statistical moments. (b) Corresponding
sensitivity profiles for the two gates and the three statistical moments generated using
μa ¼ 0.1 cm−1 and μs

0 ¼ 10 cm−1.
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2.5 Analysis of Recorded DTOFs

For each time series of DTOFs recorded at 760 and 830 nm, the first three statistical moments
(N, hti, and V) were calculated by setting the lower and upper integration limits based on arrival
times corresponding to 1% of the peak of the DTOF. The change in each moment relative to its
initial value was calculated to generate three time series (i.e., ΔN, Δhti, and ΔV) for the two
wavelengths individually. Next, each DTOF was divided into 12 consecutive gates with a fixed
width of 250 ps29 and the time-varying change in attenuation (ΔA) was calculated for each gate
(Fig. 3). Similar to moment analysis, the start of the first gate was positioned at the rising edge of
the DTOF when the signal intensity reached 1% of the peak value.

Time courses determined at 760 and 830 nm from the statistical moments and time gates were
converted into the corresponding absorption changes ΔμaðλÞ using the sensitivity analysis
described in Sec. 2.4. To improve the accuracy of the sensitivity profiles, an IRF (described
in Sec. 2.1) was incorporated into the sensitivity profile calculations. The sensitivity factors
were generated using average optical properties for the subjects in the hypercapnia study
(760 nm: μa ¼ 0.14� 0.02 cm−1, μs 0 ¼ 9.4� 1.2 cm−1; 830 nm: μa ¼ 0.13� 0.02 cm−1, and
μs

0 ¼ 8.1� 1.2 cm−1):20

EQ-TARGET;temp:intralink-;e001;116;306ΔμaðλÞ ¼
ΔS
SFS

; (1)

where ΔS represents the signal change for each of the statistical moments (ΔN, Δhti, and ΔV)
and time gates (ΔA), and SFS represents the corresponding sensitivity factor. The Δμa time
courses were then converted to change in concentration of oxyhemoglobin (ΔCHbO) and deox-
yhemoglobin (ΔCHb):

EQ-TARGET;temp:intralink-;e002;116;214ΔμaðλÞ ¼ lnð10Þ · ðεHbOðλÞ · ΔCHbO þ εHbðλÞ · ΔCHbÞ; (2)

where εHbOðλÞ and εHbðλÞ are the molar extinction coefficients for oxy- and deoxyhemoglobin,
respectively.

2.6 Regression Analysis

Regression analysis was based on the method proposed by Saager et al.,6 which was developed
to isolate absorption trends in the lower layer of a two-layer turbid medium. The signal change in
the lower layer (i.e., brain), ΔSD, was calculated according to

EQ-TARGET;temp:intralink-;e003;116;86ΔSD ¼ ΔSF − αNF · ΔSN; (3)

Fig. 3 Position of 12 time gates (width ¼ 250 ps) used to extract attenuation signals from the
DTOF. In this case, the DTOF was averaged over the 2 min baseline period for one subject from
the hypercapnia study (λ ¼ 760 nm and rSD ¼ 3 cm).
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where ΔSF is the signal change for a parameter with greater depth sensitivity, ΔSN is the signal
change for a parameter primarily sensitive to the ECL, and αNF is the scaling parameter obtained
by fitting ΔSN to ΔSF using a least-squares criterion. For the hypercapnia data sets, regression
was first applied using the ΔN time series measured at rSD ¼ 1 cm as the regressor (ΔN1 cm),
analogous to original approach proposed for CW NIRS data. Next, ΔSN was extracted from
DTOFs measured at rSD ¼ 3 cm based on the criterion that the selected signal had >97% sen-
sitivity to the ECL. This value was based on an average distance from scalp to brain of 14 mm as
measured by magnetic resonance imaging.20 Signals that satisfied this criterion were ΔA for gates
1 to 3 [Fig. 4(a)]. The dependent signals (ΔSF) used in Eq. (3) were obtained for DTOFsmeasured
at rSD ¼ 3 cm and included the three statistical moments and the late gate [Fig. 4(b)]. The last
gate was the twelfth for the hypercapnia data and the tenth for the activation data.

2.7 Assessment of the Cerebrovascular Reactivity

For the hypercapnic challenge, theΔCHbO andΔCHb signals calculated from individual moments
and gates, as well as after applying regression analysis, were modelled as the convolution of the
recorded change in ΔPETCO2ðtÞ and a hemodynamic response function (HRF):20

EQ-TARGET;temp:intralink-;e004;116;286ΔSðtÞ ¼ ssCVR ·

�
ΔPETCO2ðtÞ �

�
1

P
e−

ðt−t0Þ
τ

��
; (4)

where ΔSðtÞ is the signal change, ssCVR is the steady-state value of cerebrovascular reactivity
(CVR), ∗ denotes the convolution operator, τ is the time constant defining the dynamic com-
ponent of CVR, and t0 is the time delay between ΔPETCO2ðtÞ and ΔSðtÞ. The remaining term in
the convolution is the HRF, which has units of 1/time with P ¼ ∫ ∞

0 e
−t∕τdt. Best-fit estimates

of τ, t0 and ssCVR were obtained by numerical optimization (fminsearchbnd, MATLAB,
Mathworks Inc.). The fitting was performed over a time window that started at the beginning
of the 2 min hypercapnia period and encompassed the 5 min recovery period following hyper-
capnia. It is worth noting, in this application ssCVR has units of μM∕mmHg, reflecting the fact
that reactivity is being characterized in terms of change in hemoglobin concentration, as opposed
to the conventional definition of change in cerebral blood flow per mmHg.

2.8 Functional Data Analysis

The functional data were analyzed using the same approach described in Secs. 2.5 and 2.6,
except the average of ΔA signals from gates 2 and 3 were used as the regressor to improve

(a) (b)

Fig. 4 (a) Sensitivity profiles of the signals used as the regressor (i.e., N measured at rSD ¼ 1 cm
and the first three gates measured at rSD ¼ 3 cm). (b) Sensitivity profiles of the dependent signals
measured at rSD ¼ 3 cm, which included the three statistical moments and the last gate (gate 12
for the hypercapnia data). The vertical gray line represents the average distance to the brain
d ¼ 14 mm.
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the signal-to-noise ratio, and the late gate was number 10 instead of 12, which was used when
analyzing the hypercapnia data. It was necessary to stop at gate 10 due to lower photon counts
observed in the functional activation data. Next, analysis based on the general linear model
(GLM) using the canonical HRF was performed for hemoglobin signals calculated using gate
10, the variance, and the signals obtained following regression analysis. Finally, to assess the
improvement in reconstructed HRF, a chi-square (χ2) goodness of fit was calculated for signals
prior to and after applying regression.

2.9 Statistical Analysis

All data are presented as mean ± standard deviation unless otherwise noted. Statistical analyses
were conducted in MATLAB (using Statistics and Machine Learning Toolbox). Statistical sig-
nificance was defined as p < 0.05. An unequal variance t-test was used to investigate differences
in fitting parameters (τ and ssCVR) before and after applying regression with ΔN1 cm as the
regressor. This was performed for each ΔCHbO and ΔCHb time series derived from the three
statistical moments measured at rSD ¼ 3 cm (ΔN3 cm, Δhti3 cm, ΔV3 cm). Similarly, a t-test was
used to investigate differences in τ and ssCVR before and after applying regression with an early
gate signal (rSD ¼ 3 cm) as the regressor. This analysis was performed for ΔCHbO and ΔCHb

time series derived from gate 12 (rSD ¼ 3 cm) and ΔV3 cm. A one-way analysis of variance
(ANOVA) was used to investigate if τ and ssCVR estimates changed depending on which early
gate (1 to 3) was used as the regressor. A t-test was used to investigate differences in the τ and
ssCVR estimates derived using ΔN1 cm or an early gate signal recorded at rSD ¼ 3 cm as the
regressor. Finally, a t-test was used to investigate differences in χ2 goodness of fit before and
after applying regression to activation data. In this application, the early gate signal recorded at
rSD ¼ 3 cm was used as the regressor.

3 Results

Figure 5(a) displays the average ΔCHbO andΔCHb responses to the 2 min hypercapnia challenge.
Data are presented for both source-detector separations and each of the three moments. These
time courses illustrate how the dynamics of the hypercapnic response varied with rSD and stat-
istical moments. Included in each figure is the best fit of the hemodynamic model described in
Sec. 2.7. Figure 5(b) shows the ΔCHbO and ΔCHb time courses obtained from the regression
analysis using ΔN1 cm as the regressor. These time courses show that the dynamics of the recon-
structed hypercapnic response were improved for all three statistical moments, as demonstrated
by the removal of the substantial residue signals that were observed after PETCO2 had returned to
normocapnia. The first graph in Fig. 5(b) shows the average ΔPETCO2 time course, which illus-
trates the highly reproducible hypercapnic response across subjects, and the correspondingΔSðtÞ
generated from Eq. (4) using τ ¼ 27 s, which was obtained from previous BOLD studies of
dynamic CVR.33,34 The theoretical bold signal is provided to indicate the signal expected from
NIRS if there was no contamination from the ECL.

Table 1 provides averaged best-fit values of τ and ssCVR, from the analysis of ΔCHbO and
ΔCHb time series, derived for the individual moments measured at rSD ¼ 3 cm [Fig. 5(a)] and
following regression using ΔN1 cm as the regressor [Fig. 5(b)]. The mean values of τ did not
include two outliers that exceeded the upper boundary of the fitting range τ ¼ 250 s (same sub-
jects for both ΔCHbO and ΔCHb).

Figure 6 presents average ΔCHbO and ΔCHb responses to hypercapnia derived from the first
three gates for DTOFs recorded at rSD ¼ 3 cm [Fig. 6(a)]. Similar to the times series derived
from ΔN1 cm (Fig. 5(a)), all time series exhibited noticeable residue signals after PETCO2 had
returned to normocapnia, particularly for ΔCHbO. These residues were also evident in the ΔCHbO

time courses derived from gate 12 at rSD ¼ 3 cm [Fig. 6(b)] and, to a lesser extent, from ΔV3 cm

[Fig. 6(c)]. Similar to Fig. 5, ΔCHbO and ΔCHb time courses obtained after regression analysis
using an early gate as the regressor exhibited improved dynamics of the reconstructed hyper-
capnic responses for both gate 12 and ΔV3 cm. No significant difference was found in the good-
ness of fit using an early gate as the regressor compared to using ΔN1 cm as the regressor.
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Table 2 provides the best-fit estimates of τ and ssCVR from the analysis of ΔCHbO and ΔCHb

time courses obtained with an early gate signal (rSD ¼ 3 cm) as the regressor and either gate 12
or ΔV3 cm as the dependent variable. The ANOVA indicated that τ and ssCVR estimates for both
dependent variables were independent of which early gate was chosen as the regressor. Table 2
includes the average τ and ssCVR values across the three early gates.

Fig. 5 (a) Average ΔCHbO (red) and ΔCHb (blue) responses to a 2 min hypercapnic challenge
(indicated by the gray shaded region). Time courses are presented for the signals measured
at two source-detector separations: rSD ¼ 1 and 3 cm and were averaged across nine subjects.
The best fit of the hemodynamic model to each averaged hemoglobin time course is illustrated by
the black dashed line. (b) Corresponding hemoglobin signals obtained after regressing the ΔN1 cm

from the time courses measured at rSD ¼ 3 cm for the three moments. Average recorded
ΔPETCO2 is presented in the left column, along with a theoretical ΔSðtÞ generated for τ ¼ 27 s.

Table 1 Best fit estimates of the time constant (τ) and steady-state cerebrovascular reactivity
(ssCVR) obtained from the analysis of the ΔCHbO, ΔCHb data derived from the three moments
recorded at rSD ¼ 3 cm and the regression approach applied to each moment separately.
Values are presented as average (standard deviation) across subjects.

Regressor τ (s) ssCVR (μM∕mmHg)

Oxyhemoglobin
(HbO)

Moment
analysis

—

ΔN3 cm Δhti3 cm ΔV 3 cm ΔN3 cm Δhti3 cm ΔV 3 cm

72�
42

82�
45

77�
45

0.18�
0.05

0.15�
0.05

0.09�
0.02

Regression
approach

ΔN1 cm 53�
14

48�
43a

43�
40a

0.07�
0.07a

0.07�
0.07a

0.06�
0.03a

Deoxyhemoglobin
(Hb)

Moment
analysis

—

ΔN3 cm Δhti3 cm ΔV 3 cm ΔN3 cm Δhti3 cm ΔV 3 cm

64�
27

62�
31

31�
13

−0.08�
0.07

−0.10�
0.06

−0.05�
0.03

Regression
approach

ΔN1 cm 26�
32a

32�
28

21�
24

−0.05�
0.06

−0.06�
0.04

−0.04�
0.02

aStatistically significant differences between parameters recovered with and without regression analysis
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Figure 7 shows the average ΔCHbO and ΔCHb time courses obtained from the functional data
for early and late gates, as well as from the variance signal [Fig. 7(a)]. Similar to the hypercapnia
data, differences in hemoglobin time courses can be observed for responses obtained for signals
primarily sensitive to the ECL (i.e., early gate) and signals with greater depth sensitivity (i.e., late
gate or ΔV3 cm). In particular, the averaged hemoglobin time courses from the early gate exhib-
ited a slow component that propagated throughout the 60 s period. The influence of this physio-
logical signal was smaller but still observable in the ΔCHbO and ΔCHb time series derived from
the late gate or ΔV3 cm. Regression analysis using the early gate signal as the regressor further
reduced the effect of the ECL component, resulting in ΔCHbO and ΔCHb time courses that were
similar to time course predicted by the HRF. This was confirmed by the reduction of the values of
the χ2 goodness of fit obtained for late gate or ΔV3 cm after applying regression analysis; how-
ever, statistical significance was only achieved for ΔCHb calculated using ΔV3 cm.

4 Discussion

The main challenge with fNIRS studies involving adults is the substantial signal contamination
from the ECL. By isolating late-arriving photons, trNIRS provides the ability to fundamentally
improve depth sensitivity. This advantage is demonstrated by the temporal differences in the
reconstructed hemoglobin time courses shown in Fig. 5(a). The magnitude of the residue signal
following the hypercapnic challenge (i.e., after PETCO2 returned to normocapnia) diminished as
the order of the statistical moment increased. This trend was more pronounced for ΔCHbO due to
its greater sensitivity to scalp hemodynamics.20 However, higher moments and late gates are still
sensitive to the ECL, as indicated by the sensitivity factors shown in Figs. 2 and 3. Consequently,
the time constant τ, which characterizes the dynamics of cerebrovascular reactivity was larger

Fig. 6 Average ΔCHbO (red) and ΔCHb (blue) responses to a 2 min hypercapnic challenge (indi-
cated by the shaded gray region) from data recorded at rSD ¼ 3 cm. (a) Responses from the first
gates (gate # 1–3); (b) responses from the last gate (gate # 12) before and after applying regres-
sion using one of gates 1 to 3 as the regressor; and (c) responses derived from the variance signal
before and after applying the same regression. All time courses were averaged across nine sub-
jects, and shading surrounding each line represents the standard error of the mean. The best fits of
the hemodynamic model to average hemoglobin signals are illustrated in each graph by the black
dashed line.
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than expected for ΔCHbO determined from ΔV3 cm (τ ¼ 77� 45 s) compared to functional mag-
netic resonance imaging studies (fMRI).33,35 For healthy gray matter, τ should be in the range of
15 to 40 s, as illustrated by the theoretical response shown in Fig. 5(b).

This study focused on investigating if the depth sensitivity of trNIRS could be further
improved by incorporating regression analysis. To emulate the method proposed by Saager and
Berger6 for CW NIRS applications that include a short-separation channel, regression was first
applied to trNIRS data recorded at rSD ¼ 3 cm using the ΔN1 cm as the regressor. The improve-
ment to the hypercapnic response was demonstrated by the reduced residue signal observed in
the recovery phase [Fig. 5(b)]. Again, the benefit was greater for ΔCHbO as indicated by the
significant reduction in τ for the time series obtained from Δhti3 cm and ΔV3 cm (Table 1).
The corresponding τ values for ΔCHb from all three moments were also lower after regression;
however, only the results for ΔN3 cm reached statistical significance. In agreement with CW
NIRS studies, these results confirm that applying regression to trNIRS data that includes a
short-separation channel is beneficial, even for trNIRS metrics with enhanced depth sensitivity.

A further advantage of trNIRS is the possibility to apply a regression to data acquired at a
single rSD since early arriving photons should be predominately sensitive to the ECL. This is
reflected in the sensitivity factors shown in Fig. 4(a) for the first three gates that span the initial
rise of a typical DTOF. The contribution from the brain is expected to be <3% for all three gates
assuming the distance to the brain is 14 mm.20 To evaluate the feasibility of using an early gate as
the regressor, this study focused on the two metrics that provided the greatest depth sensitivity
(the variance and the 250-ps gate positioned at the end of the DTOF, both measured at
rSD ¼ 3 cm) to act as the dependent variable in the regression analysis. In agreement with the
results involving the short-separation channel, applying regression to signals obtained from the
same DTOF substantially reduced the residue signal in the hypercapnia experiments [Figs. 6(b)–
6(c)]. For both the late gate and ΔV3 cm, τ for ΔCHbO was significantly lower compared to
the values derived from each metric on its own, and the regression also reduced inter-subject
variability (Table 2). Regression appeared to work better for ΔV3 cm compared to the late gate

Table 2 Best fit estimates of the time constant (τ) and steady-state cerebrovascular reactivity
(ssCVR) obtained from the analysis of the ΔCHbO, ΔCHb data derived from the regression
approach based on combinations of early and late gates and by combining ΔV 3 cm and an early
gate. Values are presented as average (standard deviation) across subjects.

Regressor τ (s) ssCVR (μM∕mmHg)

Oxyhemoglobin
(HbO)

The late gate
(gate no. 12)

ΔV 3 cm The late gate
(gate no. 12)

ΔV 3 cm

— 101� 51 77� 45 0.12� 0.03 0.09� 0.02

Gate 1 33� 22a 20� 18a 0.06� 0.04a 0.06� 0.03a

Gate 2 41� 70 20� 19a 0.06� 0.05a 0.06� 0.03a

Gate 3 37� 43a 19� 19a 0.07� 0.05a 0.06� 0.03a

Average (gates 1 to 3) 37� 50a 20� 18a 0.06� 0.05a 0.06� 0.03a

Deoxyhemoglobin
(Hb)

The late gate
(gate no. 12)

ΔV 3 cm The late gate
(gate no. 12)

ΔV 3 cm

— 33� 34 31� 13 −0.03� 0.03 −0.05� 0.03

Gate 1 22� 31 35� 32 −0.03� 0.03 −0.04� 0.03

Gate 2 28� 42 35� 36 −0.03� 0.03 −0.04� 0.03

Gate 3 15� 11 22� 29 −0.03� 0.03 −0.04� 0.04

Average (gates 1 to 3) 22� 31 31� 33 −0.03� 0.03 −0.04� 0.03

aStatistically significant differences between parameters recovered with and without regression analysis
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(i.e., τ ¼ 20� 18 s versus 37� 50 s) likely due to the greater depth sensitivity of the former, but
this difference did not reach statistical significance. Regression did not significantly improve the
time constant for the corresponding ΔCHb time courses, which likely reflects the lower residue
signal compared to ΔCHbO. In general, the average τ values following regression for both hemo-
globin signals were within the expected range reported in fMRI studies.33,35

No significant differences were found between fitting parameter estimates (τ and ssCVR) for
regression involving the three early gates, suggesting that any of the gates, or some combina-
tion, would be adequate to act as the regressor. The lack of any difference indicates that selec-
tion of the time window for the early gate is not overly critical, provided it is predominately
sensitive to the ECL. There may be incidences in which it would be prudent to select the earliest
gate possible due to variations in ECL thickness between individuals and across the head.36 In
this study, the average ΔCHbO and ΔCHb time courses from gate 1 appeared to exhibit greater
variability compared to those generated from gates 2 and 3 [Fig. 6(a)]. This may have been
caused by light contamination related to differences in probe-to-skin contact but it did not
influence the overall fitting results. Interestingly, the average ΔCHbO and ΔCHb time courses
extracted from the early gates were not the same as those obtained from ΔN1 cm. All three
ΔCHb time courses from the early gates at rSD ¼ 3 cm increased in response to hypercapnia,
whereas the corresponding ΔN1 cm decreased during the same period. One possible explanation
is that ΔN1 cm contained some brain signal considering the corresponding average ΔCHb time
course exhibited a decrease near the onset of hypercapnia similar to that observed in the time
courses with greater sensitivity to the brain. To investigate this possibility, time series were
extracted for the first 250 ps of the ΔN1 cm data, and these resulted in similar ΔCHbO and
ΔCHb time courses as shown in Fig. 5(a) (data not presented). A most likely explanation would

Fig. 7 (a) Average ΔCHbO (red) and ΔCHb (blue) response to functional activation (indicated by
the shaded region) obtained for the early gate (mean of signal for gate # 2–3). (b) Regression
analysis results obtained for the early gate (used as regressor) and the late gate (gate # 10).
(c) Regression analysis results obtained for the early gate (used as regressor) and ΔV 3 cm.
Shading surrounding each line represents the standard error of the mean. The best fit of the hemo-
dynamic model to each average hemoglobin time course is illustrated by the black dashed line.
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be regional variations in scalp hemodynamics that led to different deoxyhemoglobin contribu-
tions measured by the two detectors.

The regression approach was also applied to previously acquired fNIRS data involving
a motor imagery task. The average ΔCHbO and ΔCHb time courses were improved by applying
the regression approach as reflected by the removal of a slow frequency component observed in
Figure 6 and the improved χ2 goodness of fit between the experimental data and the GLM,
although this improvement did not reach statistical significance. One of the challenges with
assessing the performance of the regression approach on activation data is that the magnitude
of scalp signal changes likely varies considerably between subjects. This is in contrast to the
hypercapnic challenge that was both global (i.e., can cause hemodynamic responses in multiple
tissues including scalp) and fairly robust across participants due to the relatively large increase in
PETCO2 (14.2� 0.6 mmHg).20 It would be useful to apply the regression approach to larger
functional trNIRS data sets to further confirm its value for improving the sensitivity to the brain.
Lastly, this study implemented the linear least-squares method first proposed by Saager and
Berger, and the technique would likely benefit from refinements such as incorporating adaptive
filters.3

5 Conclusions

In summary, this study demonstrated that applying regression analysis to trNIRS metrics with
different depth sensitivities improved the characterization of dynamic cerebrovascular reactivity
and the oxygenation responses during an activation task. The unique ability of trNIRS to extract
the necessary information regarding the ECL from the same data set used to detect changes in
cerebral oxygenation ensures the regressor truly reflects the ECL contribution to each probe. The
challenge with trNIRS is the additional cost and complexity of the equipment—in this study, all
measurements were acquired with a four-channel system. However, this bottleneck is likely to be
overcome with the development of miniaturized laser sources and compact silicon photomulti-
plier devices,16,37,38 which will enable multi-channel trNIRS systems to rival current CW NIRS
devices.
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