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Abstract

Significance: Subretinal injection is an effective way of delivering transplant genes and cells to
treat many degenerative retinal diseases. However, the technique requires high-dexterity and
microscale precision of experienced surgeons, who have to overcome the physiological hand
tremor and limited visualization of the subretinal space.

Aim: To automatically guide the axial motion of microsurgical tools (i.e., a subretinal injector)
with microscale precision in real time using a fiber-optic common-path swept-source optical
coherence tomography distal sensor.

Approach: We propose, implement, and study real-time retinal boundary tracking of A-scan
optical coherence tomography (OCT) images using a convolutional neural network (CNN) for
automatic depth targeting of a selected retinal boundary for accurate subretinal injection
guidance. A simplified 1D U-net is used for the retinal layer segmentation on A-scan OCT
images. A Kalman filter, combining retinal boundary position measurement by CNN and veloc-
ity measurement by cross correlation between consecutive A-scan images, is applied to opti-
mally estimate the retinal boundary position. Unwanted axial motions of the surgical tools
are compensated by a piezoelectric linear motor based on the retinal boundary tracking.

Results: CNN-based segmentation on A-scan OCT images achieves the mean unsigned error
(MUE) of ∼3 pixels (8.1 μm) using an ex vivo bovine retina model. GPU parallel computing
allows real-time inference (∼2 ms) and thus real-time retinal boundary tracking. Involuntary
tremors, which include low-frequency draft in hundreds of micrometers and physiological trem-
ors in tens of micrometers, are compensated effectively. The standard deviations of photorecep-
tor (PR) and choroid (CH) boundary positions get as low as 10.8 μm when the depth targeting is
activated.

Conclusions: A CNN-based common-path OCT distal sensor successfully tracks retinal boun-
daries, especially the PR/CH boundary for subretinal injection, and automatically guides the
tooltip’s axial position in real time. The microscale depth targeting accuracy of our system shows
its promising possibility for clinical application.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.26.6.068001]

Keywords: optical coherence tomography; convolutional neural network; retinal segmentation;
microsurgery; surgical guidance.

Paper 210109R received Apr. 5, 2021; accepted for publication Jun. 15, 2021; published online
Jun. 30, 2021.

1 Introduction

Subretinal injection is becoming increasingly prevalent in both scientific research and clinical
communities as an efficient way of treating retinal diseases. It has been used for gene and cell
transplant therapies to treat many degenerative vitreoretinal diseases, such as retinitis pigmen-
tosa, age-related macular degeneration, and Leber’s congenital amaurosis.1 The treatments
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involve the delivery of drugs or stem cells into subretinal space between the RPE and photo-
receptor (PR) layer, thereby directly affecting resident cells and tissues in the subretinal space.
However, the procedure requires surgeons’ high-dexterity and microscale precision due to the
delicate anatomy of the retina. The procedure is further complicated by the existence of physio-
logical motions by patients, surgeons’ hand tremor2,3 and limited depth perception, and limited
visual feedback from a traditional stereo-microscopic en face view.

Optical coherence tomography (OCT)-guided robotic systems have been developed to reduce
the unintended physiological motion and overcome the limited visual feedback during ocular
microsurgery. OCT, which provides microscale resolution cross-sectional images in real time,4

enables improved visualization and accurate guidance of robotic systems. Microscope-integrated
OCT systems were applied for surgical tool localization and robotic system guidance by intra-
operatively providing volumetric images of tissues and surgical tools.5–9 Fiber-optic common-
path OCT (CP-OCT) distal sensor integrated hand held surgical devices have also been devel-
oped to implement simple, compact, and cost-effective microsurgical systems.10–13 In those sys-
tems, a single-fiber distal sensor attached to a surgical tooltip (i.e., needle or microforceps)
guided the hand held surgical device by real-time A-scan-based surface tracking. However, sur-
face tracking-based guidance could induce inaccurate depth targeting for subretinal injection
because of retinal thickness variations and irregular morphological features caused by retinal
diseases. The target or near-target retinal boundary tracking, which is the RPE and PR boundary
tracking for subretinal injection, allows precision guidance, but previous researches on retinal
layer segmentation of OCT images using active contours,14,15 graph search,16–18 and shortest path
methods19,20 are not adequate for A-scan images due to the absence of lateral information.
In recent years, convolutional neural network (CNN)-based retinal layer segmentation have
been proposed and showed promising results.21–24 Although the proposed CNN-based methods
were developed for B-scan or C-scan OCT image segmentation, they could also be applied to
A-scan images and operate in real time by simplifying networks and using GPU parallel
computing.

In this paper, we present real-time retinal boundary tracking based on CNN segmentation of
A-scan OCT images for accurate depth targeting of a selected retinal boundary. The U-net,25

which is widely used in medical image segmentation, was simplified and applied for segmen-
tation on A-scan images. A Kalman filter, combining retinal boundary position measurement by
CNN and velocity measurement by cross correlation between consecutive A-scan images, is
applied to optimally estimate the retinal boundary position. Undesired axial motions of the sur-
gical tool are compensated by a piezoelectric linear motor using the tracked boundary position.
An ex vivo bovine eye model is used to evaluate the retinal boundary tracking and depth targeting
performance of the hand held microsurgical device.

2 Experiments and Methods

2.1 Network Architecture and Training for Retinal Layer Segmentation

We applied a simplified 1D U-net for A-scan retinal OCT image segmentation. The U-net is a
fully CNN consisting of a contracting path to capture context followed by a symmetric expand-
ing path that enables precise localization. In our design, double convolutional layers of the origi-
nal U-net were reduced to a single convolutional layer, and the identical number of feature
channels was used for all convolutional layers.

Figure 1(a) shows the 1D U-net architecture we designed. The contracting path is composed
of four contracting blocks containing a convolutional layer, batch normalization layer, ReLU
activation layer, and max-pooling layer in sequence. Similarly, the expanding path is composed
of four expanding blocks containing a transposed convolution layer, concatenation layer, con-
volutional layer, batch normalization layer, and ReLU activation layer in sequence. The convolu-
tional kernel size of 15 × 1 was used to ensure the receptive field to be larger than the image size.
The receptive field is expressed as26

EQ-TARGET;temp:intralink-;e001;116;93r ¼ sbð1þ 2ðk − 1ÞÞ − k; (1)
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where s is the sampling size, which equals the kernel size of max-pooling layer and the trans-
posed convolutional layer, b is the number of contracting blocks, and k is the convolutional
kernel size. The kernel size of the max-pooling layer and the transposed convolutional layer
was set to 2 × 1, and, in this case, the receptive field is calculated as 450 × 1. Since improving
inference speed is important for our application, the 1D U-net illustrated in Fig. 1(a) was sim-
plified stepwise, and the performance of four architectures was compared. The number of con-
tracting and expanding blocks was reduced to three while keeping other conditions the same, and
also max-pooling and transposed convolutional kernels were sized up to 4 × 1 for compensating
reduced receptive field. We then removed skip concatenation layers to see the effect of the skip
connections, and the simplest 1D U-net is illustrated in Fig. 1(b).

The 1D U-net models were implemented using Pytorch on a computer with Intel i9-10900X
CPU, NVIDIA Quadro RTX 4000 GPU, and 32 GB RAM for training. A generalized dice loss
function was used, and the network parameters were updated via backpropagation and Adam
optimization process. Max epoch was 20, and the mini-batch size was 128. The learning rate was
initialized as 10−3, which then decreases by 10 times after 10 epochs.

The trained CNN model was implemented on CUDA by customized CUDA kernels, and the
inference time of the CNN models on GPU was measured using the NVIDIA Nsight tool in
Visual Studio on the workstation described in Sec. 2.4.

2.2 Retinal Boundary Tracking

The axial distance between a fiber (needle) end and a target boundary can be measured from the
target boundary position at A-scan images since the fiber end, working as a reference reflector,
locates at the top edge of the images. A target boundary position was measured from a segmented
image by averaging the bottommost pixel position of an adjacent upper layer and the topmost
pixel position of an adjacent lower layer. Then the Kalman filter27 was applied to estimate the
boundary position optimally using the dynamic and measurement model described as

EQ-TARGET;temp:intralink-;e002;116;190xk ¼
�
xk
vk
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�
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EQ-TARGET;temp:intralink-;e003;116;133zk ¼ Hxk þ nk ¼
�
1 0

0 1

�
xk þ nk; (3)

where xk, vk, and ak are the axial position, velocity, and acceleration of the target boundary. The
control of the linear motor uk is a distance that the linear motor moves forward or backward. The
velocity vk was measured by the ratio of movement distance of the sample (i.e., target boundary)
to a known constant time duration. The movement distance was calculated by displacement of

Fig. 1 Network architecture of (a) our 1D U-net and (b) the most simplified 1D U-net we applied.N ,
kernel number and S, kernel size.
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the sample in two consecutive A-scan images, which is the shift value maximizing cross corre-
lation between two consecutive A-scan images, subtracted by the previous control uk−1. The uk
was defined as c (xtarget − xk) using proportional control, where (xtarget − xk) is an error and c is a
proportional gain. The bias for control was set to zero because the linear motor is supposed to be
stationary when the boundary position is at the target position. The proportional gain c was
determined experimentally. The wk and nk are the process noise and observation noise, respec-
tively, and they were assumed to be zero-mean Gaussian white noise. The algorithm works in
two distinctive processes and is given by

prediction:

EQ-TARGET;temp:intralink-;e004;116;627x̂kjk−1 ¼ Fxk−1jk−1 þ Buk−1; (4)

EQ-TARGET;temp:intralink-;e005;116;582Pkjk−1 ¼ FPk−1jk−1FT þQ; (5)

correction:

EQ-TARGET;temp:intralink-;e006;116;558x̂kjk ¼ x̂kjk−1 þ Kkðzk −Hkx̂kjk−1Þ; (6)

EQ-TARGET;temp:intralink-;e007;116;513Kk ¼ Pkjk−1 þ Pkjk−1HTðHPkjk−1HT þ RkÞ−1; (7)

EQ-TARGET;temp:intralink-;e008;116;489Pkjk ¼ ðI − KkHÞPkjk−1; (8)

where P,Q, and R are the covariance of error, process noise, and observation noise, and K is the
Kalman gain.

The quantitative evaluation of the retinal layer tracking performance was based on three met-
rics: mean signed error (MSE), mean unsigned error (MUE), and absolute maximum error
(AME) of each retinal boundary position.

2.3 Dataset

A-scan OCT images of the retina were obtained from 11 ex vivo bovine eyes using endoscopic
CP-OCT-lensed fiber probes.28 The cornea and lens of the eyes were removed, and the lensed
fiber probes were inserted into the vitreous humor (VH) and horizontally scanned by a motorized
linear translation stage (Z812B, Thorlabs, USA). More details about the CP-OCT system are
described in Sec. 2.4. Eight A-scan images were averaged to improve the signal-to-noise ratio.
The resultant A-scan images were combined to present a quasi-B-scan image for easy visuali-
zation as shown in Fig. 2(a). The quasi-B-scan images were then manually segmented into the
VH, the six retinal layers, labeled as ganglion cell layer (GCL), inner plexiform layer (IPL), inner
nuclear layer (INL)-outer plexiform layer (OPL), outer nuclear layer (ONL)-external limiting
membrane (ELM), PR layers, and choroid (CH), and region below the retina by a single observer
using ImageJ software. Figure 2(b) shows the manually segmented image. 8400 A-scan OCT
retinal images from 9 eyes were used for training, and 1000 A-scan OCT retinal images from 2
eyes were used for testing.

A-scan images of 1 × 1024 pixels were cropped into 1 × 320 pixels along the axial direction,
keeping only the region around retinal tissues, to reduce computation time. The retinal tissue area
was found using cross correlation between the averaged A-scan image over all datasets and each
A-scan image. All A-scan images in the dataset were averaged, after being shifted such that the
retinal layer surface lays on zero position, and then thresholded to remove background noise.
The upper graph of Fig. 2(c) shows the averaged A-scan image and a sampled A-scan image
from Fig. 2(a), and the lower graph shows cross correlation between the two A-scans as a func-
tion of displacement. Since the retinal surface position of the averaged A-scan is set to zero, the
displacement maximizing the cross correlation indicates approximately the retinal surface loca-
tion of each A-scan image. Figure 2(d) shows the cropped image obtained from Fig. 2(a).

The cropped images of the train dataset were augmented by random vertical translation. For
each A-scan image, five additional training samples were created with random translation values
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between −15 and 15. The final train and test datasets consist of 46,530 A-scan images and 1000
A-scan images, respectively. The image pixel size along the axial direction is 2.7 μm.

2.4 CP-SSOCT Distal Sensor Guided Handheld Microsurgical
Tool System

Figure 3 shows the schematic of the common-path swept-source optical coherence tomography
(CP-SSOCT) distal sensor-guided handheld microsurgical tool system and a signal processing
flowchart. The CP-SSOCT system uses a commercial swept-source engine (Axsun Technologies
Inc., Billerica, USA) operating at a 100-kHz sweep rate. The center wavelength and sweeping
bandwidth of the system are 1060 and 100 nm, respectively. A lensed fiber probe of the CP-
SSOCT system is encased in a 25-gauge blunt needle and fixed along the needle using UV
curable glue. The fiber probe guides the needle to maintain a specified distance from a target
boundary using a piezoelectric linear motor (LEGS LT20, PiezoMotor, Uppsala, Sweden). The
linear motor velocity can be set as high as 12.5 mm∕s, and it limits the velocity of motion it can
compensate. More details about the microsurgical tool system are described in Ref. 11. Awork-
station (Dell Precision T5810) with an NVIDIA Quadro K4200 GPU processes the sampled
spectral data to measure a distance between a target boundary and a needle and controls the
linear motor. Most parts of the signal processing including CNN inference are performed on
GPU by CUDA to reduce processing time. Specifically, 128 spectra were transmitted from a
frame grabber and processed at the same time. A-scan images were obtained by performing
the fast Fourier transform on the spectral data. After background noise subtraction, eight sequen-
tial A-scan images were averaged to increase the signal-to-noise ratio and cropped into
16 × 320 pixels. CNN-based segmentation is performed on the 16 cropped images of
1 × 320 pixels, and a target boundary distance is measured as described in Sec. 2.2. The
Kalman filter is applied using the measured position and velocity, and the optimally estimated
position was used for motor control.

Fig. 2 (a) A quasi B-scan OCT image of an ex vivo bovine eye obtained using an endoscopic CP-
OCT-lensed fiber probe. (b) A manually segmented OCT image. (c) The averaged retinal A-scan
over all datasets and a sampled retinal A-scan (upper graph) and cross correlation between the
two A-scans (lower graph). (d) A cropped quasi B-scan OCT image consisting of the cropped A-
scan images in the train dataset.
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3 Experimental Results and Discussion

3.1 Train and Test Results of CNN-Based Segmentation and Boundary
Tracking

The CNN-based retinal layer segmentation performance was evaluated by mean intersection over
union (IoU). The mean IoU is calculated by averaging the IoU score of each class as follows:

EQ-TARGET;temp:intralink-;e009;116;343mean IoU ¼
XC
c¼1

nc;TP
nc;TP þ nc;FP þ nc;FN

; (9)

where nc;TP, nc;FP, and nc;FN are the number of true-positive pixels, false-positive pixels, and
false-negative pixels of the class c, respectively, and C is the total number of classes.

Figure 4(a) shows the mean IoU on the train and test datasets as a function of the number of
feature channels calculated by networks described in Sec. 2.1. Each CNN architecture was
trained five times, and the plots indicate average values. As expected, mean IoU on the train
dataset increases with learnable parameters, which increase with the number of contracting and
expanding blocks, the number of feature channels, and sampling size, and mean IoU on the test
dataset decreases or increases and then decreases with learnable parameters due to overfitting.
Also the removal of the skip concatenation connections does not degrade performance distinc-
tively. This could be because our network is not very deep and high-resolution features passed
from the contracting path to the expanding path do not advantageously affect the task due to the
speckle noise of the images. We achieve the best mean IoU of 79.1% on the test dataset with
three contracting and expanding blocks and a sampling size of 4. The inference time of the
trained networks on GPU was measured considering real-time axial tremor compensation.
The most time-consuming layer is a convolutional layer, so inference time is significantly
affected by the number of channels, sampling size, and skip concatenation connection, as shown
in Fig. 4(b). The inference time for 16 images of 1 × 320 pixels is at most 1.6 ms with the
optimal number of feature channels for each architecture. Physiological hand tremor has a fre-
quency of 7 to 13 Hz, and its amplitude in the axial direction is around 50 μm.2 The speed of

Fig. 3 Schematic of CP-SSOCT distal sensor guided handheld microsurgical tool system and a
signal processing flowchart.
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physiological hand tremor is approximately calculated as 1 μm∕ms assuming a frequency of
10 Hz and linear movement. Therefore, inference time of 1.6 ms is considered reasonably fast
for physiological tremor cancellation since other computation and communication delay of our
system is around 1.5 ms and image pixel size along the axial direction, the smallest distance we
can detect, is 2.7 μm.

Tables 1–3 show the MSE, MUE, and AME of retinal boundary position calculated with an
optimal number of feature channels before and after applying the Kalman filter. The MSE, MUE,
and AME are defined as follows:

EQ-TARGET;temp:intralink-;e010;116;416MSE ¼ 1

N

XN
i¼1

p̂i − pi; (10)

EQ-TARGET;temp:intralink-;e011;116;354MUE ¼ 1

N

XN
i¼1

jp̂i − pij; (11)

EQ-TARGET;temp:intralink-;e012;116;313AME ¼ max
i¼1: : : N

jp̂i − pij; (12)

Fig. 4 (a) Mean IoU of trained networks on the train and test datasets and (b) inference time on
GPU for segmentation of 16 A-scan OCT images of 1 × 320 pixels. NB, the number of contracting
and expanding blocks; SS, sampling size; and NSC, no skip concatenation connection.

Table 1 MSE of retinal boundary position (pixels)

Retinal boundary

Convolution filter size and number, and sampling size

NB 4, NC 4,
SS 2

NB 3, NC 8,
SS 2

NB 3, NC 4,
SS 4

NB 3, SS 4,
NSC

CNN KF CNN KF CNN KF CNN KF

VH/GCL −1.46 −1.54 0.22 0.14 −0.72 −0.79 0.67 0.60

GCL/IPL 1.34 1.27 0.35 0.28 0.96 0.88 1.54 1.48

IPL/INL-OPL 0.46 0.39 −5.37 −5.51 −0.017 −0.09 −0.068 −0.13

INL-OPL/ONL-ELM −2.49 −2.57 −1.36 −1.43 −1.45 −1.53 −1.06 −1.12

ONL-ELM/PR −1.08 −1.16 −0.92 −1.00 −0.92 −1.00 −1.41 −1.49

PR/CH −0.23 −0.31 −0.83 −0.90 −0.59 −0.69 −0.38 −0.45

NB, the number of contracting and expanding blocks; NC, the number of feature channels; SS, sampling size;
and NSC, no skip concatenation connections.
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where p̂i and pi are the estimated and true retinal boundary position of the i’th A-scan images,
and N is the total number of A-scan images in the test dataset. The Kalman filtering does not
affect MSE distinctively, but it reduces MUE and AME by removing unexpected high-frequency
motion of tracked position. Overall, the errors are comparable for the networks presented in the
tables, and we selected the last network architecture for our tremor cancellation system because it
tracked boundaries more stably with lower MUEs and AMEs. Using the selected parameters for
CNN, MSE, MUE, and AME of PR/CH boundary after Kalman filtering were −0.45 pixels

(−1.2 μm), 2.48 pixels (6.7 μm), and 16 pixels (43.2 μm), respectively. Relatively larger errors
than that of other CNN-based OCT retinal segmentation could be caused by the absence of lateral
information and limited image quality obtained by a fiber probe.

3.2 Real-Time Ex Vivo Bovine Retinal Boundary Tracking and Tremor
Cancellation

We evaluated the retinal boundary tracking and depth targeting performance of the handheld
microsurgical instrument guided by CNN using an ex vivo bovine retina model.

At first, we produced an estimate of noise for retinal boundary tracking by measuring stan-
dard deviations (SDs) of VH/GCL and PR/CH boundary positions using a stationary OCT distal

Table 2 MUE of retinal boundary position (pixels).

Retinal boundary

Convolution filter size and number, and sampling size

NB 4, NC 4,
SS 2

NB 3, NC 8,
SS 2

NB 3, NC 4,
SS 4

NB 3, NC 12,
SS 4, NSC

CNN KF CNN KF CNN KF CNN KF

VH/GCL 3.81 3.01 2.86 2.04 3.11 2.50 2.68 2.15

GCL/IPL 4.10 3.71 5.09 4.61 4.24 3.75 4.21 3.79

IPL/INL-OPL 3.82 3.37 8.72 7.94 3.93 3.34 3.61 3.14

INL-OPL/ONL-ELM 4.06 3.88 3.71 3.45 3.55 3.36 3.29 3.01

ONL-ELM/PR 2.79 2.43 2.97 2.51 2.65 2.37 2.93 2.56

PR/CH 2.99 2.56 3.44 2.84 3.20 2.77 2.88 2.48

Table 3 AME of retinal boundary position (pixels).

Retinal boundary

Convolution filter size and number, and sampling size

NB 4, NC 4,
SS 2

NB 3, NC 8,
SS 2

NB3, NC 4,
SS 4

NB 3, NC 12,
SS 4, NSC

CNN KF CNN KF CNN KF CNN KF

VH/GCL 27.5 19.9 61 21.2 39.5 22.1 15 14.6

GCL/IPL 21 15.3 45 31.3 21 17 16 17.2

IPL/INL-OPL 32.5 18.6 61.5 53 48 18.6 22 15.0

INL-OPL/ONL-ELM 35.5 17.9 53 24.4 18 15.1 31.5 16.2

ONL-ELM/PR 31 17.1 41 16.8 25.5 15,4 22 14.3

PR/CH 27 18 48.5 22.9 88 40.6 24.5 16
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sensor. Figure 5(a) shows the M-scan OCT image for 1 s and tracked boundary positions
obtained using the stationary OCT distal sensor. Overall, speckle pattern does not change as
expected, but local intensity variations, which could be caused by OCT noise and micro-
oscillations inside a sample, induce small fluctuations of tracked retinal boundaries. Therefore,
although the SDs of boundary positions are supposed to be zero because the distance between the
retina and the OCT distal sensor does not vary, the mean and SD of the SDs acquired from 13
trials of 5 eyes are 2.83� 0.69 μm (1.04� 0.26 pixel) for VH/GCL boundary and
3.09� 0.92 μm (1.14� 0.34 pixel) for PR/CH boundary.

Depth targeting system noise was then evaluated using a piezoelectric motor fixed to a sta-
tionary stage. The motor was integrated with an OCT distal sensor attached needle and activated
for depth targeting of the needle. Ideally, the motor should be stabilized when the needle reaches
a target depth since both the motor and the sample are stationary. However, due to retinal boun-
dary tracking noise and control error, the motor kept working actively as shown in Figs. 5(b) and
5(c). Figures 5(b) and 5(c) show M-scan OCT images for 1 s, when VH/CGL boundary and PR/
CH boundary are targeted, respectively. The SDs of VH/GCL and PR/CH boundary positions
during depth targeting were measured with 13 trials of 5 eyes and shown in Fig. 5(d). The
mean and SD of the SDs of VH/GCL and PR/CH boundary positions are 2.75� 0.35 μm
(1.02� 0.13 pixel) and 4.8� 1.46 μm (1.78� 0.54 pixel), respectively, when the VH/CGL
boundary is targeted. When the PR/CH boundary is targeted, the mean and SD of the SDs
of VH/GCL and PR/CH boundary positions are 4.41� 0.31 μm (1.63� 0.12 pixel) and 4.28�
1.02 μm (1.58� 0.38 pixel), respectively. Theoretically, the speckle pattern does not change
with axial motion only, so the overall speckle pattern does not change significantly except shifts
in the axial direction. However, local intensity variations of the speckle pattern increase with
axial motion because the OCT sensing beam is not perfectly perpendicular to the retina surface

Fig. 5 M-scan OCT images of ex vivo bovine eyes acquired using (a) a stationary OCT distal
sensor and a OCT distal sensor attached to fixed motor activated for (b) VH/GCL boundary tar-
geting and (c) PR/CH boundary targeting. The green and yellow solid lines represent tracked VH/
GCL and PR/CH boundaries, respectively. (d) The SDs of tracked boundary positions by an OCT
distal sensor attached to a fixed motor during depth targeting.
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and axial motion could induce slight transverse motion. Moreover, since the sensing beam is
focused on the retina, the axial motion changes the integration volume inside the retina, which
also could increase local intensity variations. Therefore, PR/CH boundary tracking, which has a
larger tracking error, is degraded more by the intensity variations and shows larger SDs than that
of VH/GCL boundary tracking.

Tremor compensation and depth targeting performance were evaluated for a handheld micro-
surgical instrument. The microsurgical instrument was held by a free-hand and proceeded toward
the retina until automatic depth targeting was activated. We used a tremor compensation algo-
rithm we developed earlier and more details can be found in our previous work.13 A VH/GCL
boundary, as well as a PR/CH layer boundary, were tracked, and one of them was used for depth
targeting. We performed 12 trials of depth targeting each for VH/CGL and PR/CH boundaries
using 5 eyes. Figure 6 shows the M-scan OCT images of the bovine retina obtained with and
without tremor compensation for ∼13 s. In Fig. 6(a), the VH/GCL boundary (yellow line) was
used for depth targeting, and its target depth represented by the dashed line was set to 700 μm
away from a fiber probe end. Similarly, in Fig. 6(b), the PR/CH boundary (yellow line) was
targeted, and its target depth was set to 1000 μm. The green solid lines are untargeted boundaries
(VH/GCL or PR/CH), and the white vertical lines indicate the moment when motion compen-
sation has been activated. The left side of the vertical line with a highly irregular boundary profile
represents duration without the tremor compensation, however, once the tremor compensation
has been activated (right side of the vertical line), the targeted boundary becomes flat and fixed
around the target depth indicating that the motion compensation is working effectively. As
expected, when VH/GCL or PR/CH boundary is targeted, the axial variation of another boundary
positions increases, and it is quantitatively verified by comparing the MSEs and SDs of the
tracked boundary positions for each trial. Here the MSE is defined as follows:

EQ-TARGET;temp:intralink-;e013;116;118MSE ¼ 1

N

XN
i¼1

p̂i − ptarget; (13)

Fig. 6 M-scan OCT images of ex vivo bovine eyes with and without tremor cancellation (a) when a
boundary between VH and GCL is targeted and (b) when a boundary between PR and CH is
targeted. The yellow and green solid lines are targeted boundary and untargeted another boun-
dary, respectively. The dashed lines represent target depth, and white vertical lines indicate the
moment when motion compensation has been activated.
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where p̂i and ptarget are the estimated and targeted retinal boundary position, respectively, and N
is the total number of A-scan images of each trial. In Fig. 7(a), the mean and SD of the MSEs of
targeted boundaries are −0.15� 1.02 μm for the VH/CGL boundary and −0.11� 0.96 μm for
the PR/CH boundary, and the mean and SD of the MSEs of untargeted boundaries are
−319.52 � 10.13 μm for the VH/GCL boundary and 325.72� 11.35 μm for the PR/CH boun-
dary. Untargeted boundaries have almost ten times larger variations of MSEs than that of targeted
boundaries because of retinal thickness variations between different eyes and different areas, and
this result supports the necessity of PR/CH boundary tracking rather than just surface tracking
for accurate subretinal injection guidance. The mean and SD of SDs of targeted boundaries are
9.42� 0.80 μm for the VH/GCL boundary and 10.8� 0.90 μm for the PR/CH boundary. The
axial motion mostly from the hand tremor, which includes low-frequency draft in the order of
hundreds of micrometers and physiological tremor in the order of tens of micrometers, is reduced
significantly. The residual variations are caused by the boundary tracking error and the time
delay between the signal processing and motor control. The slightly better performance of the
VH/GCL boundary targeting could be explained by the more accurate tracking of the VH/GCL

Fig. 7 Box plots of (a) MSEs and (b) SDs of the VH/GCL and PR/CH boundary positions during
VH/GCL boundary targeting and PR/CH boundary targeting.

Fig. 8 M-scan OCT images of ex vivo bovine eyes when each A-scan image is aligned to the
target boundaries: (a) the VH/GCL boundary and (b) the PR/CH boundary.
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boundary as shown in Sec. 3.1. The mean and SD of the SDs of untargeted boundaries are
13.03� 1.96 μm for VH/GCL boundary and 13.67� 1.79 μm for the PR/CH boundary.
Retinal thickness variations within an eye increased the SDs of the untargeted boundaries due
to lateral motion of hand tremor.

It is difficult to obtain a precise ground-truth segmentation label from our M-scan OCT
images (Fig. 6) because of high-frequency longitudinal fluctuations and speckle noise and thus
to evaluate the accuracy of the tracked boundary positions quantitatively. Nevertheless, we can
assess it visually by checking how flat and smooth the targeted retinal boundary is when each A-
scan image is aligned to the tracked boundary position. The more accurate boundary tracking
brings the flatter and smoother target boundaries in the aligned M-scan images. Figures 8(a) and
8(b) show the aligned M-scan images to the target boundaries, the VH/GCL boundary and the
PR/CH boundary, represented by yellow dashed lines. High-frequency fluctuations shown in
Fig. 6 were significantly reduced in the regions around the targeted boundaries, and we could
infer that retinal boundary tracking works effectively.

4 Conclusion

In this paper, we presented real-time A-scan-based CNN segmentation and automatic retinal
boundary targeting for handheld subretinal injector guidance. A-scan retinal OCT images are
segmented using a simplified 1D U-net, and the Kalman filter reduces retinal boundary tracking
error by combining boundary position measurement and velocity measurement. We achieve the
MUE of around 3 pixels (8.1 μm) using an ex vivo bovine retina model. GPU parallel computing
allows real-time inference (∼1.6 ms) and thus real-time retinal boundary tracking. The MSE
between target depth and target boundary position of the depth targeting experiment is
−0.15 and 0.11 μm for the VH/GCL and the PR/CH boundary, respectively. Involuntary trem-
ors, which include low-frequency draft in the order of hundreds of micrometers and physiologi-
cal tremor in the order of tens of micrometers, are reduced significantly, and the SDs of target
boundary positions are 9.42 μm for the VH/GCL boundary and 10.8 μm for the PR/CH boun-
dary. Our networks currently work only for normal bovine retina, but in the future, we will
expand its utility to diseased retina having irregular morphology by including diseased retinal
images into our train dataset. We also plan to perform ex vivo and in vivo studies of subretinal
injection using our system to validate its clinical applicability.
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