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Abstract

Significance: There is a scarcity of published research on the potential role of thermal imaging
in the remote detection of respiratory issues due to coronavirus disease-19 (COVID-19). This is
a comprehensive study that explores the potential of this imaging technology resulting from its
convenient aspects that make it highly accessible: it is contactless, noninvasive, and devoid of
harmful radiation effects, and it does not require a complicated installation process.

Aim:We aim to investigate the role of thermal imaging, specifically thermal video, for the iden-
tification of SARS-CoV-2-infected people using infrared technology and to explore the role of
breathing patterns in different parts of the thorax for the identification of possible COVID-19
infection.

Approach: We used signal moment, signal texture, and shape moment features extracted
from five different body regions of interest (whole upper body, chest, face, back, and side) of
images obtained from thermal video clips in which optical flow and super-resolution were used.
These features were classified into positive and negative COVID-19 using machine learning
strategies.

Results: COVID-19 detection for male models [receiver operating characteristic (ROC) area
under the ROC curve (AUC) = 0.605 95% confidence intervals (CI) 0.58 to 0.64] is more reliable
than for female models (ROC AUC = 0.577 95% CI 0.55 to 0.61). Overall, thermal imaging is
not very sensitive nor specific in detecting COVID-19; the metrics were below 60% except for
the chest view from males.

Conclusions: We conclude that, although it may be possible to remotely identify some individ-
uals affected by COVID-19, at this time, the diagnostic performance of current methods for body
thermal imaging is not good enough to be used as a mass screening tool.
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1 Introduction

Coronavirus disease-19 (COVID-19) is a respiratory disease caused by the coronavirus “severe
acute respiratory syndrome-related coronavirus 2” (SARS-CoV-2)1 that was declared a pan-
demic by the World Health Organization (WHO) in March 2020. According to the WHO and
as of the end of August 2021, the number of global cases reached over 216 million, and the
number of confirmed deaths reached four and a half million.2 The respiratory illness may cause
acute respiratory distress syndrome characterized by pulmonary infiltrates and hypoxemia, with
dry cough, fever, and fatigue being the main symptoms.3,4

The main diagnostic tool for SARS-CoV-2 is a deoxyribonucleic acid test based on a poly-
merase chain reaction (PCR) assay,3,5,6 which requires respiratory specimens obtained by nasal
or pharyngeal swabs.5 The results are typically delivered between 2 and 5 days after sampling.
Other technologies have been explored in this regard; in particular, medical images from com-
puted tomography (CT)7,8 have reported a prediction accuracy of 89% and an area under the
receiving operating characteristic curve (ROC) of 0.92. These results suggest that imaging may
be a useful tool to aid in the diagnosis of COVID-19. Nevertheless, CT uses ionizing radiation
and requires unique installations along with a complicated process that limits the number of
possible tests per equipment, and the economic costs can be prohibitively high for screening
a large population.

Human body temperature has been used since the beginning of medicine as an indicator of
health and disease. Today, modern infrared imaging systems offer high-resolution (HR) images
able to detect small temperature changes.9 Body thermography can be a useful method to evalu-
ate or investigate several clinical conditions that alter body temperature values and distribution.10

Abnormal thermal patterns are easily recognizable by infrared thermography (IRT) and can be
used to establish correlations with diseases. Although this type of technique is imprecise and
depends on the surrounding environment, IRT has some strong advantages: it is contactless, non-
invasive, and devoid of harmful radiation effects; large areas can be monitored simultaneously;
and it can be done in real time.11 In particular, its ability for mass screening can be highly
beneficial during pandemic emergencies. According to Perpetuini et al.,12 the use of IRT is
encouraged, particularly in healthcare and transport hubs, such as airports, because they are
places where high numbers of possible infected people are expected to be found.

Artificial intelligence (AI) has been shown to improve thermography-based diagnosis in
three main ways. First, these algorithms can reduce the workload of experts, so they can focus
more on difficult cases. Second, AI reduces inter-observer variability as thermogram diagnosis
can sometimes be subjective to human, so mathematics increases objectivity. Third, AI improves
diagnosis quality, for diagnosis done by humans is heavily reliant on both their experience and
their physical and mental state.13 Currently, there are AI applications already approved for clini-
cal diagnosis.14 IRT has been previously used to support the detection of diseases such as breast
cancer,15 aided by machine learning (ML), and to successfully support the diagnosis of other
respiratory disorders16 without the aid of ML. To our knowledge, the potential of thermal im-
aging for identification of COVID-19 and specifically thermal videos has not been investigated
enough. Martinez-Jimenez et al.17 conducted a study with 80 volunteers using IRTs to explore
exclusively the face, they compared temperature values and temperature distribution on the face
of healthy volunteers and patients with and without a COVID-19 infection. We think a more
thorough examination of body thermal images needs to be conducted. Considering the previous
studies, it may be possible that infrared videos could be used to support COVID-19 detection
because SARS-CoV-2 infection in viremia stages is uniformly characterized by changes in body
temperature and breathing patterns.18 Particular respiratory patterns were analyzed in individuals
that tested positive for COVID-19, in contrast to healthy individuals and individuals with asthma,
and they were found to be distinguishable (AUC of above 80%).19 In addition, studies show that
pulmonary and laryngeal involvements in people with COVID-19 can cause insufficient airflow
that affects breathing and voice regularity.20,21 Thus, in principle, it is important to investigate
the potential of video recording of body temperatures to support the identification of suspected
individuals in an early stage of the disease. The hypothesis was that the small differences in
skin temperature could be used as a fiducial marker that can be tracked and characterized,
and hence, it may provide a practical method for tracking breathing patterns, for breathing
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patterns and thermal imaging have been correlated in previous studies.22–27 Hence this paper
presents the evaluation of the role of thermal imaging, specifically thermal video, for the
identification of SARS-CoV-2 infected people using AI. Furthermore, we explore the role of
breathing patterns in different parts of the upper body for the identification of a possible
SARS-CoV-2 infection.

2 Methodology

2.1 Thermal Dataset

A total of 252 volunteers were enrolled in an Institutional Review Board approved prospective
study aimed at testing the ability of thermal videos to detect SARS-CoV-2. The study protocol
was approved by the Ethics and Research Committees at Escuela de Medicina y Ciencias de la
Salud, Tecnológico de Monterrey. The participants’ ages ranged from 18 to 75 years. The num-
ber of participants per gender with their height, weight, and PCR results are summarized in
Table 1. The study recorded a set of measurements from participants regarding PCR-results,
demographics, vital signs, participant activities, medications, respiratory symptoms, and a ther-
mal video session in which the volunteers performed, in a secluded cabin, simple breath-holds
during the video capturing in four different positions—front, back, left, and right—as seen
in Fig. 1. The room temperature was maintained in the vicinity of 25°C, and among the
55 participants registered as having fever, the highest body temperature registered was 37.7°C;
therefore, it was not expected that the presence of droplets of sweat could exert any influence on
the recording. Thermal images were recorded in video mode, mostly at five frames per second,
using a Digital Thermal Imaging Camera TI-128 from Omega Engineering Inc. (800
Connecticut Ave. Suite 5N01, Norwalk, CT 06854). The camera was connected via a USB to
a laptop computer running a Windows® operative system from Microsoft® as suggested by the
provider instructions. The acquisition software Omega TI Analyzer version 4.1.8.6875 was used.
Drivers and acquisition software were obtained and installed following provider instructions.
Table 2 shows the patient demographics and vital signs at the time of video capture; significant
differences were assessed using a t-test. Table 3 shows the patient symptoms and medical
conditions; significant differences were calculated with a comparison of frequencies using
a chi-square test. Regarding the medical conditions, 11 subjects presented diabetes and 15 pre-
sented arterial hypertension. In cases of diabetes and arterial hypertension, it is expected that
the entities may have disordered sleep breathing.28,29 However, in the case of hypertension,
only the pulmonary arterial hypertension was previously correlated to this disorder; therefore,
we do not expect breathing anomalies during the video capture due to this condition.

2.2 Video Preprocessing

The video acquisition protocol included breathing in four positions, as shown in Fig. 1. Each
thermal video was visually inspected to determine all of the frames for these body positions.
Each infrared spectrograph video segment was then converted into a standardized black-and-

Table 1 Number of enrolled subjects per sex and PCR results. A total
of 251 subjects (after removing the sole participant with PCR results
that were not reported) were considered for further analyses.

PCR result Female Male Total

Positive 21 38 59

Negative 72 120 192

Not reported 1 0 1

Total 94 158 252
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white MPEG-4 video with gray levels that were standardized between 62°F and 102°F.
Therefore, four MPEG-4 were generated and labeled with front, left, back, and right correspond-
ing to each body position.

After that, all four MPEG-4 video clips were standardized and corrected for sampling
differences, temperature-calibration variations, blur, and large motions. Then, the Lucas

Table 2 Characteristics of the enrolled subjects stratified by sex and PCR result. Significant
differences between positive and negative results are highlighted.

Demographics and vital sigs

Males Females

Positive Negative AUC Positive Negative AUC

Age, years 37.92 (11.6) 37.39 (37.4) 0.53 34.00 (11.9) 36.64 (14.3) 0.55

Weight, kg 87.87 (16.8) 84.61 (84.6) 0.53 65.60 (13.8) 67.30 (15.7) 0.52

Height, cm 175.21 (6.9) 173.63 (173.6) 0.56 160.38 (7.3) 162.06 (6.2) 0.58

Cardiac rate (beats/min) 84.90 (16.4)a 77.18 (77.2) 0.65 78.25 (11.6) 81.10 (12.4) 0.55

Systolic pressure, torr 129.50 (13.3)b 132.33 (132.3) 0.56 118.50 (11.6) 120.96 (15.9) 0.53

Diastolic pressure, torr 85.00 (11.2) 83.53 (83.5) 0.48 79.65 (5.7) 77.78 (9.0) 0.58

Temperature, forehead, °C 36.82 (0.7) 36.61 (36.6) 0.59 36.68 (0.5) 36.66 (0.5) 0.50

Oxygen saturation (SpO2) 0.96 (0.0) 0.96 (1.0) 0.52 0.96 (0.0)b 0.97 (0.0) 0.58

ap < 0.001
bp < 0.05

Fig. 1 Thermal imaging session. A single continuous take of thermal video was done to capture
10 s of patients breathing and 10 s holding their breath.
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Kanade optical flow method was used to estimate the frame by frame skin motion for each one of
the videos.30 Motion correction based on rigid transformations was used to integrate the first
25 frames of each video clip and generate an HR thermal image.31 After optical flow and super
resolution, a set of six images were generated. The first image was the HR thermal image. The
second image consisted of the pixel-by-pixel temperature variance observed during the breath-
hold. The third and fourth images consisted of the average optical flow in the horizontal and
vertical directions. The last two images were created by estimating the frame-wise variance of the
optical flow. In summary, the derived image set consisted of two temperature-driven images and
four motion-derived (optical flow) images. Figure 2 shows the video processing steps used for
this research work.

2.3 Image Segmentation and Body Regions of Interest Definitions

Image segmentation and regions of interest (ROI) definition were done using two different
approaches. The first approach of image segmenting based on the Otsu method identified the
entire upper body and removed background information.32 The first segmentation process was
applied to each of the six images separately, and all segmented images were reviewed and man-
ually refined to avoid loss of information in missed segmented body regions due to the presence
of hair, necklaces, masks, and underwear.

The second approach for image analysis was the identification of the ROI. The identification
of the head, chest, and back was done using an atlas-based approach.33,34 HR images from eight

Table 3 Symptoms and conditions of the enrolled subjects. Significant differences between
positive and negative results are highlighted.

Condition or
symptoms

Males Females

Positive
(No|Yes)

Negative
(No|Yes) AUC

Positive
(No|Yes)

Negative
(No|Yes) AUC

Cough 25|14a 106|13 0.63 8|12b 61|12 0.72

Headache 16|23b 88|31 0.67 7|13c 46|27 0.64

Anosmia 25|14b 113|6 0.65 14|6c 64|9 0.59

Ageusia 25|14b 113|6 0.65 16|4 66|7 0.55

Fever 24|15d 100|19 0.61 11|9d 60|13 0.64

Fever medication 29|10b 117|2 0.62 17|3 69|4 0.55

Sore throat 21|18d 93|26 0.62 9|11c 50|23 0.62

Analgesics 29|10d 110|9 0.59 15|5c 67|6 0.58

Muscle pain 25|14d 100|19 0.60 12|8c 58|15 0.60

Joint pain 32|7c 110|9 0.55 13|7d 65|8 0.62

Malaise 29|10c 105|14 0.57 15|5 63|10 0.56

Chills 35|4 112|7 0.52 16|4 64|9 0.54

Vomit 38|1 118|1 0.51 20|0 71|2 0.51

Diarrhea 34|5 106|13 0.51 16|4 64|9 0.54

Hypertension 36|3 112|7 0.51 19|1 70|3 0.50

Diabetes 37|2 114|5 0.51 19|1 69|4 0.50

ap < 0.001
bp < 0.0001
cp < 0.05
dp < 0.01
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Fig. 2 (a) Processing: a thermal video is oriented, calibrated, framerate standardized, and
converted into a set of six images. (b) The first 25 frames of each video are integrated into an
HR image. (c) Segmentation process: eight labeled HR images are used to vote for the definitions
of the human body regions of interest (ROIs). (d) ROI quantitation: each ROI is used to mask
a specific body area to be quantitated.
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subjects (four males and four females) were manually labeled with head, chest, neck, and legs.
Figure 2 shows an example of the labeled images used for the atlas-based segmentation
approach. Once all subjects were labeled, an affine registration method was used to match each
one of the atlas subjects with the HR thermal image for each subject. Once we have the eight
segmentations per subject, we use the majority-vote approach to get the final label of each pixel.
The majority-vote segmentation was then refined by a morphological closing operation that cor-
rected segmentation errors in the neck and breast regions. All video preprocessing and image
segmentation was done using MATLAB. (2010). version 7.10.0 (R2010a). (The MathWorks
Inc., Natick, Massachusetts)

2.4 Image Feature Extraction

Heat and motion patterns were quantified by extracting image features from the global segmen-
tation and the extracted ROIs. From the global segmentation-based approach, we extracted tex-
tural descriptors and signal moments from all pixels inside the segmentation mask and for each
one of the six images at three different image resolutions. The textural features quantified the
spatial signal heterogeneity using the gray level co-occurrence matrix (GLCM) and local binary
patterns (LBP). Details about the mathematical definitions of textural features can be found in
previous literature.35,36 Descriptive statistics of the signal distribution inside the segmentation
were also collected using the moment features. Finally, fractal dimension formulation was used
to characterize the association of the scale dependent features to changes in resolution

EQ-TARGET;temp:intralink-;e001;116;483Di ¼
1

m

Xm
n¼1

�
logðΔFiÞ∕ logðΔrÞ

k

�
; (1)

where Fi is a scale dependent feature, ΔFi is the change in feature for each Δr change in res-
olution (r ¼ 1∕scale) k is the number of acquired scales, and m is the total number of possible
combinations. Table 4 summarizes the extracted descriptors.

2.5 Data Conditioning, Features Transformation, and Demographic
Adjustments

Figures 3(a) and 3(b) show the set of features used for each ROI and for the global segmentation,
respectively. Regarding Fig. 2(a), the 1990 features extracted per subject were obtained consid-
ering 82 features (14 signal moments, two shape moments, and 66 signal texture) from each of
the six images and each of the four views (chest, face, back, and side) and the 22 symptoms
and clinical data (82 × 6 × 4þ 22 ¼ 1990). Missing data were imputed using the nearest

Table 4 Summary of the features extracted from each of the six summary images [Fig. 2(a)]
after segmentation.

Group Target Description

Moment Global
segmentation
and ROI

Basic statistics of signal distribution. Descriptors included: mean, mass,
area, standard deviation, skewness, kurtosis, quantile location
[p = {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99}], entropy, and coefficient of variation.

GLCM Global
segmentation
and ROI

Texture features at different resolutions: three for Global, and four for ROI
depicting the degree of correlation between pair pixels in different aspects: contrast,
dissimilarity, homogeneity, angular second moment, energy, and correlation.

LBP ROI Texture features depicting the association between the central pixel and its
neighbors. They were computed using five neighbors and four radii = {1, 2, 3, 5}.
And reporting LBP(r ¼ 5), and the Max {LBP(r ¼ 5) – LBP(r ¼ 1),
LBP(r ¼ 3) – LBP(r ¼ 1), LBP(r ¼ 2) – LBP(r ¼ 1)}

Fractal ROI Equation (1) applied to change in the surface signal area, and changes of
GLCM features at the four different resolutions: {r ¼ 1;2;4; 8}
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neighborhood approach.37 Regarding data conditioning, the power transformation, Yeo-Johnson
transformation, or pseudo log transformation was applied to highly skewed features. To mitigate
the effect of age, gender, height, and size of ROI, all image features of the training set were
adjusted using a robust fitting model from the FRESA.CAD R package version 3.3.0. For adjust-
ment purposes, asymptomatic or subjects with only one symptom that were not taking any tem-
perature modifying medication (non-steroidal anti-inflammatory drugs) were considered to be
reference control. Once adjusted, all features were decorrelated selecting a set of basis vectors
using the feature decorrelation function of FRESA.CAD.38 Finally, all transformed, adjusted,
and decorrelated features were z normalized.

2.6 Machine Learning

To ascertain the role of thermal imaging and ML in COVID-19 diagnosis, we explored the data
set using two different approaches. First, we explored a small set of ML methods using the
whole-body segmentation to research the impact of ML methods in COVID-19 assessment using
demographics, vital signs, symptoms, and thermal image data. Second, we tested the hypothesis
that different parts of the body have different powers in detecting COVID-19 from thermal
videos with and without the aid of vital signs and symptoms.

For the first data exploration, we split the data into 70% training and 30% testing sets, and we
considered five classifiers: support vector machine (SVM), AdaBoost, Random Forest, Naïve
Bayes, and K-nearest neighbors (KNN).39–43 200 repetitions of cross-validation were applied.

Image segmentation, feature extraction, and transformation processes were done using Python
programming language (2019) version 3.7.6 (Python Software Foundation44). Adjustment and

Fig. 3 Summary of the features extracted on (a) each ROI per view for a total of 1990 features for a
specific subject and (b) the global segmentation for a total of 132 when using all views together.
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classification were executed using FRESA.CAD in R Core Team (2020) version 4.0.2. (R:
A language and environment for statistical computing, R Foundation for Statistical Computing,
Vienna, Austria45).

For the second set of experiments, the subjects were split as in Fig. 4. We selected Naïve
Bayes as the ML classifiers, and we varied the ROI used for the detection of COVID-19, as well
as the set of features to be selected for COVID-19 prediction under two scenarios. The first
scenario used all subjects (symptomatic and asymptomatic), for the second scenario, only
symptomatic subjects were used for training and validation. The analyzed ROIs were chest, face,
back, and the combination of left and right views. For this set of experiments 500 leave two out
cross-validations without class balance were used to document the performance of COVID-19
detection.

2.7 Statistical Analysis

All of the test results of the ML experiments were aggregated for consensus prediction. The
consensus predictions (median of all test-results per subject) were analyzed for balanced error
rate (BER):

EQ-TARGET;temp:intralink-;e002;116;317BER ¼ 1 − 0.5 × ðsensitivity þ specificityÞ; (2)

where the sensitivity ¼ ðcorrect positiveÞ∕N, specificity ¼ ðcorrect negativeÞ∕N, and N is
the total number of sampled subjects. The overall accuracy (ACC ¼ ðtotal correctÞ∕N) was also
reported for the ML comparison experiments. The continuous probability of positive COVID-19
was described using the receiver operating characteristic (ROC) plots and reporting the area
under the curve (AUC). Models were created for all individual views (left, right, front, and back)
as well as for the entire set. Analysis of the model performance was created for the entire set,
males, and females. The top selected features of the models were described and visualized as
heatmaps; these features were obtained with the frequency of the selection in the repetitions
during the cross-validation process.

3 Results

3.1 Global Segmentation Experiments

3.1.1 Classification of four views

In this first task, classifications were performed with AdaBoost using the four views separately,
including the 132 features extracted from the six thermal images [Fig. 3(b)] per subject, ending

Fig. 4 Splitting of the subjects for conditioning and normalization before fighting the ML model.
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with a sample of 252. Classification results are summarized in Table 5. Accuracies of the four
views are in the range of 0.433 (95% CI 0.37 to 0.50) to 0.524 (95% CI 0.46 to 0.59).

3.1.2 Classification of all views, examined with five classifiers

In this experiment, we explored the classification with a larger sample using the thermal
features including the four concatenated views; in this case we ended with a sample of 1008
(252 subjects × 4 four views). We examined the results using the five methods stated above
(Sec. 2.6) to verify that the performance is not influenced by the classifier. Classification results
are summarized in Table 6. All of the methods obtained classification accuracies in the range of
0.536 (95% CI 0.50 to 0.57) to 0.569 (95% CI 0.54 to 0.60).

3.1.3 Female and male classification

As in the last classification experiments, here we used the 132 thermal features with a sample of
251 (Table 1) subjects stratified by sex, with the not reported subject being removed, and ending
with a sample of 93 for the female classification and 158 for the male classification. We used
AdaBoost to compare results among female and male patients of individual views. Results from
the front view are reported here, for outcomes from different views did not present significative
differences. Although both performances are almost similar, male patients tended to be classified
with slightly better accuracy than females (Fig. 5).

Table 5 COVID-19 classification performance using the four views separately.

Metric

Back Front Left Right

95% CI 95% CI 95% CI 95% CI

Accuracy 0.524 (0.46, 0.59) 0.433 (0.37, 0.50) 0.409 (0.38, 0.47) 0.496 (0.43, 0.56)

AUC 0.515b (0.43, 0.60) 0.435 (0.35, 0.52) 0.397 (0.31, 0.49) 0.470 (0.38, 0.56)

Sensitivity 0.475 (0.34, 0.61) 0.424 (0.30, 0.56) 0.373 (0.25, 0.51) 0.492 (0.36, 0.63)

Specificity 0.539 (0.47, 0.61) 0.435 (0.36, 0.51) 0.420 (0.35, 0.49) 0.497 (0.43, 0.57)

Balanced error 0.493b (0.43, 0.57) 0.571 (0.50, 0.64) 0.604 (0.53, 0.67) 0.508 (0.44, 0.58)

aThe best results per metric are given in bold.
bSignificative results.

Table 6 COVID-19 classification performance using all views together and five different
classifiers.

Metric

SVM AdaBoost Random forest KNN Naïve Bayes

95% CI 95% CI 95% CI 95% CI 95% CI

Accuracy 0.569 (0.54, 0.60) 0.555 (0.52, 0.59) 0.537 (0.51, 0.57) 0.536 (0.50, 0.57) 0.549 (0.52, 0.58)

AUC 0.567 (0.52, 0.61) 0.572b (0.53, 0.61) 0.554 (0.51, 0.60) 0.557 (0.52, 0.60) 0.563 (0.52, 0.61)

Sensitivity 0.530 (0.46, 0.60) 0.534 (0.47, 0.60) 0.555 (0.49, 0.62) 0.576 (0.51, 0.64) 0.580 (0.51, 0.64)

Specificity 0.582 (0.55, 0.62) 0.549 (0.51, 0.59) 0.522 (0.49, 0.56) 0.521 (0.49, 0.56) 0.543 (0.51, 0.58)

Balanced
error rate

0.448 (0.41, 0.48) 0.438b (0.40, 0.48) 0.447 (0.42, 0.49) 0.449 (0.41, 0.49) 0.446 (0.41, 0.48)

aTe best results per metric are given in bold.
bSignificative results.
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3.1.4 Classification including vital signs and symptoms

Vital signs, such as temperature (°C), systolic, diastolic, heart rate, and oxygen saturation; symp-
toms, such as sore throat, diarrhea, vomit, anosmia, ageusia, shivering, headache, myalgia, and
arthralgia; and the total number of symptoms were also included for classification. Similar to the
previous experiment, the results reported here were obtained by taking features extracted from
the front view. The resulting areas under the curve are shown in Fig. 6. We show results when
including image features in three different cases: coupled with symptoms—142 features (132
thermal features and 10 symptoms), with vital signs—137 features (132 thermal features and
5 vital signs), and with symptoms and vital signs together—147 features (132 thermal features,

Fig. 5 ROC for COVID-19 classification, comparison among female and male patients.

Fig. 6 ROC for COVID-19 classification using thermal features, vital signs, and symptoms.
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five vital signs, and 10 symptoms). We also present baselines, without thermal features, in the
same three cases for comparison.

3.2 Regions of Interest Experiments

The segmentation results of the ROI-based experiments were visually inspected to avoid includ-
ing in the analysis segmentation results that failed to correctly identify the correct body com-
ponent or that had other issues affecting the quality of the thermal data, such as beard, face mask,
and large motion artifacts. The quality inspection indicated that one subject from the chest ROI
had to be excluded. A total of 18 subjects were removed from the face ROI, 15 from the back
ROI, and five from the left-right ROI analysis.

The ML results of the second set of experiments are shown in Figs. 7 and 8 for the chest ROI.
Figure 7(a) shows the ROC analysis for the combinations of features set: symptoms, vital-signs,
and thermal features. Figure 7(b) shows the boxplot of the testing results distribution for

Fig. 7 (a) ROC of the different feature combinations. (b) Predictions of each one of the 500
repetitions per subject for the all-feature model.
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each subject and sorted by the predicted probability of COVID-19. Figure 8 shows a detailed
comparison of the ML models for the different feature combinations and data stratification:
all, males, and females.

Figure 9(a) shows the ROC analysis of the symptomatic only subjects from the chest ROI;
Fig. 9(b) shows the box plots of the 500 test results per subject, ordered by the predicted COVID-
19 probability. Figure 10(a) shows the heatmap of the top features associated with COVID-19
when using all subjects. Figure 10(b) shows the heatmap of the features associated with COVID-
19 when using only symptomatic subjects. Supplementary material in Appendix A shows the
detailed results of the ROI experiments for chest, back, left-right, and face experiments.

Fig. 8 Comparison of key metrics across all models for the different feature combinations and
stratified by sex.
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4 Discussion

The thermal COVID-19 study is the first comprehensive study of the potential role of thermal
imaging in the remote detection of respiratory issues due to the presence of SARS-CoV-2 infec-
tion. We were able to recruit 251 (59 COVID-19 positive) patients with complete demographics,
vital signs, symptoms, and thermal video acquisitions showing breathing patterns at four differ-
ent views of each volunteer. The data are publicly available for interested researchers that may
want to explore image analysis algorithms or ML algorithms for the detection of respiratory

Fig. 9 (a) ROC analysis of only symptomatic subjects, for combinations of symptoms and thermal
imaging data. (b) Comparison of the AUC for the different combinations of view and stratified
by sex.
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illnesses.46,47 The vital signs and clinical data acquired in this study suggest that body temper-
ature is not an important discriminant for COVID-19 classification, confirming the results of
published studies. Further, we observed that cardiac rate (beats/min) was higher in positive males
than healthy counterparts (CR = 84.9 versus 77.2; p < 0.001). It is worth noticing that we
confirmed that COVID-19 symptoms are slightly different in symptomatic subjects with anosmia
(loss of smell) and ageusia (loss of taste).

Regarding the role of thermal imaging, this paper presents a comprehensive evaluation
using ML methods via the exploration of thermal and breathing patterns and observations of
the breathing process at four different views. Furthermore, we explored the role of these patterns
in five different body ROIs: whole upper body, chest, face, back, and side views (left and right).
We present the exploration of thermal features using five different ML strategies for the clas-
sification of positive and negative COVID-19. The results indicate that even the best performing

Fig. 10 Heatmaps of the top selected features associated with the presence of COVID-19.
(a) Features for symptomatic and asymptomatic subjects. (b) Top features that separate
COVID-19 positive and negative results on the set of symptomatic subjects.
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ML method, AdaBoost, may be insufficient in COVID detection with an ROC AUC of 0.572
with 95% CI from 0.53 to 0.61 and that COVID-19 detection in male models (ROC AUC = 0.605
95% CI 0.58 to 0.64) is more reliable than in female models (ROC AUC = 0.577 95% CI 0.55 to
0.61). The results of the ROI study indicate that thermal imaging is not very sensitive nor specific
in detecting COVID-19. Regarding the ROI of the whole upper body, the classification perfor-
mance tends to improve slightly in Fig. 6, when using symptoms coupled with thermal features
(ROC AUC improvement = 22.3%) and when using all information together (ROC AUC
improvement = 19.2%) compared with the performance of only thermal features of the front
view (Table 5). However, when looking at the performance when using only symptoms, and
only symptoms and vital signs, we can conclude that the direct contribution of the thermal
images is not as significative as the medical information (ROC AUC improvement when thermal
features are added to symptoms = 2%; ROC AUC improvement when thermal features are added
to vital signs and symptoms = −4.8%). Similar behavior is found when inspecting the chest ROI
(Fig. 7); the performance of vital signs and symptoms (ROC AUC = 0.73) does not improve
when thermal features are added (ROC AUC = 0.703). The strongest response was obtained from
features extracted from the chest ROI analysis of males, as shown in Figs. 8 and 9 (ROC AUC =
0.64 95%CI = 0.53 to 0.76), and thermal data from the face had a role in female subjects where
the ROC AUC was 0.60 95%CI = 0.50 to 0.69. Regarding important thermal and dynamic fea-
tures of COVID-19, the data of the chest area indicated that variations in the vertical motion
patterns from males are significative (Fig. S3 in the Supplemental Material). This finding con-
firms that breathing patterns are different between positive and negative COVID-19 patients. On
the other hand, temperature-related features were selected among important features in the face,
back, and left and right analysis. The skewness of the temperature distribution in females was
highlighted as an important feature of positive COVID-19. The fact that differences in temper-
ature distributions are distinct in COVID-19 symptomatic subjects may shed light on some of
the aspects of how COVID-19 infections differ from other respiratory illnesses. We must point
out that the study did show differences between males and females, but these differences may be
due to the smaller sample size of the female population that also failed to show any statistical
difference in vital signs when compared with the male subgroup.

The study is not free from limitations. Although we tried to register the best possible thermal
images, some subjects were out of focus, some moved during the acquisition period, and the
camera error is expected to have some degree of interference in the results, namely, measurement
accuracy of the camera corresponds to �2°C or �2% @ environment temperature 10°C to
35°C, while among the participants the temperature variance during the video capture was
< 1.75°C and 1.4°C for negative and positive participants, respectively, with the median around
0.55°C in both cases (Fig. S8 in the Supplemental Material). These acquisition artifacts introduce
noise in the already small sample size for this proof-of-concept study. Two other limitations of
the study are the large imbalance between males and females and the fact that all female
volunteers were using bras that varied in size and shape, which affected all chest ROI analysis.
Furthermore, many males had beards or mustaches, which affected comparisons in face ROI
analysis.

Future work on the role of thermal imaging may be directed toward the estimation of true
motion patterns via the analysis of three-dimensional (3D) estimated motion, instead of the use
of optical flow method. Furthermore, considering the fact that we acquired video at fully 3D
body rotation, it may be possible that other body motion patterns or temperature variations from
start to end of the imaging session may be used to document associations to COVID-19 or other
medical conditions.

5 Conclusion

This paper presents an evaluation of the possible role of thermal imaging and motion analysis for
the remote diagnosis of COVID-19. This study is a more complete version than a preliminary
study using the same dataset.48 The results indicate that it may be possible to remotely identify
some males and some females affected by COVID-19; however, at this point, the performance of
the methods used in this work as well as the thermal camera are not good enough to be used as a
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mass screening tool, although it may be useful in getting a better understanding of the role of
thermal imaging as an aid in the differential diagnosis tool in medical conditions.

6 Appendix A: Supplemental Material

The results of all views are provided in the Supplemental Material.

Disclosures

The authors declare that they have no conflicts of interest to declare.

Acknowledgments

We thank the staff from Hospital Zambrano-Hellion, especially Ricardo Marroquin, Adrian
Flores, Myriam Madelon Marcos, Andrea-Alejandra Trevino-Ferrer, Carlos-Andres Diaz-Garza,
Meritxell Ledesma-Hernández, Alejandra-Celina Esparza-Sandoval, and Laura Garcia, for pro-
viding kind assistance during the project development. We thank Carolina Tamez-Gonzalez
and Patricia Gonzalez-Cerna for transcribing and correcting clinical databases. We thank Adam
Yala and Regina Barzilay from the Massachusetts Institute of Technology for providing the cam-
eras for the study.We thank Ignacio Fuentes for organizing the transport of cameras. We also thank
Andrea Celis-Terán for the artistic 3D scene representation of the body and video acquisition.

Code, Data, and Materials Availability

The subset of clinical and image data can be accessed via (https://doi.org/10.13026/pgk4-gx55).
Researchers interested in the full data set must sign a disclosure agreement and make the request
to the corresponding author.

References

1. F. Wu et al., “A new coronavirus associated with human respiratory disease in China,”
Nature 579(7798), 265–269 (2020).

2. World Health Organization, “WHO Coronavirus (COVID-19) dashboard,” 2021, https://
covid19.who.int/

3. W. J. Guan et al., “Clinical characteristics of coronavirus disease 2019 in China,” N. Engl.
J. Med. 382(18), 1708–1720 (2020).

4. P. Zhou et al., “A pneumonia outbreak associated with a new coronavirus of probable bat
origin,” Nature 579(7798), 270–273 (2020).

5. C. Huang et al., “Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China,” Lancet 395, 497–506 (2020).

6. World Health Organization, “Coronavirus disease (COVID-19) technical guidance: labora-
tory testing for 2019-nCoV in humans.”

7. X. Mei et al., “Artificial intelligence-enabled rapid diagnosis of patients with COVID-19,”
Nat. Med. 26(8), 1224–1228 (2020).

8. S. Wang et al., “A deep learning algorithm using CT images to screen for corona virus
disease (COVID-19),” Eur. Radiol. 31(8), 6096–6104 (2021).

9. E. F. Ring, “The historical development of thermometry and thermal imaging in medicine,”
J. Med. Eng. Technol. 30(4), 192–198 (2006).

10. Y. Houdas and E. F. J. Ring, Human Body Temperature: Its Measurement and Regulation,
Springer Science+Business Media,, New York (1982).

11. B. B. Lahiri et al., “Medical applications of infrared thermography: a review,” Infrared Phys.
Technol. 55(4), 221–235 (2012).

12. D. Perpetuini et al., “An overview of thermal infrared imaging-based screenings during
pandemic emergencies,” Int. J. Environ. Res. Public Health 18(6), 3286 (2021).

Fiscal et al.: COVID-19 classification using thermal images

Journal of Biomedical Optics 056003-17 May 2022 • Vol. 27(5)

https://doi.org/10.1117/1.JBO.27.5.056003.s01
https://doi.org/10.13026/pgk4-gx55
https://doi.org/10.13026/pgk4-gx55
https://doi.org/10.13026/pgk4-gx55
https://doi.org/10.1038/s41586-020-2008-3
https://covid19.who.int/
https://covid19.who.int/
https://covid19.who.int/
https://covid19.who.int/
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1038/s41591-020-0931-3
https://doi.org/10.1007/s00330-021-07715-1
https://doi.org/10.1080/03091900600711332
https://doi.org/10.1016/j.infrared.2012.03.007
https://doi.org/10.1016/j.infrared.2012.03.007
https://doi.org/10.3390/ijerph18063286


13. O. Faust et al., “Application of infrared thermography in computer aided diagnosis,”
Infrared Phys. Technol. 66, 160–175 (2014).

14. B. van Ginneken, C. M. Schaefer-Prokop, and M. Prokop, “Computer-aided diagnosis:
how to move from the laboratory to the clinic,” Radiology 261(3), 719–732 (2011).

15. S. Yadav and S. Jadhav, “Thermal infrared imaging based breast cancer diagnosis using
machine learning techniques,” Multimedia Tools Appl. (2020).

16. L. M. Ferrer et al., “Use of computed tomography and thermography for the diagnosis of
respiratory disorders in adult sheep,” in Sheep Farming – An Approach to Feed, Growth and
Health, A. Monteiro, Ed., pp. 53–75, IntechOpen (2020).

17. M. A. Martinez-Jimenez et al., “Diagnostic accuracy of infrared thermal imaging for
detecting COVID-19 infection in minimally symptomatic patients,” Eur. J. Clin. Invest.
51(3), e13474 (2021).

18. J. Evertsen et al., “Diagnosis and management of pneumonia and bronchitis in outpatient
primary care practices,” Prim. Care Respir. J. 19(3), 237–241 (2010).

19. C. Brown et al., “Exploring automatic diagnosis of COVID-19 from crowdsourced respi-
ratory sound data,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery and Data
Mining, Association for Computing Machinery, Virtual Event (2020).

20. M. Asiaee et al., “Voice quality evaluation in patients with COVID-19: an acoustic analysis,”
J. Voice (2020).

21. V. Despotovic et al., “Detection of COVID-19 from voice, cough and breathing patterns:
dataset and preliminary results,” Comput. Biol. Med. 138, 104944 (2021).

22. A. K. Abbas et al., “Neonatal non-contact respiratory monitoring based on real-time infrared
thermography,” Biomed. Eng. Online 10, 93 (2011).

23. Y. Cho et al., “Robust tracking of respiratory rate in high-dynamic range scenes using
mobile thermal imaging,” Biomed. Opt. Express 8(10), 4480–4503 (2017).

24. G. F. Lewis, R. G. Gatto, and S. W. Porges, “A novel method for extracting respiration rate
and relative tidal volume from infrared thermography,” Psychophysiology 48(7), 877–887
(2011).

25. C. B. Pereira et al., “Remote monitoring of breathing dynamics using infrared thermogra-
phy,” Biomed. Opt. Express 6(11), 4378–4394 (2015).

26. R. Chauvin et al., “Contact-free respiration rate monitoring using a pan-tilt thermal camera
for stationary bike telerehabilitation sessions,” IEEE Syst. J. 10(3), 1046–1055 (2016).

27. J. Fei and I. Pavlidis, “Thermistor at a distance: unobtrusive measurement of breathing,”
IEEE Trans. Biomed. Eng. 57(4), 988–998 (2010).

28. W. S. Bahnasy et al., “Sleep disturbances in diabetic peripheral neuropathy patients:
a clinical and polysomnographic study,” Egypt J. Neurol. Psychiatr. Neurosurg. 54(1), 23
(2018).

29. N. P. Nickel et al., “Beyond the lungs: systemic manifestations of pulmonary arterial hyper-
tension,” Am. J. Respir. Crit. Care Med. 201(2), 148–157 (2020).

30. T. Kanade and B. D. Lucas, “An iterative image registration technique with an application to
stereo vision,” in Proc. 7th Int. Joint Conf. Artif. Intell., Vol. 2, pp. 674–679 (1981).

31. M. Elad and A. Feuer, “Super-resolution reconstruction of an image,” in Electr. and
Electron. Eng. Israel, IEEE, Jerusalem, Israel (1996).

32. N. Otsu, “A threshold selection method from grey-level histograms,” IEEE Trans. Syst. Man
Cybern. 9(1), 62–66 (1979).

33. R. S. Desikan et al., “An automated labeling system for subdividing the human cerebral
cortex on MRI scans into gyral based regions of interest,” Neuroimage 31(3), 968–980
(2006).

34. J. G. Tamez-Peña et al., “Unsupervised segmentation and quantification of anatomical
knee features: data from the osteoarthritis initiative,” IEEE Trans. Biomed. Eng. 59(4),
1177–1186 (2012).

35. R. Haralick, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern.
SMC-3(6), 610–621 (1973).

36. T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture measures
with classification based on Kullback discrimination of distributions,” in 12th Int. Conf.
Pattern Recognit., IEEE, Jerusalem, Israel, pp. 582–585 (1994).

Fiscal et al.: COVID-19 classification using thermal images

Journal of Biomedical Optics 056003-18 May 2022 • Vol. 27(5)

https://doi.org/10.1016/j.infrared.2014.06.001
https://doi.org/10.1148/radiol.11091710
https://doi.org/10.1007/s11042-020-09600-3
https://doi.org/10.1111/eci.13474
https://doi.org/10.4104/pcrj.2010.00024
https://doi.org/10.1016/j.jvoice.2020.09.024
https://doi.org/10.1016/j.compbiomed.2021.104944
https://doi.org/10.1186/1475-925X-10-93
https://doi.org/10.1364/BOE.8.004480
https://doi.org/10.1111/j.1469-8986.2010.01167.x
https://doi.org/10.1364/BOE.6.004378
https://doi.org/10.1109/JSYST.2014.2336372
https://doi.org/10.1109/TBME.2009.2032415
https://doi.org/10.1186/s41983-018-0024-0
https://doi.org/10.1164/rccm.201903-0656CI
https://doi.org/10.1109/EEIS.1996.566997
https://doi.org/10.1109/EEIS.1996.566997
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1109/TBME.2012.2186612
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/ICPR.1994.576366
https://doi.org/10.1109/ICPR.1994.576366


37. O. Troyanskaya et al., “Missing value estimation methods for DNA microarrays,”
Bioinformatics 17(6), 520–525 (2001).

38. J. G. Tamez-Pena et al., “FeatuRE selection algorithms for computer-aided diagnosis:
an R package” (2018).

39. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
40. R. E. Schapire, “Explaining AdaBoost,” in Empirical Inference, B. Schölkopf, Z. Luo, and

V. Vovk, Eds., pp. 37–52, Springer, Berlin, Heidelberg (2013).
41. T. K. Ho, “Random decision forests,” in 3rd Int. Conf. Doc. Anal. and Recognit., IEEE,

pp. 278–282 (1995).
42. N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,”

Am. Stat. 46(3), 175–185 (1992).
43. Vikramkumar, B. Vijaykumar, and Trilochan, “Bayes and naive Bayes classifier,”Machine

Learning, arXiv:1404.0933 (2014).
44. G. Van Rossum and F. L. Drake Jr, “Python reference manual,” Centrum voor Wiskunde en

Informatica Amsterdam, https://www.python.org/ (1995).
45. R Core Team, “R: a language and environment for statistical computing,” R Foundation for

Statistical Computing, Vienna, Austria https://www.R-project.org/ (2020).
46. J. Tamez-Pena et al., “Upper body thermal images and associated clinical data from a pilot

cohort study of COVID-19,” PhysioNet, Ed., PhysioNet (2021).
47. A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a

new research resource for complex physiologic signals,” Circulation 101(23), e215–e220
(2000).

48. M. R. Canales-Fiscal et al., “Covid-19 classification using thermal images,” in Proc. 12th
ACM Conf. Bioinf., Computational Biol., and Health Inf., Association for Computing
Machinery, Gainesville, Florida, pp. 1–5 (2021).

Martha Rebeca Canales Fiscal is a PhD student at the Monterrey Institute of Technology
and Higher Education (ITESM). She received her BS degree in industrial physics engineering
from ITESM in 2015 and her MSc degree in medical physics from the University of Aberdeen
in 2017. Her current research interests focus on medical analysis supported with ML and
deep-learning methods.

Biographies of the other authors are not available.

Fiscal et al.: COVID-19 classification using thermal images

Journal of Biomedical Optics 056003-19 May 2022 • Vol. 27(5)

https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.2307/2685209
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1161/01.CIR.101.23.e215

