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ABSTRACT. Significance: Collagen and lipid are important components of tumor microenviron-
ments (TME) and participates in tumor development and invasion. It has been
reported that collagen and lipid can be used as a hallmark to diagnosis and differ-
entiate tumors.

Aim: We aim to introduce photoacoustic spectral analysis (PASA) method that can
provide both the content and structure distribution of endogenous chromophores in
biological tissues to characterize the tumor-related features for identifying different
types of tumors.

Approach: Ex vivo human tissues with suspected squamous cell carcinoma (SCC),
suspected basal cell carcinoma (BCC), and normal tissue were used in this study.
The relative lipid and collagen contents in the TME were assessed based on the
PASA parameters and compared with histology. Support vector machine (SVM),
one of the simplest machine learning tools, was applied for automatic skin cancer
type detection.

Results: The PASA results showed that the lipid and collagen levels of the tumors
were significantly lower than those of the normal tissue, and there was a statistical
difference between SCC and BCC (p < 0.05), consistent with the histopathological
results. The SVM-based categorization achieved diagnostic accuracies of 91.7%
(normal), 93.3% (SCC), and 91.7% (BCC).

Conclusions: We verified the potential use of collagen and lipid in the TME as bio-
markers of tumor diversity and achieved accurate tumor classification based on the
collagen and lipid content using PASA. The proposed method provides a new way to
diagnose tumors.
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1 Introduction
In recent years, an increasing number of studies have shown that tumors are closely related to
tumor microenvironments (TMEs).1–3 The TME is a complex system mainly composed of blood
vessels, collagen, lipid, etc.3–5 Lipid can provide energy for tumors and collagen mainly con-
stitutes the scaffold of the tumor.6,7 Collagen and lipid content can affect the proliferation and
differentiation of tumor cells.8–11 Alterations in the content of lipid and collagen are hallmarks of
many diseases, including breast cancer,12 prostate cancer,13,14 renal cell carcinoma,15 skin can-
cers,16 and others. Therefore, the collagen and lipid content in the TME can be used for diagnosis
and differentiation of tumors.

Currently, several methods are available for detecting the lipid and collagen of tumors.
Second-harmonic generation microscopy, which relies on the nonlinear interaction of a laser
with non-centrosymmetric molecules, has been used to image fibrillar collagen within
tissues.17 It can provide submicron resolution but has limited detection depth and does not pro-
vide information about lipid. Magnetic resonance imaging using chemoselective fat-suppression
pulse sequences enables lipid detection. However, it fails to provide effective contrast when there
is less fat within the tissue.18 In recent years, Raman spectroscopy has been successfully used to
determine the molecular composition and structure based on the inelastic scattering of different
molecules to light.19 However, the penetration depth of Raman spectroscopy is limited, and only
superficial skin information can be obtained.19,20 To overcome these issues, new diagnostic meth-
ods with high sensitivity that can detect both collagen and lipid with sufficient penetration depths
are required.

Photoacoustics (PA) is a novel non-invasive detection technique that combines high optical
absorption contrast with the high penetration depth of ultrasound.21 PA is a physical process of
“light in and sound out.”22 A pulsed laser is used to irradiate biological tissues wherein the
energy is wavelength-selectively absorbed by endogenous chromophores within the tissues,
generating ultrasonic waves (PA signals) through thermoelastic expansion. Because ultrasonic
waves scatter much less than optical waves, PA technology has a greater detection depth than
optical detection technology, which shows great promise for clinical applications.23,24 The
endogenous chromophores, such as hemoglobin, collagen, lipid, and water, have different
optical absorption spectra in the visible and infrared bands.25 By irradiating biological tissues
with pulsed lasers of different wavelengths, PA can provide rich endogenous chromophores
information about tumors.26–29 Lei et al.30 investigated the feasibility of assessing collagen
contents to detect fibrosis in Crohn’s disease using PA imaging. Wilson et al.31 implemented
multiparametric spectroscopic PA imaging to assess the lipid content, oxygen saturation, and
total hemoglobin to identify the development of four types of breast cancer. Conventional PA
imaging is mainly based on the amplitude of the envelope of time-domain PA signals to quantify
the endogenous chromophore concentrations in biological tissues,32,33 ignoring the frequency
and phase information of PA signals associated with the absorbers. Besides, the envelope of the
time-domain PA signal is subjected to the effects of noise and transducer response. It is quite
difficult to achieve reliable results in quantifying the size and concentration of absorber with
sizes smaller than the system resolution. Considering the different sizes of the absorbers, the
ultrasonic spectrum shows significant advantages. PA spectral analysis (PASA) method can
remove the low-frequency system noise and high-frequency measurement noise to provide
objective results and repeatable measurements.34,35 Further, frequency analysis has proved
feasible in detecting absorbers with sizes smaller than the system resolution.36,37 Recently,
PASA, which analyzes the frequency domain power distribution of PA signals, has demon-
strated the ability to assess the content and corresponding microstructure of endogenous
chromophore in biological tissues simultaneously.38–41 Moreover, the spectral parameters
extracted from the PA spectrum, e.g., slope, power-weighted mean frequency, can be used
to characterize the microstructures of endogenous optical absorbers.38,42–44 Xu et al.39 imple-
mented the PASA to assess the changes of lipid for fatty liver identification. They further quan-
tified the Gleason score of prostate cancer based on the tissue microscopic architecture using
PASA.45 Our group combined the PASA with machine leaning to better mine the data infor-
mation and achieved a high diagnostic accuracy of prostate cancer,46–49 osteoporosis,50 and
breast cancer.51,52 PASA has shown considerable potential in evaluating the endogenous
chromophore in biological tissues for tumor diagnosis.
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Therefore, in this study, we investigated the feasibility of non-invasive PASA for character-
izing the tumor-related features of lipid and collagen content in the TME to identify different
types of tumors. We took skin cancers as the research objects, for which an invasive biopsy is the
gold standard for diagnosis. Ex vivo experiments were conducted using three types of human
skin tissue: normal, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC). The
content of lipid and collagen in skin tissue was calculated semi-quantitatively by PASA at
different wavelengths. With the help of machine learning classification methods, tumors were
successfully identified and tumor types were automatically classified based on quantified PASA
parameters.

2 Materials and Methods

2.1 Ethics Statement
The study protocol was approved by the Ethical Committee of the Shanghai Skin Disease
Hospital and was performed in accordance with the tenets of the Declaration of Helsinki.
All patients were informed of the purpose of the study, and written consent was obtained before
recruitment and sampling.

2.2 Sample Collection
A total of 39 patients were enrolled in this study, including 15 with suspected SCC and 12 with
suspected BCC. Normal samples were collected from the skin collection areas of 12 patients who
received skin grafts. All samples were procured from the Institute of Photomedicine, Shanghai
Skin Disease Hospital, School of Medicine, Tongji University, China. After surgical excision of
the skin tissue, the residual blood on the tissue surface was cleaned with sterile gauze. Each
sample had a diameter of ∼5 mm. The skin tissues were placed in sterile sample tubes, stored
in a portable medical cryostat (2°C to 8°C), and transported to the Institute of Acoustics of Tongji
University laboratory for testing within 1 h.

2.3 Experiment Setup and PA Measurements
Figure 1(a) shows a schematic of the PA experimental setup. An optical parametric oscillator
system pumped by a Nd:YAG laser (Phocus Mobile, OPOTEK, Carlsbad, California, United
States) was used to provide laser pulses with wavelengths ranging from 1200 to 1700 nm in
10 nm intervals, covering the strong absorption ranges of lipid and collagen. The laser energy
output over the entire wavelength range was controlled to 0.1 to 0.5 mJ per pulse, with a pulse
duration of 5 ns and pulse repetition rate of 10 Hz. A laser beam with a diameter of 3 mm
illuminated the skin tissue, leading to an optical energy density of 7 to 14 mJ∕cm2, which was
below the safety limit specified by the American National Standards Institute. As shown in
Fig. 1(a), skin tissue was placed on the phantom to avoid strong scattering of the sound signal
by any hard boundary. The PA signals generated by the entire laser irradiation of the skin
tissues were received by a needle hydrophone with a bandwidth of 1 to 20 MHz (HNC1500,
ONDA Corp., Sunnyvale, California, United States). The laser energy varies with the wave-
length and fluctuates only slightly over time. To determine the laser energy variations during
the PA measurements, 10% of the laser energy was projected onto a black body, and the PA
signals generated by the black body were received by a 5 MHz focused transducer (V326,
Immersion Transducers, Olympus Corp., Tokyo, Japan). After amplification (5072PR,
Olympus Corp., Tokyo, Japan) to boost the PA signals of the skin tissue samples by
25 dB, they were averaged 64 times and recorded using a digital oscilloscope (HDO6000,
Teledyne Lecroy, New York, United States) at a sampling rate of 2500 MHz. To improve
the stability and reduce the measurement error, PA signals from each skin tissue sample
were detected at two different positions. We developed an efficient automated experimental
program that includes laser wavelength switching, triggering, and data acquisition. With this
program, PA data acquisition of each skin tissue sample and the blackbody could be
completed in <13 min, covering 51 wavelengths (1200 to 1700 nm), with an average of
64 times per wavelength.
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2.4 PA Spectral Analysis
The PA signals were analyzed using MATLAB software (R2019b, MathWorks, Natick,
Massachusetts, United States). First, the PA signal generated by the skin tissue was calibrated
using the peak-to-peak value of the PA signal generated by the black body at each wavelength.
Second, based on the calibrated PA signals for each skin tissue sample, the power spectra of the
PA signals [Fig. 2(a)] were calculated using Welch’s method with a 5 μs moving Hamming
window and 60% overlap, as shown in Fig. 2(b). Considering the signal-to-noise ratio, the ultra-
sound frequency was first analyzed in the 1 to 8 MHz range. The power spectra of the PA signals
obtained in the 1200 to 1700 nm wavelength range were combined to form a PA physiochemical
spectrogram (PAPCS), as depicted in Fig. 2(c). The horizontal axis of the PAPCS is the optical
wavelength, representing the relative optical absorption of different endogenous chromophores
in skin tissue, whereas the vertical axis is the ultrasonic frequency, revealing the structural
distribution corresponding to different optical absorptions in skin tissue. The color bar represents
the amplitude of the power spectrum. Differences in the lipid and collagen content and in the
microstructure of the TMEs of different tumors will form unique PAPCSs.

Fig. 1 PA experimental system and experiment detection method. (a) Experimental setup for per-
forming ex vivo PA measurements. (b) Block diagram of the experimental method. The red, blue,
and green dotted boxes represent PA experiments and data processing, histopathology analysis,
and machine learning, respectively.
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Furthermore, the changes of relative lipid and collagen content in skin tissues were quanti-
tatively analyzed. Based on the PA power spectral analysis at a wavelength of λ nm [Fig. 2(b)],
we calculated the relative area of power spectrum density (APSD) at the corresponding wave-
length as follows:

EQ-TARGET;temp:intralink-;e001;117;517RelativeAPSDλ ¼
�R f1

f0
pðfÞdf

�
λ�R f1

f0
pðfÞdf

�
λ0

; (1)

where pðfÞ is the power spectral density at each frequency, f0 ¼ 1 MHz, and f1 ¼ 8 MHz. The
PA signal is affected by low-frequency system noise and high-frequency measurement noise.
Based on the PA power spectrum analysis, setting a high cut-off frequency f1 can help avoid
high-frequency noise, whereas setting a low cut-off frequency f0 can help minimize system
noise. Considering the signal-to-noise ratio and the cluster size of lipid and collagen obtained
from histology images (see Fig. 4), we set the low and high cutoff frequencies to 1 and 8 MHz,
respectively. The PA power spectral density in the specified frequency range was then summa-
rized as the PA absorption value at each wavelength. A reference wavelength λ0 (690 nm) was
used to eliminate systematic errors. We then obtained the relative PA absorption of each skin
tissue sample with reduced system noise. To improve the stability and reduce the measurement
error, PA signals from each skin tissue sample were detected at two different positions. The
relative APSD values from two different directions were then obtained and averaged for further
analysis. The relative APSD obtained at wavelength λ (nm) reflects the relative optical absorption
of the corresponding endogenous chromophore; thus, it is related to the relative endogenous
chromophore content of the skin tissue. According to the literature, lipid exhibits strong absorp-
tion at ∼1200 to 1240 nm.25,53,54 Some studies have also shown that at 1600 to 1700 nm exci-
tation,55–57 the lipid PA signal is enhanced compared to that at 1200 nm excitation. In addition,
the selective detection of collagen at ∼1300 to 1340 nm can be achieved.46,58 Thus, to reduce the
measurement error caused by a single wavelength, the relative APSD obtained at the absorption
wavelength range of lipid (or collagen) were averaged. To examine whether the changes in col-
lagen and lipid content of TME in different types of skin tissues were statistically significant,
unpaired t-tests were performed using GraphPad Prism 9.0.

2.5 Support Vector Machine Analysis
Support vector machine (SVM) analysis is one of the simplest machine learning classification
method that is supported by rigorous mathematical theory, is highly interpretable, and can iden-
tify the key factors for classification tasks. In this study, a SVM classifier was applied to perform
automatic different types of tumors classification by combining relative APSD values at different
wavelengths. The APSD values obtained in the three wave bands (1200 to 1240 nm, 1600 to
1700 nm, and 1300 to 1340 nm) were used as the input characteristic parameters for the clas-
sification of different types of skin tissues, thus realizing their automatic discrimination, as
shown in Fig. 3. The input data comprised 39 datasets with 21 features. Considering the limited
number of clinical skin tissue samples available for categorization, we used the C-type SVM

Fig. 2 (a) Representative PA signal from skin tissue. The red dotted box indicates the region of
interest. (b) Example of the power spectrum density of a PA signal generated by skin tissue. The
purple area indicates the APSD. (c) Example of a PAPCS for skin tissue.
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model with a radial basis function (RBF) kernel, which is suitable for classifying small amounts
of data. The RBF kernel can be defined as follows:

EQ-TARGET;temp:intralink-;e002;114;562Kðxi; xjÞ ¼ expð−γkxi − xjk2Þ; γ > 0; (2)

where x is the variable matrix, i and j are the indices of the matrix, and γ is the kernel parameter.
There are two parameters for an RBF kernel: the regularization parameter C and kernel parameter
γ. Parameter selection for optimal SVM categorization was achieved by grid searching59 using
cross-validation. Various pairs of ðC; γÞ values were tested, and the pair with the best cross-
validation accuracy was selected. To increase the classification reliability, a three-fold cross-
validation approach was applied by rotating the datasets used to train and test the SVM model.
The samples were randomly divided into two groups: two-thirds of the samples were used for
training, and the remaining samples were used for prediction. This process was implemented
thrice, with each group being tested once. Finally, the performance of the classifier model was
evaluated using confusion matrices and receiver operating characteristics (ROCs) curves.

2.6 Histopathology
To validate the PAmeasurements, the samples were collected and prepared for histological analy-
sis after performing the PA measurements. The pathological analysis was divided into two parts.
Some tissue samples were fixed by immersion in a 10% formalin solution and subsequent sec-
tioning after tissue dehydration and paraffin embedding, completing the production of paraffin
sections. Next, the sections were stained with hematoxylin and eosin (H&E) and others stained
with Masson’s trichrome. Masson’s trichrome can stain collagen with blue color, which can be
used for collagen detection. The other tissue sample was treated with an optical coherence
tomography embedding agent (optical cutting temperature compound, Sakura Americas,
New Mexico, United States) and flushed with distilled water to obtain frozen sections. Serial
longitudinal sections (5 μm thick) were subsequently cut and stained with Nile red for lipid
detection. Nile red can stain the lipid with yellow color. The staining results were observed
by microscopy, as shown in Fig. 4. The relative lipid and collagen contents of the skin tissues
were obtained from histological images. The ratio of the positively stained area to the whole area
in the histological image, calculated using ImageJ software for each sample slice, was used as the
gold standard for the relative content of collagen or lipid in the skin tissues, presenting a quan-
titative comparison with the relative APSD results.

3 Results

3.1 PAPCSs of Different Types of Skin Tissue
Figures 5(a)–5(c) show the averaged PAPCSs of the normal, SCC, and BCC tissues, respectively.
Compared with the normal tissue, in the 1200 to 1240 nm and 1600 to 1700 nm wave bands, the
PAPCSs of tumor (SCC and BCC) tissues both show lower spectral magnitudes, indicating
decreases in lipid content. In addition to the changes in lipid content, the PAPCSs of tumors
exhibit differences in the collagen absorption wavelength range (1300 to 1340 nm). The
PAPCSs of SCC and BCC show lower PA spectral magnitudes, indicating reductions in collagen
contents. Interestingly, compared with the PAPCS of the BCC tissues, that of the SCC tissues

Fig. 3 Classification of normal and skin cancer tissues using an SVM classifier. The APSD values
obtained at three wave bands are used as the feature parameters for the SVM input. An optimal
hyperplane constructed in the corresponding feature space determines the output.
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shows higher spectral magnitudes in the lipid- and collagen-absorption wavelength ranges,
implying that SCC tissues contain higher lipid and collagen content than BCC tissues.
Specifically, Figs. 5(e)–5(g) show the PA power spectrum of different skin tissues at the absorp-
tion peaks of lipid (1210 and 1700 nm) and collagen (1310 nm), respectively. The pathological
images of the skin tissues [Figs. 4(d)–4(i)] verify these differences in the lipid and collagen
contents of the three types of skin tissues. The differences in PAPCSs between different skin
tumors suggest that lipid and collagen in TMEs can be used as biomarkers of tumor diversity.

3.2 PASA Semi-Quantitative Results
Based on the PASA results for skin tissues obtained at different wavelengths, the relative APSD
was calculated to semi-quantify the relative lipid and collagen contents in the skin tissues. We
calculated the wavelength dependence of the relative APSD for each skin tissue sample.
Figures 6(a)–6(c) show the content characterization fluctuations at different wavelength.
Thus, we averaged the relative APSD values in the absorption band of lipid or collagen to elimi-
nate the measurement error caused by a single wavelength. Figures 6(d)–6(f) show the statistical
results for the averaged relative APSD values, which can be used to distinguish between different
types of skin tissues. As shown in Figs. 6(d) and 6(e), the lower lipid content of tumors leads to
a decrease in its spectral amplitude and, consequently, a lower relative APSD for the 1200 to
1240 nm and 1600 to 1700 nm wavebands. The relative APSD values of the tumors are also

Fig. 4 Histological results. (a)–(c) Histological examination of normal, SCC, and BCC tissues
using H&E staining. (d)–(f) Histological examination of the lipid contents in normal, SCC, and
BCC tissues using Nile red staining. (g)–(i) Histological examination of the collagen contents in
normal, SCC, and BCC tissues using Masson’s trichrome staining. The green and yellow circle
indicate the lipid and collagen clusters, respectively. (j) and (k) Statistical results of the positive-
stained areas for the relative lipid and collagen contents of skin tissues obtained by histological
images (*p < 0.05, **p < 0.01, ***p < 0.001, t -test was conducted using GraphPad Prism 9.0).
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lower for the 1300 to 1340 nm wavelength band, corresponding to their decreased collagen con-
tent, as shown in Fig. 6(f). In addition, different types of tumors exhibit significant differences in
their collagen and lipid contents (p < 0.05). For example, as shown in Figs. 6(d)–6(f), compared
to those of SCC tissues, the relative APSD values of BCC tissues are lower in the regions
corresponding to the optical absorption of lipid (1200 to 1240 nm and 1600 to 1700 nm) and
collagen (1300 to 1340 nm), indicating that the lipid and collagen contents in the BCC tissues are
lower than those contents in SCC. Figures 4(j) and 4(k) depict the relative lipid and collagen
contents of the three different skin tissues obtained from the histological images and reveal
notable differences. The PA results were corroborated by the changes in the lipid and collagen
contents revealed in the histological images.

3.3 SVM Classification Results
An SVM was employed to classify skin cancers based on the lipid and collagen contents in the
skin tissues. The relative lipid and collagen contents in the TME were characterized by the
relative APSD values at different wavelengths. The classification results of the three-fold
cross-validation approach are presented in Table 1. As shown in Table 2, the average classifi-
cation accuracies of the SVM trained based only on the parameter at a single wavelength are
69.2%, 64%, and 89%. However, combining the parameters of the three bands results in an

Fig. 5 Averaged PAPCSs of different skin tissues: (a) normal skin tissue, (b) SCC, and (c) BCC.
(d) Optical absorption spectra of lipid, collagen, and water in the 1200 to 1700 nm wavelength
range.25,60 The regions indicated by black boxes (1200 to 1240 nm and 1600 to 1700 nm) corre-
spond to regions with strong lipid absorption. The regions indicated by magenta boxes (1300 to
1340 nm) correspond to strong collagen absorption. The yellow dashed lines indicate the peak lipid
or collagen absorption within each region. (e)–(g) Averaged PA power spectrum of different skin
tissues at the absorption peaks of lipid (1210 and 1700 nm) and collagen (1310 nm).
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accuracy of 92.3%, the results show that the combination of multiple biomarkers can achieve
more accurate intelligent diagnoses.

The classification performance of the SVM was evaluated using a confusion matrix, as
shown in Fig. 7(b). The confusion matrix provides the classification accuracy of the SVM for
individual classes. Each column of the matrix corresponds to a true label, and each row corre-
sponds to a predicted label. The main diagonal shows the classification accuracy of the SVM for
the individual classes. The off-diagonal values indicate the misclassification rates of the SVM for
classifying the individual classes. The results show that SVM-based multiclass categorization can
achieve diagnostic accuracies of 91.7% (normal), 93.3% (SCC), and 91.7% (BCC). The ROC
curves yielded by the SVM for the normal, SCC, and BCC tissues are presented in Fig. 7(c),
revealing areas under the ROC curves of 0.94, 0.96, and 0.92, respectively. Overall, SVM-based
categorization proved effective in diagnosing tumors with a high level of accuracy.

4 Discussion
TME is a complex system in which collagen and lipid are the important components of TME. It
has been reported that collagen and lipid can be used as biomarker to assess tumors.61,62 Several
techniques have been available to detect lipid and collagen, but they all have limitations, includ-
ing: invasiveness, time-consumption, and limited detection depths. Based on the contrasting opti-
cal absorption spectra of different endogenous chromophores in tissue, PA detection technique
can provide rich content and microstructure information of the endogenous chromophores in
biological tissues, allowing more accurate tumor diagnoses. In addition, PA has a greater detec-
tion depth than optical detection technology, benefiting from the fact that the PA signal originates
from the absorption of laser energy by biological tissue, independent of the phase of the
light wave.

Experiments on different types of skin tissues showed that the PAPCS obtained by PASA
contained rich diagnostic information. The loss of collagen and lipid content can be observed in
the corresponding PAPCS and can be used to characterize different types of tumors. Owing to the
differences in lipid and collagen content of different tumors, each type of tumor has a unique
PAPCS. The PASA parameter APSD is correlated with the collagen and lipid contents. The
decreases in the lipid and collagen contents in skin cancer tissues cause the PA spectral amplitude
of the power spectrum to decrease, corresponding to a lower relative APSD value. Furthermore,
SCC originates from higher differentiated epithelial cells than BCC, with higher amounts of

Fig. 6 (a)–(c) PA-related APSD values with wavelengths in different skin tissues. The dashed
lines indicate the averaged PA spectra, and the shaded areas overlapping the lines indicate
the standard deviations. (d)–(f) Statistical results of the PA-related APSD values for the lipid and
collagen contents in different skin tissues (*p < 0.05, **p < 0.01, ***p < 0.001, ns: no statistical
significance).
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lipid and collagen,63 resulting in their APSD values higher than those for BCC in the absorption
band of lipid and collagen. Statistical results of the content and microstructure changes of endog-
enous chromophores related to histology can be obtained according to PASA parameters. Thus,
PASA provides an objective method of classifying SCC and BCC independently of the expe-
rience of a physician or pathologist. In addition, the PASA eliminates the effects of noise and
system errors, providing system-independent semi-quantitative results. Our results suggest that
PASA can provide sensitive, semi-quantitative content of endogenous chromophore in tissues to
achieve non-invasive diagnosis and identification of different types of tumors.

Frequency spectrum of PA signal is related to the size and content of the optical absorber. In
addition, our previous work has investigated the frequency anisotropy caused by the direction of
the structure35. There appeared well distributed and more parallel collagen in normal skin tissues.
While in the tumor tissue (SCC and BCC), the collagen was obviously unorderly and the amount

Table 2 Mean SVM categorization accuracy in Table 1.

1210 nm 1310 nm 1700 nm All

Mean training accuracy (%) 90.5 90.8 95 98.6

Mean testing accuracy (%) 69.2 64 87.2 92.3

Fig. 7 SVM classification results. (a) Classification results for normal, SCC, and BCC tissues at
each fold, including the accurate classification and misclassification rates. (b) Confusion matrix for
the normal, SCC, and BCC tissues. (c) Comparison of the ROC curves for the normal, SCC, and
BCC tissues. AUC represents an area under ROC curve. Normal-misclass, normal-misclassifica-
tion; SCC-misclass, SCC-misclassification; BCC-misclass, BCC-misclassification.
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of collagen appears reduced.64 There was no statistical difference in the structure and distribution
of collagen cluster between SCC and BCC. In the future, we can use multiple parameters to
characterize the distribution and content of collagen and lipid simultaneously to better identify
tumor tissues from normal tissues.

Machine learning is an effective feature extraction tool. Even in small samples, the character-
istics of PA signals can be fully learned to achieve good disease diagnosis, and machine learning
has been widely used in the detection of various diseases.65,66 In this study, an SVM, one of the
simplest machine learning tools, was utilized to distinguish automatically between different types
of tumors based on the extracted PA parameters. The proposed method takes advantage of quan-
titative parameters of multiple wavelengths, contains rich diagnostic information, and improves
the separation of high-dimensional datasets. As the number of clinical skin tissue samples was
limited, we used the SVM algorithm with the RBF kernel, which is appropriate when the amount
of data to be classified is small. Furthermore, to prevent overfitting based on a small number of
training datasets, K-fold cross-validation was performed. The choice of the number of K-fold
depends on the sample size, number of parameters, structure of data, and so on.67 Due to the
limitation of the sample size, three-fold cross-validation was used in our study. In future work,
more training datasets should be included and a higher and appropriate K-fold cross-validation
should be selected, which would improve the robustness of the SVM model and make the clas-
sification of skin cancer types using the SVM approach more accurate.

Considering the accessibility of human tumor samples, the object of this study is human skin
tumor tissue in vitro for pathological examination. In vitro experiments significantly improved
the operability of the samples and the stability of the experiments. However, the disadvantage is
that the optical absorption of hemoglobin cannot be measured. The optical absorption of hemo-
globin is dominant in the visible to near infrared wavelength range (i.e., 400 to 900 nm).
Therefore, the results acquired at the wavelengths of 1200 to 1700 nm were less affected by
the hemoglobin. In the future, we plan to use the PASAmethod in vivo. Considering the influence
of water in vivo experiment, which has high absorption in the 1200 to 1700 nm, a spectral unmix-
ing procedure should be used to enable more precise evaluation of the relative contents of lipid
and collagen. In fact, this approach also has considerable potential to be extended to the diagnosis
of other types of cancers with altered collagen or lipid contents, e.g., breast cancer,12 prostate
cancer.13,14. Furthermore, there were clear differences in the PA power spectrum between skin
cancers and normal tissues. This finding not only confirms that the PA signals of tumor and
healthy tissue are different but also suggests the possibility of using the PASA to define tumor
boundaries in the future. Currently, the primary treatment for skin cancers is surgical excision.
However, the existing clinical techniques cannot accurately define the boundaries of tumors,
leading to a postoperative residual tumor tissue, which may cause disease recurrence. In future
studies, we also intend to apply the PASA in vivo to identify the boundaries of skin cancers
more accurately and objectively, to help doctors remove such tumors completely and reduce
complications.

5 Conclusion
In summary, we introduced the PASA method to characterize the content of endogenous chromo-
phore in the TME to better understand the interaction and regulation of tumors and TME.
The parameters extracted from PASA were used to semi-quantify the content of endogenous
chromophore. It was found that the collagen and lipid content can be used as biomarkers of
tumor diversity, and we used this to successfully diagnose different types of tumors with
improved accuracy. Considering the PA technique is non-invasive and has greater detection depth
than pure optical technology, the proposed method shows considerable potential for non-invasive
and more accurate diagnosis of tumors in vivo.
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