Journal ot

Electronic Imaging

JElectroniclmaging.org

Visual saliency region detection by
combination of soft- and hard-
segmentation-wise approaches

Kanghan Oh
Kwanjong You

Kanghan Oh, Kwanjong You, “Visual saliency region detection by combination of soft- and

hard-segmentation-wise approaches,” J. Electron. Imaging 27(5), 051204 (2018),

SPI E ®  imaging.org doi: -10.1 117/1 .JEI-.27.5.05 1204.



Journal of Electronic Imaging 27(5), 051204 (Sep/Oct 2018)

Visual saliency region detection by combination of
soft- and hard-segmentation-wise approaches

Kanghan Oh? and Kwanjong You®*

8Chonbuk National University, Division of Computer Science and Engineering, Jeonju, Republic of Korea
®Chosun University, Department of ICT Convergence, Gwangju, Republic of Korea

Abstract. Recent studies in saliency detection have exploited contrast value as a main feature and background
prior as a secondary feature. To apply the background prior, most approaches are based on soft- or hard-
segmentation mechanisms, and a significant improvement is seen. However, because of contrast feature
usage, the soft-segmentation (SS)-wise models have many technical challenges when a high interobject dis-
similarity exists. Although hard-segmentation-wise saliency models intuitively use the background prior without
usage of the contrast feature, this model suffers from local noises due to undesirable discontinuous artifacts.
By analyzing the drawbacks of the existing models, a combination saliency model, reflecting both soft- and
hard-segmentation techniques is shown. The proposed model consists of the following three phases: SS-wise
saliency, hard-segmentation-wise saliency, and a final saliency combination. In particular, we proposed an
iterative reweighting processing for which an influence of outlier segmentation maps is decreased to improve
the hard-segmentation-wise saliency. As shown in the experimental results, the proposed model outperforms
the state-of-the-art models on various benchmark datasets, which consist of single, multiple, and complex object
images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduc-
tion of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.27.5

.051204]
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1 Introduction

The human-vision system is able to automatically identify
objects in static and dynamic scenes; this fundamental
capability allows individuals to automatically concentrate
on attractive and important targets in complex scenes. In
the computer-vision community, the subject that simulates
the human-visual attention system is referred to as salient
region detection;' the aim of the saliency model is to create
an intensity map that represents its probability corresponding
objectness. Since the estimated saliency is a higher level
feature map, the model can be used for various image-
processing and pattern-recognition applications, such as vis-
ual tracking,” object segmentation,”* object recognition,>°
image matching,” and image/video compression.®”!%!!
Although the study of saliency region detection is quite
extensive and diverse, a common feature among most
existing studies'>!>!#151617 is that the models have been de-
pendent on the contrast feature. Because the contrast feature
reflects the human-visual system that automatically concen-
trates on uniqueness and rarity,! it has been widely used for
the detection of the salient region. To improve saliency map
quality, recent saliency models have begun to employ simple
spatial features such as boundary prior or background infor-
mation as the secondary feature, leading to significantly
better performance compared with that of previous models.
However, the use of simple boundary prior as the secondary
feature is very simple, fragile, and their integration process is
mostly heuristic.'” To address these issues, soft-segmentation
(SS)-wise saliency detection models'>'""'8 were proposed,

*Address all correspondence to: Kwanjong You, E-mail: youkwanjong@
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and significant progress has been made compared with
those of other saliency models. The point of SS models is
that an object’s saliency is interpreted by considering
a homogeneous-region-level spatial model, which is also
called “boundary connectivity (BC);” in these models, the
undirected-weighted-graph model is employed to construct
spatial weights between each super pixel. During the color
contrast computation between patches (or super pixels),
these spatial weights are used to weigh similar colors, and
the weights on a constructed graph can be regarded as
SS information. The models are quite solid compared
with prior models for which simple background clues are
considered; this is because they are considering cluster-
(or segmentation) level background clues. Intuitively, the
models are reasonable and robust because the human-visual
system does not use only pixel-level clues to identify objects.
However, the approach is still not enough to represent the
human-visual system; for this reason, limitations are com-
monly observed when a high dissimilarity between objects
(pixel-inside features) exists due to contrast feature usage.
Note that the detailed description regarding the drawbacks
of contrast feature was addressed in this study.!” Despite
these limitations, the SS-wise models are designed to
use the contrast as a main feature; at the same time, the
BC model is used to assist the contrast feature. Although
their background model can be used directly with hard-
segmentation clues, they proposed a “soft” approach because
an image segmentation itself is an unsolved problem.!’
Aiming to solve the problem, hard-segmentation (HS)-
wise saliency detection models have been presented in
Refs. 1-19. The models have shown that the spatial back-
ground clues based on the hard-segmented regions can be
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Fig. 1 Limitations of the existing methods and the authors’ contributions: (a) original image, (b) SO,"”
(c) RRFC, (d) proposed method, and (f) ground truth. The SS-wise model (b) loses the information of
the objects (left tree), and the hard-segmentation-wise model (c) remains local noises, while the pro-
posed model (d) combines both models and generates favorable salient regions.

well expressed in terms of objectness instead of contrast fea-
ture. In the HS-wise models, multilevel hard-segmentation
maps were constructed, and then the models computed
spatial saliency in regard to the segmented maps using the
robust background measurement; the models were signifi-
cantly robust in the limitation of contrast feature usage.
However, due to undesirable discontinuous artifacts, the
HS-wise saliency model suffers from local noises. In this
field, the mentioned difficulties are endemic and universal
issues; a few examples are shown in Fig. 1. For the second
example, we can see that the SS-based models tend to lose
the foreground information of the object (left tree) because
of their dependency on the contrast features. For the third
example, although object regions are well defined, many
local noise blobs are observed in the HS-based model due
to undesirable discontinuous artifacts.

In this paper, we proposed a combination model reflecting
both soft- and hard-segmentation techniques. The motivation
behind such combination process was to overcome the
above-mentioned limitations caused by existing models.
Our proposed model has the following contributions: (1) a
combination system that encompasses both hard and soft
techniques is proposed here for the first time. It outperformed
techniques of existing models; and (2) to achieve reliable
hard-segmentation results, an iterative reweighting process,
for which an influence of outlier segmentation maps is
decreased, is proposed here for the first time. In addition,
SS-wise saliency clues were employed as prior knowledge
to improve the quality of segmentation maps.

This paper is organized as follows: in Sec. 2 related works
are briefly described with its advantages and disadvantages;
the details of the proposed model are described in Sec. 3; in
Sec. 4, the proposed methods are evaluated against state-of-
the-art approaches with four benchmark datasets; and in
Sec. 5, a conclusion and some future work are presented.

2 Related Works

Over the previous decades, a considerable number of studies
regarding the visual-saliency model have been proposed
based on various mechanisms and extensive reviews can be
found in Refs. 21 and 22. In this section, we briefly review
the related works based on several viewpoints.

Although handcrafted-saliency-detection models have
been quite successful, its heuristic rules still present a limi-
tation for a variety of challenging cases. Aiming to overcome
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this limitation, deep-learning®*?>2¢ based saliency models
have recently been proposed. The common mechanism of
deep-learning based models is that a discriminative feature
between the foreground and background is automatically
extracted and interpreted during the deep-learning training
phase, and then the trained-network model is employed to
compute the visual saliency. Note that the convolution neural
network (CNN), which is effective for an image analysis,
was usually used as the deep-learning algorithm. The
CNN-based models have achieved better performance than
the handcrafted-saliency models in a variety of challenging
cases; however, a sufficient training dataset, a high-quality
GPU, and considerable time are required for the learning
part, and a failure-cause analysis is very difficult.'

Most saliency approaches'>!10171810 ere designed to
employ contrast value as a main feature. The contrast-
based saliency models consist of the following two types:
global- and local-contrast-based models. The main mecha-
nism of the global-contrast models computes the object’s
saliency through the computation of the color contrast
between each of the pixels and the mean value of an entire
image. Although the global-contrast models are effective to
detect salient regions of simple pattern images, these models
have a limitation in a poor global contrast and a complex
pattern image. The local-contrast-based models have been
proposed to overcome the drawbacks of the global-contrast
models. These models compute a salient region by consid-
ering the local neighborhoods of the pixels. Although these
models are useful to an object’s saliency, they suffer from
local noises when computing complex pattern images.
Moreover, the window (kernel) sizes for different objects
at different scales must be modified to optimize final salient
region." As mentioned previously, the contrast that reflects
a human’s visual attention system has been commonly
employed as a standard feature for the most saliency models,
but its extreme dependency on the most-highlighted region
causes drawbacks when the object dissimilarity is high."”

Recently, the SS-wise saliency models were proposed and
have shown excellent performance among the handcrafted-
saliency models.'>!"!® The undirected weighted graph was
constructed to obtain weight values between super pixels,
and a robust boundary measure was employed as the spatial
prior. In the SS-wise saliency model, the constructed graph
can be regarded as soft clustering information, and it has
the similar effect of analyzing hard-segmentation results.
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A graph model was presented in Ref. 15; the model incor-
porates local and global contrast, and these clues are com-
bined by exploiting a robust background measure. Unlike
the above models, the method of Ref. 16 directly builds hier-
archical hard-segmentation maps using hierarchical-cluster-
ing techniques with three-heuristic thresholds; the saliency
scores are calculated using both the local contrast clues
and consistent-inference methods.'® Although various tech-
niques to compute visual saliency have been applied, the soft
segmentation-based models are consequentially based on the
contrast feature. For this reason, the models suffer from con-
trast limitation.

In contrast to the SS-wise models, the aim of the hard-
segmentation-wise saliency models'™" is to detect the salient
regions without the contrast based on multilevel hard-
segmentation maps; for this model, only the spatial
features that represent the pixel variation and the location
clues were adopted for the saliency-score computation. For
this reason, the models are quite solid in contrast limitation.
However, for the hard-segmentation phase, because heuristic
or simple parameter selection techniques were adopted,
undesirable-outlier segmentation maps are often generated,
and it led to poor performance. In addition, the works'™"
have used a simple and heuristic integration method to
generate the final-fused saliency map without robust optimi-
zation processing. Although a optimization process, which
is called “recursive processing,” was used to optimize the
saliency map in the RRFC, ' this model is very time consum-
ing and suffers from local noise due to its recursive process,
which tends to reinforce the local noise when an initial
saliency map has relatively strong noise saliency.

3 Proposed Approach

The proposed salient-object detection model is summarized
in Fig. 2 and is fully presented in this section. The proposed
model consists of the following four phases: (1) prepro-
cessing, (2) SS-wise saliency, (3) hard-segmentation-wise
saliency, and (4) saliency optimization. In the preprocessing

phase, an input image is abstracted as a set of super
pixels using the simple linear iterative clustering (SLIC)
algorithm;*” given a set of super pixels S, we mainly
employed two types of regional features, which are average
color (CIELAB) and centroid coordinates of super pixel
patches. In the second and third stages, the SS- and HS-
wise saliency clues are computed; in particular, to acquire
a reliable-hard-segmented region, SS-wise saliency clues
were employed as a priori knowledge and the iterative
reweighting process is implemented to weight favorable seg-
mentation maps during the HS-wise saliency model compu-
tation. In the last stage, the saliency clues were optimized
using the objective function containing a robust background
measure.

3.1 Background Prior Model

To compute object saliency corresponding to each seg-
mented region or image patch, a robust background-
measurement model called BC proposed in Ref. 17 is con-
sidered. The definition of BC is more robust compared with
those of other boundary prior-based models that are heuris-
tic, simple, and fragile. The definition of the BC method can
be written as follows:

BC(R):NP(MPEBnd’pGR), 0

Np(plp €R)

where Bnd is the boundary patches, R is the observed cluster
region, p is the image patch, and N p(.) is a function to count
the image patches. Figure 3 shows the definition of the BC;
the example has four clustering regions, and we can easily
identify the foreground and background clusters. By the BC
definition, the blue and red clusters have 0.83 and 0.63,
respectively, and the white and gray clusters have 2.41 and
2.80, respectively. The model computes the cluster-based
connection strength with the image boundary, and it returns
higher values to background clues. In summary, the salient

. background
Undirected priorgbased
mit graph' =*| contrast
construction model
Regional 2. Soft-segmentation wise saliency .
feature | f Foreground weight maps ObJeC_the N
extraction — _ _ _E - Prior knowledge _ function

I Multi-level b?fc:gi)c;:ZS
; "M clustering [~>| P ol model
Over segmentation spatial mode

¥

Final saliency map
vt

P

I
I
1. Preprocessing |
I

3. Hard-segmentation wise saliency

v

Background weight maps
4. Saliency optimization

Iterative re-weighting process

Fig. 2 Framework of the proposed method. The overall framework consists of the following four phases:
preprocessing, SS-wise saliency, hard-segmentation-wise saliency, and saliency optimization. After pre-
processing and soft- and hard-segmentation-wise saliency computation, foreground and background
weight maps are obtained from each stream. They are then fused by background measure-based

optimization function.
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Fig. 3 Example of background prior model: (a) original image and (b) BC.

regions are much less connected to image borders than the
background elements.

3.2 Soft-Segmentation-Wise Saliency

In this phase, the SS-wise saliency'” is computed using both
the undirected-weighted-graph theory and the BC definition.
In the first stage, the undirected weighted graph is con-
structed by connecting all adjacent super pixels; the “span-
ning area” of each super pixel p is defined by the following
equation:

Ep) =3 exp {-M] @)

2
j=1 zaarea

where the result of Eq. (2) is a soft-segmented area of the
region that p; belongs to, p is a super pixel and N is its
total number, Dy, (p;, p;) is the geodesic distance between
two super pixels in the CIELab color domain and is the accu-
mulated edge weights along their shortest path on the con-
structed graph by computing the Euclidean distance between
their average colors. For this reason, as the frequency of
color similar to patch p; increases, the result of E(p;) is
also increased. The BC value is computed by the following
equation:

E(pi|pebnd
Bndcon(p;) = M, (3)

E(p;)

(b)

where E(p;|p;ebnd) means that it only considers the patches
p; located on the image borders when computing function
E(.). To compute Eq. (3), the shortest paths between
super pixels are calculated using Johnson’s algorithm;”
based on the above definition, the background weight can
be written as

B Bndcon(p,«)z] ‘ @

Bss(pi) =1- eXp|:
zo-%mdcon
When BC is large, it is close to 1, and its result represents
a background probability. The foreground weight, which is
called background-weighted contrast, is defined as

N

st(pi) = ZDcontrast(pi’ pj)Dspatial(piv pj)Bs.v(pi)’ (5)
i=1

where Dgniasi(+) 18 the color contrast between super pixels,
and Dy, (-) is the spatial distance between super pixels.
Equation (5) was designed to receive high B, for the fore-
ground patches, and its contrast is enhanced. In summary,
although SS-wise saliency is based on the global-contrast
model, robust background measurement called “BC” was
applied as an additional feature during the contrast compu-
tation, and it led to high performance. The visual example is
shown in Fig. 4.

() (d)

Fig. 4 Example of SS-wise saliency: (a) original image, (b) foreground weight map in Eq. (5), (c) back-

ground weight map in Eq. (4), and (d) ground truth.
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3.3 Hard-Segmentation-Wise Saliency

Zhu et al.'"” have mentioned that the BC is intuitive, but it is
difficult to compute directly because an image segmentation
itself is a challenging and unsolved problem (i.e., parameter
selection). For this reason, the study17 does not use the
definition directly but applies it as a weight of the color
contrast computation. However, as mentioned previously,
the color contrast feature has a limitation when a high inter-
object dissimilarity exists. To overcome the limitation, the
hard-segmentation-wise saliency models'™'* were proposed,
and the process of these models usually consists of three
phases: multilevel segmentation-region construction, spatial-
saliency computation, and optimization.

In this study, we use the hierarchical-clustering algorithm
for the multilevel segmented-region construction; in consid-
eration of time computation, this way is more effective than
mean-shift” usage, for which multilevel kernels*® are con-
sidered. To construct reliable segmented regions, we have
considered the foreground weight F, as a sixth regional
feature, and it led to improved segmentation quality. In the
hierarchical-clustering process, threshold values (number of
class) should be defined for hard-segmented region construc-
tion, and we empirically set its thresholds at 7 = [2,3... 8] in
the experiment. After constructing hard-segmentation maps,
we computed corresponding saliency maps using the BC.
Unlike the SS-wise models in which an input unit is used
for the patches, the robust background model is directly cal-
culated without the color contrast computation, and the input
unit in the HS-wise process is the hard-segmented regions R;
so, it can be expressed as Ry, = {p, pa, . .., pu}. To directly
apply the background model to our work, the super pixel S
and the clustering region C are now considered for the patch
p and the observed hard-segmented region R, respectively?’
in Eq. (1), and the HS-wise initial saliency map can be
defined by the following equation:

HSmap(,,) :BC(Rk), [k: 1,,n], (6)
where R; means an i’th segmented region, and n is the
number of segmented regions in a hierarchical-clustering
map; we can see its results, HSp. = {HSnp1)

X / \
5,

Original

T=2
Ground-truth

ﬂ v \V 7
T=3 T=4 T=7 T=8

HSmap2)s - - - ,HSmap<7)} from the second row in Fig. 5, and
the multilevel saliency maps HS,,,, (in Fig. 5, second row)
are linearly integrated to acquire HSyy,,- The visual results
are shown in Fig. 5, where we can see the well-defined
clustering maps regardless of the parameter T changes.

For the optimization process, just like the SS-wise
saliency process, the results should be expressed as two
maps representing foreground and background-weight maps.
In the proposed method, the sigmoid function was employed
to obtain the continuous (soft) weights; sigmoid functions to
build the foreground F';,; and background B, maps are given
by the following equation:

1
= 1 + e_a[HSImap(pi)_V] ’

Fus(pi) (N

1
- 1 + ealHSmap(pi)—4]

By(pi) , 8)

where a is a curve gradient, and y and HSyy,, are the har-
monic mean value and an integrated saliency map, respec-
tively; HSyyqp(p;) denotes patch p; wise average value on
the overlapping region between H Sy, and super pixel p;.
Note that the proposed HS-wise processing consumes just
0.28 (average) seconds per 400 X 300 image, and this is
significantly fast compared with the existing models,' ™"
which require a processing time about 2 to 4 s.

3.4 lterative Reweighting Process

In the HS-wise stream, performance is significantly con-
trolled by the segmentation map’s quality; we, therefore,
attempt to reduce influence of outlier segmentation elements,
which cause performance degradation during the iterative
processing. The pseudocode of the iterative processing is
described in Fig. 6, and its process consists of the following
phases.

1. Similarity scores between the HSy,,, and each
HS-wise saliency map HSp,p0) is computed using
the 2-D correlation coefficient, and these scores are
regarded as weight values for each HS p(,)-

Journal of Electronic Imaging

Fig. 5 Example of hard-segmentation-wise saliency: first row represents the segmented maps using
the hierarchical-clustering algorithm, and its corresponding saliency maps are illustrated in second row.
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Algorithm 1: Iterative reweighting procedure

Input : HS wise saliency maps HS,,qp

={ HSmap(l), HSmap(Z),..., HSmap(N)}

Output : Integrated HS wise saliency map HS;mqp

WHSmap « (D. HSlmap « Q) initialization

Repeat {

L.

2

3

1

4. HSImap « ;Zg=1 Hsmap(o)
5

6 for (0 =1 to N ){

7

(Hsmap(o)_HSmap(o)) (HSInxup-HSImap)

Linear fusion

p

o

}
1
WHSImap « ;E?LI HSmap(i) Pi

o

10. If HS;map = WHS;ap then repeat break

P =
-2 .2
J (Hsmap(a)'HSmap(o)) (Hslmap-HSImap)

weighting value computation

Weighted fusion

11.  else HS}pap < WHSimqp end //Updating integrated saliency map

12. }
13. HSpmap < Normalization (HS;ap)
14. Return HS;pqp

Fig. 6 Pseudocode of iterative reweighting procedure.

2. We multiply each HS-wise saliency map by the corre-
sponding weight, and then they are fused to update
H Syyp (weighted fusion).

3. Processes (1) to (2) are repeated until there no signifi-
cant changes remain between the current and previous
sources.

The proposed iterative reweighting process encourages
statistical consistency, leading to decrease in the influence of
outlier segmentation maps during the fusion process. The
goal is to weight good segmentation maps and reject irregu-
lar sources; thus, the proposed iterative processing is not
compute-expensive compared with the existing model,' in
which the mean-shift algorithm is repeatedly executed to

improve segmentation results. Figure 7 shows that the visual
performance of our saliency maps is enhanced with an
increasing number of iterations.

3.5 Saliency Optimization

In prior works, the saliency clues computed from the multi-
level phases are combined heuristically using weighted
summation or multiplication.'”! In the proposed method,
we have employed a cost-function that is based on the
error-minimization technique to optimize the final saliency
region. Given the foreground and background weight maps,
the objective cost function is defined by the following
equation:*!!7:13

Iteration :1

Iteration :2

Iteration :3 Final result

Fig. 7 Visual example of iterative reweighting process.
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() (d)

Fig. 8 lllustrations of our process. (a) Original image, (b) SS-wise foreground weight map in Eq. (5),
(c) SS-wise background weight map in Eq. (4), (d) HS-wise foreground weight map in Eq. (7),
(e) HS-wise background weight map in Eq. (8), (f) simple linear integration result, (g) optimized saliency

map by minimizing Eq. (9), and (h) ground-truth.

N
[Fss(i) + Fhs(i)](si - 1>2

arg mins{
1

1

N
+ Z[BAA(I) + Bhs(i)]sz2 + Zwij(si - Sj)z}v (9)
i=1 i,j

where F' and B are foreground and background weights.
w;; is the smoothness term, and it is effective to eliminate
small noises in both foreground and background; three
terms in Eq. (8) are all squared errors, and the optimal
saliency map is computed by the least square method.!”
High F encourages saliency s; to take the saliency value
close to 1, and B encourages saliency s; to move close to 0.
The last smoothness term encourages continuous saliency
values, and it is effective to remove local noise in both
foreground and background regions. For every adjacent
super pixel pair (i, j), the smoothness term is defined by
the following equation:
Dcontrasl(piv pj):|. (10)

2062

a)ij = exXp |:—
smooth

The results of the optimization process are shown in
Fig. 8; as can be seen in the following figure, the overall
salient region is enhanced after the optimization process is
implemented, and a significant improvement exists when
comparing with a simple integration result [Fig. 8(f)].

4 Experimental Results

The experiments were conducted on an Intel(R) Core(TM) i5
4670 with a CPU of 3.40 GHz and 12 GB of memory.
The proposed model was evaluated on three benchmarks:
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MSRA, ECSSD, and MSOD; our performance is compared
with those of the state-of-the-art methods, such as CHS,’
RC,"? SO, RFC,?° and RRFC," respectively. The relevant
competitive models were selected based on the citations and
their high performance. The MSRA-ASD'? dataset includes
1000 single-object images with a pixel-wise ground truth
that is indicated from the MSRA10K dataset; the dataset
is the most commonly used for the evaluation of salient-
detection performance. The ECSSD'® contains 1000 images
with complex patterns in both the foreground and back-
ground. The SED2* is a multiple-salient object benchmark,
which consists of 100 images with more than two objects
with a higher dissimilarity.

4.1 Setup and Evaluation Methods

The precision, recall, and F-measure (F #)s which are com-
monly used for a quantitative comparison of different
models, were considered for the performance evaluation.
For a reliable comparison of the various saliency-detection
methods, the salient regions should be evaluated with a
variation of the fixed-threshold values from O to 255; here,
precision represents the percentage of salient pixels that
correspond to the ground truth, whereas recall represents
the ratio of the salient pixels that belong to the total number
of ground truths. As discussed in Refs. 33, 19, and 34, the
true negative counts are not considered for either the preci-
sion or the recall measure, and this means that these mea-
sures cannot be used for an evaluation of the nonsalient
regions. For the quantitative comparison, we, therefore, used
the F-measure curve, for which various thresholds are con-
sidered, and the AUC, which is the area under the F'-measure
curve, instead of the precision—recall curve; the F-measure is
calculated using the following equation:

Sep/Oct 2018 « Vol. 27(5)
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(1 + fg?)Precision X Recall
[*Precision + Recall

Fy= (11)

The recall metric detects the percentage of true positive
pixels in the saliency map through the use of the total number
of true positives in the ground truth, and the precision metric
provides the percentage of detected true positives as com-
pared with the total number of positive pixels in the detected
binary-motion mask. Since > = 0.3 is set for most of the
existing methods,'>!=3*1617 more weighting of the precision
rather than the recall, ,B2 = 0.3, was also set for the quanti-
tative-performance comparison involving the state-of-the-art
methods. The performances of the saliency models were also
evaluated according to the average precision, recall, and
ﬂz, which are commonly used in related areas to evaluate
the performance; here, an image-dependent adaptive thresh-
old value® that is computed as twice the mean saliency
was used to perform the saliency-map binarization. For
a more comprehensive comparison, we also evaluated the
saliency-detection models using the mean absolute error
(MAE), whereby a result for the similarity between the con-
tinuous-saliency map S and the ground truth Gt, both of
which had been normalized from O to 1, was provided.
The MAE score is defined by the following equation:

1 _
MAE = WxHZZ Sy = Glyy. 12)

x=1 y=1

4.2 Quantitative Performance Comparison

Our model was evaluated on the four datasets: MSRA-ASD,
MSRA10K, ECSSD, and SED2 and our performance is
compared with those of the state-of-the-art methods, such
as CHS,'® RC,'? SO, RFC,*® and RRFC," respectively.
The relevant competitive models were selected based on
their performance. Note that we selected the parameters of
the compared saliency models in accordance with their
parameter settings that were already noted in the existing
manuscripts.'>?*!%1617 The quantitative comparisons are
presented in Fig. 9, and their row and column reflect the
benchmarks (from top to bottom: MSRA-ASD, MSRA10K,
ECSSD, and SED2) and the evaluation methods (from left to
right: F-measure curve, F-measure, and MAE), respectively.

Since the saliency map consisted of continuous intensity
values, it should be evaluated with a variation of the fixed-
threshold values from O to 255; we, therefore, used F-mea-
sure curve for which various thresholds are considered. The
proposed method is evaluated on both the MSRA-ASD and
MSRA10K datasets. The MSRA-ASD dataset includes 1000
single-object images with a pixel-wise ground truth that is
indicated from the MSRA 10K dataset. Notably, even though
the MSRA-ASD is made up of simple foreground and back-
ground images, in recent years, it is the most commonly
used dataset for the evaluation of the salient-detection
performance. To obtain more extensive experimental results,
the MSRA10K dataset, which is composed of 10,000 single-
object images with the pixel-level ground truth, is also used
in this test. In Fig. 9 (MSRA-ASD and 10 K), in terms of
the F-measure curve, our model and the RRFC outperform
those of other models; in the specific range between 0.3 and
0.8, our model is clearly outstanding. In particular, our model
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clearly outperforms those of the existing models in Fp
(second column, MSRA-ASD and 10K). The RRFC and our
model have achieved favorable performance rates regarding
the MAE, and this means that the model results in a well-
defined background.

To overcome the simplicity of the MSRA, an ECSSD
containing 1000 images with complex patterns in both the
foreground and background is proposed in Ref. 16; however,
although this dataset includes many semantically meaningful
images, the images are structurally complex for a perfor-
mance evaluation. In Fig. 9 (ECSSD-left), our curve is
consistently higher than those of the existing models in
the specific range between 0.2 and 0.9, and our model is
also outstanding in terms of F' e However, our model results
in an ordinary performance in the ECSSD when considering
the MAE, and this result shows that the proposed model
tends to fail the background region detection in the complex
pattern image.

This dataset® consists of 100 images containing exactly
two objects, and the pixel-wise ground truth is also provided.
In particular, some of the images have two challenging
tasks as follows: first, the properties of the objects are
radically different; and second, the objects are located in the
image borders. The SED2 evaluations, therefore, allow for
an immediate identification of the limitations of the existing
approaches. Considering F-measure curves, our model was
clearly included in the high-performance group, but it is very
ambiguous. However, we can see that the proposed model
outperforms others in both the MAE and F.

In consideration of the performance, the proposed model
and the RRFC have achieved outstanding performance
compared with those of other models; there may be a debate,
however, regarding which model is better. Note that the pro-
posed model is highly competitive when compared with the
RRFC; the RRFC is very computation-intensive because of
its recursive process. Given a typical 400 X 300 image, the
RRFC takes 4 s for testing; in addition, the time consumption
of the RRFC is significantly irregular because more than
average processing time is often required to reach a conver-
gence state according to image states (i.e., some cases take
8 to 15 s for testing). Unlike the RRFC, the proposed model
consumes just 0.35 s per 400 x 300 image, and its overall
processing time is more regular than that of the RRFC.
The processing time results regarding the saliency models
are shown in Table 1. In particular, the performance of
the proposed model is generally outstanding in terms of the
F-measure, and this phenomenon means that the model
successfully detects the foreground region and the respective
spatial locations in the scenes.

The visual comparisons regarding the four benchmarks
(MSRA-ASD, 10K, ECSSD, and SED2) are shown in
Fig. 10. The results of the proposed model are relatively
accurate compared with those of the existing model; in par-
ticular, a great improvement is evident when a comparison is
made with its previous models (SO and RFC). In relation to
the SED2 benchmark, Fig. 10 shows that our model correctly
and uniformly highlights multiple salient objects regardless
of both the higher object dissimilarity and the number of
objects, whereas the object regions of the existing models
are not uniformly highlighted. In terms of the complex-
pattern image, the proposed method not only successfully
detects the object region, but it also clearly eliminates the
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Fig.9 Quantitative comparison of salient-object detections using F-measure curve, precision, recall, and
MAE.
Table 1 Computation time comparisons.
So" RC'2 CHS'® IEFC?° RFC! RRFC'® Our
Code MATLAB C C MATLAB MATLAB MATLAB MATLAB
Runtime (s) 0.21 0.11 0.45 2.20 1.54 4.31 0.35
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Fig. 10 Visual comparison of salient-object detection results: (a) original, (b) CHS,'® (c) RC,'?
(d) RRFC,' (e) SO," () ours, and (g) ground truth.

background. In summary, the proposed model is generally
superior regardless of the benchmark type; in particular,
the outstanding Fyrates show that the foreground clues of
the proposed model are well highlighted compared with Super pixels  Precision  Recall ~ F-measure  Runtime (s)
those of the existing models.

Table 2 Performance comparison according to super pixel numbers.

50 0.822 0.741 0.814 0.177
4.3 Analysis of Proposed Model 100 0.829 0.758 0.822 0.198
In this section, the manner in which the accuracy of the pro- 200 0.827 0.790 0.824 0.230
posed model is affected by both the parameters and the
partial functions is further analyzed. In the first stage, the 300 0.828 0.801 0.825 0.276
performances are described in Table 2 according to the num-
ber of super pixels. As the super pixel number increases, the 400 0.835 0.809 0.833 0.335
processing time also increases, and the results show that our
model has archived a favorable performance of between 300 500 0.830 0.813 0.829 0.409
and 400 super pixels. Generally, the number of super pixels
does not have a major influence on the final results. The 600 0.821 0.820 0.821 0.480
resqlts ;egarding thg inﬂpence of the gradient Valqe for nor- 700 0818 0.824 0.819 0.598
malization are described in Table 3, where the gradienta = 7
is the most proper for the benchmark, and “B” represents Note: Bold value represents the best performance.
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Table 3 Performance comparison according to gradient value of sig-
moid function.

Gradient values Precision Recall F-measure
1 0.827 0.809 0.825
3 0.827 0.809 0.825
5 0.833 0.808 0.831
7 0.835 0.809 0.833
10 0.834 0.809 0.832
20 0.834 0.807 0.832
B 0.820 0.799 0.818

Note: Bold value represents the best performance.

Table 4 Performance comparison according to cluster numbers in
the HS-wise process.

Cluster numbers Precision Recall F-measure
K =[2 to 4] 0.833 0.792 0.829
K =[2 10 8] 0.835 0.809 0.833
K =[2t0 12] 0.827 0.814 0.826
K =[2 to 16] 0.820 0.819 0.820
K =[2 to 20] 0.816 0.822 0.816

Note: Bold value represents the best performance.

Table5 Performance comparison according to combination process.

Precision Recall F-measure MAE Runtime (s)

SS-wise stream  0.815 0.783 0.812 0.120 0.173

HS-wise stream 0.829 0.788 0.825 0.112 0.128
Combination 0.835 0.809 0.833 0.107 0.301

Note: Bold values represent the best performance.

/ ' ~ - (iteration1)

/ ’ — - (iteration 2)

* (iteration3)

F-measure
o
»

0.3 === (iteration4)
0.2 (iteration 5)
= (iteration 15)
—— (adaptive threshold)
0 01 02 03 04 05 06 07 08 09 1
Threshold

MAE

the result using the harmonic mean binary maps without the
sigmoid function usage; as can be seen from the results, the
continuous maps by the sigmoid functions are relatively
advantageous for obtaining foreground and background
weights compared with the harmonic mean value usage.
As the gradient value was decreased, we can see that our
model tended to output a favorable performance with the
lower threshold values and a poor performance with the
higher threshold values, whereas the opposite effect was
achieved with the larger gradient values. This finding
means that the saliency values of the foreground for which
the small gradient values are considered were formed at
a low-intensity position. The performance comparisons
according to hierarchical cluster-number changes are
described in Table 4, and these results show that the use of
too many clusters causes performance degradation. Through
analysis of the precision scores, we can easily assume
that this phenomenon is because of over-segmented regions
caused by higher threshold values. The results in Table 5
show that the combination result of two streams is advanta-
geous over the independent use of each stream. In particular,
the recall score is greatly improved after the combination
process, and the HS-wise stream shows better performance
than the SS-wise stream. From the experimental results,
we can easily confirm the synergy effect by the proposed
combination mechanism. With an increasing number of
iterations, the performance of our model was exponentially
improved (Fig. 11), leading to a convergence of performance
regardless of any further increase. A considerable perfor-
mance enhancement was observed between the first and
second iterations in terms of F-measure curve and MAE.
In addition, a result stopped by the proposed stop condition
(adaptive threshold) of recursive processing was clearly
included in the convergence domain.

5 Conclusion

In this paper, we proposed a combination model reflecting
both soft- and hard-segmentation techniques. In particular,
in the HS-wise stream, the iterative reweighting process
was proposed to decrease influence of outlier segmentation
maps, and the prior knowledge generated from the SS-wise
stream was employed to enhance the segmentation map’s
quality; the proposed model provides a favorable result com-
pared with the existing model in terms of both performance

(b) 0.5

0

-

0.

K

()} ‘ ' | | | | |

Iteration 1 Iteration 2 Iteration 3 Iteration4 Iteration 5 Iteration 15 Adaptive
threshold

Fig. 11 Performance comparison according to iterative reweighting processing. (a) F-measure curve

and (b) MAE.
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and processing time. In addition, in the combination phase,
the robust optimization function was used to fuse results
from the two streams, and the result shows that the combi-
nation of two streams outperforms the independent use
of each stream. The experimental results demonstrate that
our model achieved superior performance in terms of the
efficiency of the MAE and the superior F-measure on bench-
marks, which reflect simple, complex, and multiple objects.
In terms of the limitations of the proposed model, the final
result obtained using the iterative processing is heavily reli-
ant on its initial state, and the weighted fusion method is very
simple; furthermore, the hierarchical-clustering algorithm
occasionally failed to detect optimal clusters when there
was an insufficient feature distribution with unclear gradient,
leading to poor segmentation results. For a future work, we
plan to improve the performance of the proposed model
using an adaptive fusion method***” and multiple clustering
algorithms (ensemble technique); in addition, a theoretical
analysis of the proposed model needed to be conducted.
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