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Abstract. We compare several approaches to estimation of Hotelling observer (HO) performance in x-ray com-
puted tomography (CT). We consider the case where the signal of interest is small so that the reconstructed
image can be restricted to a small region of interest (ROI) surrounding the signal. This reduces the dimensionality
of the image covariance matrix so that direct computation of HO metrics within the ROI is feasible. We propose
that this approach is directly applicable to systems optimization in CT; however, many alternative approaches
exist, which make computation of HO performance tractable through a range of approximations, assumptions, or
estimation strategies. Here, we compare several of these methods, including the use of Laguerre-Gauss chan-
nels, discrete Fourier domain computation of the HO (which assumes noise stationarity), and two approaches to
HO estimation through samples of noisy images. Since our method computes HO performance exactly within
an ROI, this allows us to investigate the validity of the assumptions inherent in various common approaches to
HO estimation, such as the stationarity assumption in the case of the discrete Fourier transform domain method.
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1 Introduction
Objective assessment of image quality through task-specific
metrics has a long history in medical imaging and is regarded
by many as ultimately being the most meaningful approach to
medical image evaluation.1–4 However, the application of task-
based assessment to x-ray computed tomography (CT) is recent
relative to its application to planar imaging modalities and
nuclear medicine. One reason for this delay is that metrics
based on the Hotelling observer (HO),3 such as those considered
in this work, involve the image covariance matrix, and in CT,
this matrix is often extremely large (well over 109 elements),
poorly conditioned, and possesses few, if any, simplifying
structural properties. In order to address the challenge of large
dimensionality, efficient channels have been proposed5–7 which
essentially constitute a transformation of the image into a new
basis, where the number of basis functions is substantially less
than the number of image pixels. Another common means of
circumventing the dimensionality problem is to assume noise
stationarity, so that HO metrics can be obtained with relative
computational efficiency through discrete Fourier transform
(DFT) operations (see Sec. 2). Meanwhile, in order to address
the somewhat unpredictable structure of the image covariance,
various estimation strategies have been proposed which rely on
samples of noisy images in order to construct an estimate for
the image covariance when an analytic formulation of image
covariance is impossible or infeasible.8,9

Building on previous work,10 we propose a formalism,
which, in certain cases, may be more appropriate than the

use of efficient channels or estimation techniques, while still
addressing the issues of dimensionality and structural complex-
ity of the image covariance matrix. Our approach differs from
alternative methods in that the resulting metrics are nonstochas-
tic, and we impose no restrictions on the structure of the signal
or on the nature of the noise correlations. Instead, similar to
Refs. 11–13, we only assume that the relevant noise correlations
and signal extent can be restricted to a region of interest (ROI) in
the image. In order to investigate the impact and validity of vari-
ous assumptions that simplify the computation of HO metrics,
we herein compare the results of parameter optimization using
our proposed method to two alternatives: a set of efficient
[Laguerre-Gauss (LG)] channels and a DFT domain approach.
Each of these approaches corresponds to a different assumption
regarding the signal, the image noise, or both. We then also
investigate two statistical estimation strategies for HO metrics
and compare these results with our proposed method.

The specific context in which our formalism is intended to be
applied is detection or classification tasks where the object of
interest is small (on the order of several pixels), and the
reconstruction algorithm is a direct, linear algorithm, such as fil-
tered backprojection (FBP). In this case, we hypothesize that
most of the relevant information for performing the detection
or classification task is likely to be contained in pixels within
a small ROI surrounding the signal. For direct linear algorithms,
an analytic form of the image covariance matrix for a small ROI
can be constructed and its elements can be stored directly in
computer memory so long as the ROI contains at most several
thousand pixels. While we consider only two-dimensional (2-D)
reconstruction in this work, the extension to three-dimensional
(3-D) reconstruction is straightforward so long as the correspond-
ing 3-D ROI contains only several thousand voxels.
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Since the metrics evaluated in this work are task-specific, we
restrict ourselves to two relevant tasks in a specific CT applica-
tion, namely dedicated breast CT. The tasks considered are
microcalcification detection and the Rayleigh discrimination
task, which measures the ability of an observer to distinguish
between a single object and two smaller objects. The specific
metric we investigate is the HO efficiency, which is a summary
scalar metric describing the preservation of relevant information
from the projection data measurements to the reconstructed
image. The mathematical construction of this metric is described
in Sec. 2, along with a description of the two imaging tasks con-
sidered. Section 3 demonstrates the use of the proposed ROI HO
method for the optimization of reconstruction filter width in the
FBP algorithm. Section 3 also contains results for the applica-
tion of a channelized HO (CHO), a DFT-domain HO, and two
estimation approaches to the same parameter optimization.
Finally, a discussion and brief conclusion are included in Sec. 4.

2 Methods

2.1 Task Modeling

Two tasks are considered in this work. The first is a Rayleigh
resolution task, wherein an observer must classify an image as
either an image of a single 1.4 mm bar convolved with a
Gaussian with a full width at half maximum (FWHM) of
0.53 mm or two distinct Gaussians of FWHM ¼ 0.53 mm, sep-
arated by a 0.8 mm trough. These two signals were modeled on
a discrete grid with pixels an order of magnitude smaller than
the detector pixels backprojected to the center of the field of
view (FOV). The two signals are shown in Fig. 1.

The second task is a signal detection task, where we model a
microcalcification as a Gaussian with FWHM of 80 μm. Here
the two classes into which an observer classifies the image are a
signal-present class and a signal-absent class. For both tasks, we
operate under the signal-known-exactly-but-variable paradigm,3

where three signal locations are considered: the center of the
FOV, the position (2 cm, 2 cm), and the position (4 cm, 4 cm);
however, results among the three signal locations are not sub-
stantially different.

2.2 Breast CT Simulation

Since the tasks considered in this work involve small signals, all
of the relevant geometric and scanning parameters used in the
breast CT simulations are based on Ref. 14, the purpose of
which is to characterize spatial resolution properties of a dedi-
cated breast CT scanner. In a separate submitted work,15 we
fully explore parameter ranges for this system and compare

with other work in optimization of breast CT systems.
However, we here investigate only a few parameter settings
and instead focus on HO performance estimation methods.
To summarize, we simulate a 40 cm flat panel detector, rebinned
to a sampling of 1024 detector bins. The source-to-isocenter dis-
tance is 45.8 cm, and the source-to-detector distance is 87.8 cm.
The FOV is restricted to 16.59 cm, and this is sampled on
a 512 × 512 image pixel grid, for an image pixel size of
0.324 mm. Meanwhile, the detector element size, backprojected
into the center of the FOV, is ∼0.2 mm.

The simulated x-ray spectrum corresponds to an 80 kVp set-
ting with added Be and Al filtration of 0.8 and 2.5 mm, respec-
tively. Methods from Refs. 16–18 were used in simulation of the
x-ray spectrum. Finite detector bin size is modeled by subsam-
pling each detector bin at 16 evenly spaced locations. The peak
attenuation value for both types of signals considered is that of
calcium. The attenuation of the background medium is the mean
attenuation of a breast composed of 50% adipose tissue and
50% glandular tissue, as determined in Ref. 19. The numerical
phantom diameter used is 14 cm, and the total photon fluence at
isocenter necessary to achieve the same dose as two-view mam-
mography for this diameter (≈2 × 108 mm−2) is obtained from
Ref. 20. We restrict the dose in our simulation to the correspond-
ing dose from mammography since breast CT is being investi-
gated as an alternative screening modality. In order to determine
the 2-D fluence necessary for our fan-beam simulations, we
assume a slice thickness of 1 mm. The total number of incident
photons in our fan-beam simulations is then N̄0 ¼ 4.17 × 1010.
For the range of parameters investigated here, 50 projection
views were sufficient to ensure that angular undersampling arti-
facts remained farther from the signal of interest than the typical
correlation length of the image noise. For this reason, the HO
optimization was insensitive to these artifacts. We, therefore,
used only 50 projection views in order to further minimize
the computation burden of the optimization. The total fluence
is divided equally among these 50 projection views. The
reconstruction algorithm used is the FBP algorithm with a
Hanning filter. The optimization of the Hanning filter width
is the system optimization task demonstrated in this work.

2.3 Model Observer Method

For each of the approaches to system optimization considered,
we employ the HO (Ref. 3) and its associated metric, the HO
signal-to-noise ratio (SNR). The HO quantifies the degree to
which an ideal observer with full knowledge of the relevant dis-
tributions can classify an image as belonging to one of two
classes (e.g., signal-absent or signal-present), using only linear
operations. Let us first consider the performance of the HO in
the line-integral data domain (i.e., the projection data after
applying the negative logarithm). Hereafter, bold font indicates
a random variable, and bars over variables indicate population
averages. Given a data vector g, the HO will classify an image
based on the outcome of a scalar value t, computed as

t ¼ wT
g g: (1)

If we takeΔḡ to be the mean difference between data belong-
ing to class 1 and data belonging to class 2, then the Hotelling
template, wg, is defined as

wg ¼ K−1
g Δḡ; (2)Fig. 1 The two signals simulated for the Rayleigh discrimination task.
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where Kg is the data covariance matrix, whose ði; jÞ’th compo-
nent is given by Covðgi; gjÞ. We take Kg to be diagonal, with
diagonal elements given by21

ðKgÞi;i ¼ ðeḡi þ 1Þ∕N̄0; (3)

where N̄0 is the average total number of incident photons in a
blank scan. Further, throughout this work, we consider the data
noise to be Gaussian. Since the matrix Kg is clearly signal
dependent, in all further discussions, we consider Kg to be
the average covariance matrix between the two signal classes.
Under the assumption of equal class prevalence, the resulting
HO is still the optimal linear observer, but may not be equivalent
to the ideal observer.3 We then have that the HO SNR in the data
domain (SNRg) is given by

SNR2
g ¼ wT

gΔḡ: (4)

In order to evaluate the optimal reconstruction filter width for
the task considered, we consider classification in the recon-
structed image domain rather than in the projection data domain.
In other words, the reconstructed image in vector form is given
by y ¼ Ag. The matrix A denotes the FBP reconstruction oper-
ator. Since this operator is linear and discrete-to-discrete,
its action is equivalent to left-multiplication with a matrix. We
then denote this matrix as A. The HO SNR in the image domain
(SNRy) is then given by

SNR2
y ¼ wT

yΔȳ; (5)

where Kywy ¼ Δȳ, Ky ¼ AKgAT , wy is the Hotelling template
in the image domain, andΔȳ is the mean difference in the recon-
structed image between the two hypotheses. Finally, we define
the HO efficiency as ε ¼ ðSNRy∕SNRgÞ2.

We consider ε a more useful parameter for algorithm optimi-
zation since for many CT applications, one would not operate at
the threshold for observer performance within which SNR is a
meaningful metric. Instead, ε is a useful metric for algorithm and
system evaluation that remains independent of the difficulty of
a given task, while still retaining the exactness of computation

inherent in HO performance calculation through the exact
covariance matrix Ky. A further motivation for selection of
the efficiency metric over more conventional metrics, such as
SNR or area under the ROC curve (AUC),22 is that we are inter-
ested in performing system component optimization rather than
full system evaluation. A single value of SNR or AUC carries
little information regarding how much one can hope to improve
performance by optimizing a single component. Rather, we
would prefer a metric like efficiency, which relates the quality
of the input to the system component to the quality of the com-
ponent’s output. Here, the component that we optimize is a
parameter of the reconstruction algorithm, so that the efficiency
values are a reflection of how well the reconstruction preserves
information relevant to the classification task.

In order to allow for direct manipulation of the image covari-
ance matrix Ky, we restrict the reconstruction to an ROI image.
As stated previously, 50 projection views are simulated. This
angular sampling is sufficient for accurate reconstruction in
the immediate vicinity of the signal; however, undersampling
artifacts are visible elsewhere in the full image. We, therefore,
restrict the ROI size based on the radius from the signal at which
these artifacts begin to appear. Specifically, we consider the sig-
nal energy in the reconstructed image within an annulus of
radius r and width 2Δr, given by

EyðrÞ ¼
Z

2π

0

dθ

Z
rþΔr

r−Δr
½Δȳðr 0; θÞ�2r 0 dr 0: (6)

The integrand of Eq. (6) is shown in Fig. 2(a) for the micro-
calcification signal and a single Hanning filter width. In order to
select the ROI size, we approximate the above integral at evenly
spaced values of r and set the ROI radius to the value of r that
minimizes EyðrÞ. An example of the function EyðrÞ is shown in
Fig. 2(b), corresponding to the image shown in Fig. 2(a).

For the ROI sizes investigated here, ranging from 4 × 4 to
40 × 40, the reconstruction matrix A ranges in size from
16 × 4100 to 1600 × 4100. Meanwhile, the covariance matrix
Ky ranges from 16 × 16 to 1600 × 1600. The method proposed
remains numerically feasible for ROI sizes up to roughly
100 × 100. Hereafter, we refer to this approach as ROI-HO.

(a) (b)

Fig. 2 (a) The integrand of Eq. (6) for the microcalcification detection task. (b) The reconstructed micro-
calcification signal energy as a function of radius from the signal, Ey ðr Þ. In this case, the resulting region
of interest (ROI) would have dimension of 14 × 14 pixels. The results shown here correspond to 50
projection views.
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2.4 Approximation Strategies

One can show (see, for example, Ref. 3, Sec. 7.4.4) that if one
assumes that the matrixKy is circulant, the equationKywy ¼ Δȳ
can readily be solved by application of the DFT operator. The
assumption that Ky is Toeplitz corresponds to an assumption of
noise stationarity, and the more restrictive assumption of a cir-
culant Ky further implies cyclic correlations at the boundaries of
the image. In order to test the validity of these assumptions, and,
hence, of the DFT approach in determining HO performance for
the present task, we extract a single row of the matrix Ky, cor-
responding to a pixel near the center of the signal location, and
base a circulant approximation of Ky on this single row. We then
repeat the optimization of filter width for microcalcification
detection and Rayleigh discrimination under this approximation.

An alternative approach suggested by Gallas and Barrett3,5 is
the use of efficient LG channels for estimation of HO perfor-
mance. These channels are discretizations of circularly symmet-
ric basis functions, formed as the product of an exponential
function and the Laguerre polynomials. They form an orthonor-
mal basis for all circularly symmetric square-integrable func-
tions in R2, and hence, they are an appropriate choice of
channels for the task of detecting a circularly symmetric micro-
calcification. We, therefore, also apply 50 LG channels to the
optimization of filter width for the microcalcification detection
task. Rationale for this number of channels, as well as for the
scale factor that determines the width of the Gaussian envelope
of the LG channels is given in Sec. 3.

2.5 Estimation Strategies

Yet another approach to the estimation of HO metrics is to train
and then test a linear classifier on samples of noisy images from
each of the classes being considered.23,24 Using this approach,
a set of training images from each class is used to compute
a sample covariance matrix, along with sample mean images
corresponding to each class. These are used to compute a
template estimate, which is then applied to a series of testing
images. The outcomes of the test statistic for each testing

image are then recorded and a Mann-Whitney U statistic is
computed on the test statistic values, yielding an estimate of
HO AUC,22 which can be related to HO SNR through the
equation

SNR ¼ 2 erf−1ð2AUC − 1Þ; (7)

where erf−1 denotes the inverse error function.25

For this approach, the authors of Ref. 5 suggest that, as a rule
of thumb, 10 to 100 images are required for each row of the
covariance matrix. For the case of a 30 × 30 ROI, this corre-
sponds to anywhere between ∼9000 to 90,000 images. While
this is infeasible for a parameter optimization study in general,
we demonstrate the outcome of this approach for image training
and testing sets ranging from 500 to 3000 images in order to
demonstrate the general trend of results obtained using this
method. Due to the large number of independent noisy data
sets required, determination of HO performance for each
reconstruction filter width is performed using the same sets of
noisy data. Two approaches, commonly termed the hold-out
method and resubstitution are applied. In the first case, the train-
ing and testing phase use separate, independent sets of noisy
data. In the second, the HO is tested on the same images with
which it was trained. These two approaches yield estimates with
negative and positive biases, respectively.23,24

A more feasible approach based on sample images can be
taken when prior knowledge of the mean images under each
hypothesis is exploited in order to reduce the bias and variance
of the estimator of HO performance, thereby reducing the
necessary number of sample images. The construction of
an unbiased estimator of HO SNR in this case is detailed in
Ref. 9. We demonstrate the application of this approach
using 300 and 700 noisy image samples (far fewer than the
number of samples required for training and testing) and com-
pare to the previous methods. Two scenarios are considered:
(1) the same 300 or 700 noisy data realizations are used to
reconstruct noisy images at each filter width considered and
(2) a separate set of 300 or 700 data realizations is used to create
noisy images at each filter width.

(a) (b)

Fig. 3 Efficiency values are shown for various views and Hanning window widths (relative to the Nyquist
frequency on the detector) for both the detection task (a) and the Rayleigh task (b). The Nyquist fre-
quency in this case is νN ¼ ð1∕2ΔuÞ ≈ 1.3 mm−1. While the efficiency values for moderate filtering to
no filtering were seen to have a dependence on ROI size, the same trend pictured here was seen
for ROI sizes up to ∼1.5 cm diameter.
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3 Results
The results of applying the ROI-HO for microcalcification
detection and Rayleigh discrimination are shown in Fig. 3
for a range of Hanning filter widths. The ROI-HO is noticeably
sensitive to the reconstruction filter width, showing a clear maxi-
mum in performance for Hanning windows in the range of
0.75νN to 0.825νN for each task. However, this result should
not be interpreted as giving a universally optimal filter width,
but rather as a demonstration of the sensitivity of HO efficiency
to relevant reconstruction algorithm parameters.

Next, we consider the use of channels for estimating HO per-
formance in microcalcification detection. As with the ROI-HO,
we restrict the CHO to an ROI, however, due to the Gaussian
envelope that modulates the LG channels, this only has an effect
for the smallest ROIs used. For the CHO using LG channels,
results correspond solely to the microcalcification task, since the

Rayleigh task involves a signal that is not radially symmetric.
Figures 4 and 5 demonstrate the dependence of CHO efficiency
on the number of channels and the scale factor that modulates
the width of the Gaussian envelope of the LG functions. For
the majority of filter widths considered, the CHO efficiency esti-
mate is completely stable above ∼50 channels, while the opti-
mum scale factor of the channels (full width at half maximum of
the Gaussian) is roughly seven times the width of the microcal-
cification diameter. The remainder of the results presented cor-
responds to these CHO parameters. In our case, however, the
dependence of the CHO performance estimates upon each of
these parameters is weak, so that fewer channels or a slightly
different scale factor could likely produce comparable results.

Figure 6 compares three approaches to optimization of the
reconstruction filter width parameter, namely the ROI-HO
approach proposed in this work, the CHO with 50 LG channels,

(a) (b)

Fig. 4 Dependency of channelized Hotelling observer (CHO) efficiency on number of channels for
a range of reconstruction filter widths from 0.125 to 0.5 (a), and 1.0 to the (unapodized) ramp filter (b),
in units of the detector Nyquist frequency. For most filter widths, the CHO efficiency stabilizes with
50 channels; however, the performance estimates for this task and system are not sensitive to the
number of channels used, in general. Subsequent results shown are for 50 channels.

(a) (b)

Fig. 5 CHO efficiency using 50 channels and 50 projection views for a range of Gaussian envelope
widths in the Laguerre-Gauss channels. The x axis is normalized to the 80 μm microcalcification diam-
eter. A scale factor of roughly seven times the microcalcification width was determined to be optimal.
As in Fig. 4, (a) and (b) correspond to narrower and wider filters, respectively.
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(a) (b)

Fig. 6 A comparison of optimization of reconstruction filter width for 50 projection views. Shown are
results obtained with the proposed ROI-HO, an approximate HO computed using the discrete
Fourier transform (labeled FHO), and the CHO. The curves in (a) correspond to the detection task,
while (b) corresponds to the Rayleigh task.

(a) (b)

Fig. 7 Results of estimating the HO efficiency from sample images using the method proposed in Ref. 9
with 300 and 700 noisy sample images. (a) An independent set of images is used for each filter width.
(b) The same noisy data realizations are used for each filter width. Error bars corresponding to two
standard deviations of the estimates for 700 sample images are shown in Fig. 8.

(a) (b)

Fig. 8 Results from Fig 7 for 700 noisy sample images are shown with error bars corresponding to two
standard deviations derived from jackknifing. The error bars illustrate statistical variation, but do not
account for inherent estimator bias, which can be seen by comparing with the analytically computed
ROI-HO curves. It is possible that other sources of uncertainty not investigated here, aside from statistical
variations, could influence these results. As in Fig. 7, independent sets of images were used in (a), while
the same set of images was used for each point in (b).
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and the DFT-domain approach (labeled FHO). Since each of
the methods utilizes the same ROI images, the ROI-HO that
computes the exact HO performance should be taken as the
ground truth for the sake of evaluating the alternative
approaches. Clearly, for microcalcification detection, the CHO
is an excellent approximation of the true HO. Further, the CHO
allows for greater computation efficiency, since, in general,
the ROIs used contained >50 pixels. However, the efficiency of
this CHO comes with a loss of generality, as it is not applicable
to general signals lacking radial symmetry, as in the Rayleigh
discrimination task.

Meanwhile, the DFT-domain HO was capable of reproduc-
ing the general trend of the HO results; however, the quantita-
tive reliability of this method varied widely depending on the

specific parameter setting used. For example, while wider filter
widths allowed for accurate computation of detection task per-
formance with the DFT-domain approach, the estimates of
Rayleigh task performance using this method could vary from
the HO by as much as 40%, as seen in the right side of Fig. 6.
While this may not impact the optimization of filter width
substantially, if absolute HO performance with a fixed filter
width of, say, 0.625νN were of interest, the DFT-domain HO
could be misleading.

Figure 7 demonstrates the use of noisy sample images to
estimate HO efficiency when the mean image under each
hypothesis is known. In our case, since we consider only linear
image reconstruction algorithms, the mean image is produced
simply by reconstructing an image without noise. The left and

(a) (b)

Fig. 9 (a) HO SNR2 estimates from training and testing performed using the hold-out approach for 500,
1000, and 1500 training images, with an equal number of testing images. The prevalence of images from
each class is also equal. (b) HO SNR2 estimates resulting from training and testing performed using
resubstitution for 1000, 2000, and 3000 total images. The bias and variance of the estimates is
worst for narrow filter widths, where the size of the ROI used is largest. Variance of the estimates is
illustrated in Fig. 10 through 95% confidence intervals derived from bootstraping.

(a) (b)

Fig. 10 Shown here are the results from Fig. 9 for the largest number of sample images with error bars
denoting 95% confidence intervals derived from 1000 bootstrap samples. These errors derive from the
variance of the training and testing estimator, while inherent bias in the estimator contributes additional
error, especially for small filter widths where the number of ROI pixels is large. As in Fig. 8, the error bars
here only convey statistical uncertainties, and bias can be inferred by comparison with the analytically
computed ROI-HO curves. The results in (a) correspond to the hold-out approach, while the results in (b)
correspond to resubstitution.
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right plots correspond, respectively, to the use of independent
noisy data sets for each filter width and the reuse of the
same simulated data for each filter width. The variability
seen in the left-hand figure provides intuition as to the variance
of the efficiency estimates, while the figure on the right illus-
trates that, although subject to the same variability, reusing
the same data realizations correlates the estimates for different
filter widths, potentially allowing for more reliable rank order-
ing of parameter settings. In other words, the estimated curves
on the right could undergo vertical translation due to the vari-
ance of the estimator, but are more likely to preserve their shape
than the curves shown on the left.

Figure 9 illustrates the use of linear classifier training and
testing in order to estimate HO performance. In this case,
prior knowledge of the mean images is not exploited, and sam-
ple estimates of the images are computed instead. The left-hand
plot corresponds to the hold-out approach, where independent
image sets are used for the training and testing phases, while the
right-hand plot is generated using resubstitution. As seen in the
figure, these two approaches introduce negative and positive
biases in the estimates, respectively. Note that thousands of
images are required in order to construct quantitatively mean-
ingful estimates. However, the general trend of the results can
be seen for comparatively few samples. This suggests that for
certain tasks, such as rank-ordering of only a few options for
algorithm implementation, the training and testing approach
could be useful if one lacks an adequate model of the image
covariance or class means.

4 Conclusions
We have demonstrated that for classification tasks involving
small signals in CT, the HO performance computed within
an ROI constitutes an efficient and objectively meaningful
approach to reconstruction algorithm and system optimization.
Specifically, we have employed the HO to optimize
reconstruction algorithm filter width for two tasks: microcalci-
fication detection in dedicated breast CT and Rayleigh
discrimination.

We performed a comparison of this approach with several
alternatives for objective assessment. In broad terms, these alter-
natives fall into two categories: methods based on computation
of statistical estimates and methods based on approximations
regarding the signal and/or image noise. While our proposed
methodology assumes that information beyond a small ROI
is irrelevant to the classification task, the CHO imposes assump-
tions of rotational symmetry on the signal and Hotelling tem-
plate, and the Fourier-domain approach assumes stationary
noise. Strictly speaking, none of these assumptions are valid
in CT for the tasks considered here; however, each approach
possesses strengths and weaknesses. The Fourier-domain HO
is the most computationally efficient method for large ROIs,
but is less accurate than the ROI-HO or CHO approach.
Meanwhile, the CHO with LG channels is limited to cases
when the signal of interest and Hotelling template possess radial
symmetry.

The statistical estimation approaches investigated possess an
attractive degree of flexibility, in that they do not rely on any
assumptions regarding the image covariance matrix or, in the
case of the training/testing approach, the signals themselves.
However, this flexibility comes at the expense of computational
efficiency, as this family of approaches requires excessively
large numbers of noisy samples, making any extensive system or

algorithm optimization prohibitively time-consuming. Finally,
while we have illustrated some of the trade-offs, benefits, and
shortcomings of several methods for objective assessment in
CT, ultimately future work will be necessary to ensure that
the proposed methodology yields metrics that correlate with
improved performance of humans for the given tasks.
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