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Abstract

Purpose: We perform anatomical landmarking for craniomaxillofacial (CMF) bones without
explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network archi-
tecture, called relational reasoning network (RRN), to accurately learn the local and the global
relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones.

Approach: The proposed RRN works in an end-to-end manner, utilizing learned relations of the
landmarks based on dense-block units. For a given few landmarks as input, RRN treats the land-
marking process similar to a data imputation problem where predicted landmarks are considered
missing.

Results: We applied RRN to cone-beam computed tomography scans obtained from 250
patients. With a fourfold cross-validation technique, we obtained an average root mean squared
error of <2 mm per landmark. Our proposed RRN has revealed unique relationships among
the landmarks that help us in inferring informativeness of the landmark points. The proposed
system identifies the missing landmark locations accurately even when severe pathology or
deformations are present in the bones.

Conclusions: Accurately identifying anatomical landmarks is a crucial step in deformation
analysis and surgical planning for CMF surgeries. Achieving this goal without the need for
explicit bone segmentation addresses a major limitation of segmentation-based approaches,
where segmentation failure (as often is the case in bones with severe pathology or deformation)
could easily lead to incorrect landmarking. To the best of our knowledge, this is the first-of-its-
kind algorithm finding anatomical relations of the objects using deep learning.
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1 Introduction

In the United States alone, >17 million patients suffer from developmental deformities of the
jaw, face, and skull region due to trauma, deformities from tumor ablation, or congenital birth
defects.1 The number of patients who require orthodontic treatment is far beyond this number.
An accurate anatomical landmarking on radiological scans (mostly it is volumetric computed
tomography-CT-scans) is a crucial step in the deformation analysis and surgical planning of the
craniomaxillofacial (CMF) bones. This, if done correctly and efficiently, would afford precise
image-based surgical planning for patients. This is even more significant since such deformities
are known to vary from patient to patient and hence need careful delineation.

As mentioned briefly, landmarking can be used for a variety of clinical applications including
dental implant planning, orthodontic treatment planning, and assessment of temporomandibular
joint disorders. In dental implant planning, for instance, accurate landmarking is more important
than segmentation as it allows clinicians to determine the appropriate location for the implant
based on the location of nearby anatomical structures, such as the maxillary and mandibular
sinuses and the mental foramen. Inaccurate landmarking can lead to incorrect placement of the
implant. In orthodontic treatment planning, accurate landmarking can help the clinician to assess
the overall shape and size of the teeth and jaw, as well as the location and orientation of specific
teeth. This can be useful for developing a treatment plan that takes into account the patient’s
specific anatomy. There is a significant need for developing automated landmarking procedure
because manual landmarking in volumetric CT scans is a tedious process and prone to inter-
operator variability. There are considerable efforts toward developing a fully-automated and
accurate software for anatomical landmarking based on bone segmentation from CT scans.2–4

Despite this clinical need, very little progress has been made especially for bones with a high
level of congenital and developmental deformations (∼5% of the CMF deformities).

Deep learning-based approaches have become the standard choice for pixel-wise medical-
image segmentation applications due to their high efficacy.2,5,6 However, it is difficult to general-
ize segmentation especially when there is a high degree of deformation or pathology,7 which is
the case for treating CMF conditions. Figure 1 demonstrates two examples of challenging
mandible cases where the patients have surgical intervention (left) and high variability in the
bone (right), causing segmentation algorithms to fail (leakage or under-segmentation). Current
state-of-the-art landmarking algorithms are mostly dependent on bone segmentation results,

Fig. 1 CT segmentation results rendered in fuchsia which are scored as “unacceptable segmen-
tation” at Ref. 5. (a) Patient with surgical intervention; (b) patient with high variability in the bone.
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since locating landmarks could become easier once their parent anatomy (the bones they belong
to) is precisely known.7 Figure 2 demonstrates mandible and maxilla/nasal bone anatomies
along with the landmarks associated with those bones. If the underlying segmentation is
poor, it is highly likely to have a large landmark localization error, directly affecting the quan-
tification process (which could include severity measurement, surgical modeling, and treatment
planning).

We hypothesize that if an explicit segmentation can be avoided for extremely challenging
cases, landmark localization errors can be minimized. This will also lead to a widespread use of
landmarking procedure in surgical planning and precision medicine. Since CMF bones are found
in the same anatomical space even when there is deformity or pathology, the overall global rela-
tionship of the anatomical landmarks should still be preserved despite severe localized changes.
Based on this rationale, we claim that utilizing local and global relations of the landmarks can
help automatic landmarking without the extreme need for segmentation.

1.1 Background and Related Work

1.1.1 Landmarking

Anatomical landmark localization approaches can broadly be categorized into three main groups:
registration-based (atlas-based),8 knowledge-based,9,10 and learning-based.7,11 Integration of
shape and appearance increases the accuracy of the registration-based approaches. However,
image registration is still an illposed problem, and when there are variations such as age
(pediatrics versus adults), missing teeth (very common in certain age groups), missing bone or
bone parts, severe pathology (congenital or trauma), and imaging artifacts, the performance
can be quite poor.3,12,13 The same concerns apply to segmentation-based approaches too.

Gupta et al.10 developed a knowledge-based algorithm to identify 20 anatomical landmarks
on cone-beam CT (CBCT) scans. Despite their promising results, a seed must be selected by
using 3D template registration on the inferior–anterior region where fractures are most com-
monly found. An error in the seed localization may easily lead to a suboptimal outcome in such
approaches. Zhang et al.14 developed a regression forest-based landmark detector to localize
CMF landmarks on the CBCT scans. To address the spatial coherence of landmarks, image
segmentation was used as a helper. The authors obtained a mean digitization error <2 mm for
15 CMF landmarks. The following year, to reduce the mean digitization error further, Zhang
et al.2 proposed a deep learning-based joint CMF bone segmentation and landmarking strategy.
A context guided multitask fully convolutional neural (FCN) network was employed along with
3D displacement maps to perceive the spatial locations of the landmarks. A segmentation accu-
racy of 93.27� 0.97% and a mean digitization error of <1.5 mm for identifying 15 CMF land-
marks was achieved. Further, a joint segmentation and landmark digitization framework was
proposed, where two stages of FCN were cascaded to perform bone segmentation and landmark
localization.7 The major disadvantage of this (one of the state-of-the-arts) method was the

Fig. 2 Mandible and maxilla/nasal bone anatomies. (a) Mandibular landmarks: menton ðMeÞ, con-
dylar left ðCdLÞ, condylar right ðCdRÞ, coronoid left ðCorLÞ, coronoid right ðCorRÞ, infradentale (Id),
B point ðBÞ, pogonion (Pg), and gnathion (Gn); (b) maxillary landmarks: ANS, PNS, A-point (A),
and prostion (Pr), and nasal bones landmark: nasion (Na).
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memory constraint introduced by the redundant information in the 3D displacement maps such
that only a limited number of the landmarks can be learned using this approach. Since the
proposed strategy is based on joint segmentation and landmarking, it naturally shares other
disadvantages of the segmentation-based methods: frequent failures for very challenging cases.
The landmark localization problem was solved using an object detection method, where region
proposals were used to identify landmark locations and a coarse-to-fine method was used to
achieve landmark localization.15 It must be noted that the method does not use the relationships
between the anatomical landmarks in the CMF bones.

Recently, we integrated the manifold information (geodesic) in a deep learning architecture to
improve robustness of the segmentation-based strategies for landmarking,5 and obtained prom-
ising results, significantly better than the state-of-the-art methods. We also noticed that there is
still room to improve landmarking process, especially when pathology or bone deformation is
severe. To fill this research gap, in this study, we take a radically different approach by learning
landmark relationships without segmenting bones. We hypothesize that the inherent relation of
the landmarks in the CMF region can be learned by a relational reasoning algorithm based on
deep learning. Although our proposed algorithm stems from this unique need of anatomical
landmarking, the core idea of this work is inspired by the recent studies in artificial intelligence
(AI), particularly in robotics and physical interactions of human/robots with their environments,
as described in the following with further details.

1.1.2 Relational reasoning

The ability to learn relationship and infer reasons between entities and their properties is a central
component of the AI field, however, it has been proven to be very difficult to learn through neural
networks until recently.16,17 In 2009, Scarselli et al.18 introduced a graph neural network (GNN)
by extending the neural network models to process graph data which encoded relationship infor-
mation of the objects under investigation. Li et al.19 proposed a machine learning model based on
gated recurrent units (GRUs) to learn the distributed vector representations from heap graphs.
Despite this increase in use and promising nature of the GNN architectures,20 there is a limited
understanding of their representational properties, which is often a necessity in medical AI appli-
cations for their adoption in clinics.

Recently, DeepMind team(s) published four important studies on relational reasoning and
explored how objects in complex systems can interact with each other.16,21–23 Battaglia
et al.21 introduced interaction networks to reason about the objects and the relations in the com-
plex environments. The authors proposed a simple, yet accurate system to reason about n-body
problems, rigid-body collision, and nonrigid dynamics. The proposed system can predict the
dynamics in the next step with an order of magnitude lower error and higher accuracy.
Raposo et al.16 introduced a relational network (RN) to learn the object relations from a scene
description, hypothesizing that a typical scene contains salient objects which are typically
related to each other by their underlying causes and semantics. Following this study, Santoro
et al.22 presented another relational reasoning architecture for tasks such as visual question-
answering, text-based question-answering, and dynamic physical systems where the proposed
model obtained most answers correctly. Lastly, Battaglia et al.23 studied the relational induc-
tive biases to learn the relations of the entities and presented the graph networks. These four
studies show promising approaches to understanding the challenge of relational reasoning. To
the best of our knowledge, such advanced reasoning algorithms have neither been developed
for nor applied to the medical imaging applications yet. It must be noted that medical AI appli-
cations require fundamentally different reasoning paradigms than conventional computer
vision and robotics fields have24 (e.g., salient objects definitions). To address this gap, in this
study we focus on the anatomy–anatomy and anatomy–pathology relationships in an implicit
manner.

1.2 Summary of Our Contributions

• The proposed method is the first in the literature to successfully apply spatial reasoning of
the anatomical landmarks for accurate and robust landmarking using deep learning.
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• Many anatomical landmarking methods, including our previous works,5,10,25 use bone seg-
mentation as a guidance for finding the location of the landmarks on the surface of a bone.
The major limitation imposed by such an approach stems from the fact that it is not always
possible to have an accurate segmentation. Our proposed RRN system addresses this prob-
lem by enabling accurate prediction of anatomical landmarks without employing explicit
object segmentation.

• Since efficiency is a significant barrier for many medical AI applications, we explore new
deep learning architecture designs for a better efficacy in the system performance. For this
purpose, we utilize variational dropout26 and targeted dropout27 in our implementation for
faster and more robust convergence of the landmarking procedure (∼5 times faster than
baselines).

• Our data set includes highly variable bone deformities along with other challenges of the
CBCT scans with a larger number of scans (as compared to baselines). Hence, the pro-
posed algorithm is considered robust and identifies anatomical landmarks accurately under
varying conditions (Table 2). In our experiments, we find landmarks pertaining to man-
dible, maxilla, and nasal bones (Fig. 2).

The rest of this paper is organized as follows: we introduce our novel methodology and its details
in Sec. 2. In Sec. 3, we present experiments and results and then we conclude the paper by
discussing strengths and limitations of our study in Sec. 4.

2 Methods

2.1 Overview and Preliminaries

The most frequently deformed or injured CMF bone is the lower jawbone, or mandible, which is
the only mobile CMF bone.28 In our previous study,5 we developed a framework to segment
mandible from CBCT scans and identify the mandibular landmarks in a fully-automated way.
Herein, we focus on anatomical landmarking without the need for explicit segmentation, and
extend the learned landmarks into other bones (maxilla and nasal). Overall, we seek answers to
the following important questions:

• Q1: Can we automatically identify all anatomical landmarks of a bone if some of the land-
marks are missing? If so, what is the least effort for performing this procedure? How many
landmarks are necessary, and which landmarks are more informative to perform this whole
procedure?

• Q2: Can we identify anatomical landmarks of nasal and maxilla bones if we only know
locations of a few landmarks in the mandible and the rest is missing? Do relations of
landmarks hold true even when they belong to different anatomical structures (manifold)?

In this study, we explore inherent relations among anatomical landmarks at the local and
global levels in order to explore availability of structured data samples helping anatomical land-
mark localization. Inferred from the morphological integration of the CMF bones, we claim that
landmarks of the same bone should carry common properties of the bone so that one landmark
should give clues about the positions of the other landmarks with respect to a common reference.
This reference is often chosen as segmentation of the bone to enhance information flow, but in
our study, we leverage this reference point from the whole segmented bone into a reference
landmark point. Throughout the text, we use the following definitions:
Definition 1: A landmark is an anatomically distinct point, helping clinicians to make reliable
measurements related to a condition, diagnosis, modeling a surgical procedure, or creating a
treatment plan.

Definition 2: A relation is defined as a geometric property between landmarks. Relations might
include the following geometric features: size, distance, shape, and other implicit structural
information. In this study, we focus on pairwise relations between landmarks as a starting point.
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Definition 3: A reason is defined as an inference about relationships of the landmarks. For in-
stance, compared to closely localized landmarks (if given as input), a few of sparsely localized
landmarks can help predicting landmarks better. The reason is that sparsely localized input land-
mark configuration captures the anatomy of a region of interest and infers better global relation-
ships of the landmarks.

Once relationship among landmarks is learned effectively, we can use this relationship to iden-
tify the missing landmarks on the same or different CMF bones without the need for a precise
segmentation. Toward this goal, we propose to learn a relationship between the anatomical land-
marks in two stages (illustrated in Fig. 3) based on relational units (RUs). The first stage is shown
as the function g, which learns the pairwise (local) relations. The second stage is shown as a func-
tion f, which combines pairwise relations (g) of the first stage into a global relation based on RUs.

Figure 4 shows an example of pairwise relations for different pairs of mandible landmarks.
There are five sparsely localized landmarks. The basis/reference is chosen as menton (Me), in
this example, hence, four pairwise relations are illustrated from Figs. 4(a)–4(d). Figure 4(e) illus-
trates combined relations Figs. 4(a)–4(d) of the landmark menton (reference) with respect to
other four landmarks on the mandible.

2.2 Relational Reasoning Architecture

Anatomical landmarking has been an active research topic for several years in the medical im-
aging field. However, how to build a reliable/universal relationship between landmarks for a
given clinical problem is an open problem. While anatomical similarities at the local and global
levels could serve toward viable solutions, thus far, features that can represent anatomical land-
marks from the medical images have not achieved the desired efficacy and interpretation.2,29–31

We propose a new framework called relational reasoning network (RRN) to learn local and
global relations of anatomical landmarks (oi) through its units called RU (relationship unit). The
proposed RRN architecture and its RU subarchitectures are summarized in Fig. 5. The relation
between two landmarks is encoded via major spatial properties of the landmarks. We explore two
architectures as RU: first one is a simple multilayer perceptron (MLP) (Fig. 5-bottom left) (sim-
ilar to Ref. 16), the other one is more advanced architecture composed of dense-blocks (DBs)
(Fig. 5 bottom middle). Both architectures are relatively simple compared to very dense complex
deep-learning architectures. The rationale is simple when there is a less data (i.e., pairwise rela-
tion), it is natural to choose fully connected layers to keep the full spectrum of the data at hand.

Fig. 3 Overview of the proposed RRN architecture: for a few given input landmarks, RRN utilizes
both pairwise and combination of all pairwise relations to predict the remaining landmarks.

Fig. 4 For the input domain Linput ¼ fMe;CdL;CorL;CdR;CorRg, (a)–(d) pairwise relations of
landmark menton (Me): (a) menton-condylar left, (b) menton-coronoid left, (c) menton-condylar
right, (d) menton-coronoid right, and (e) combined relations of menton.
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Similarly, when more pairwise data are available for exploration of the more complex relation,
it is natural to move into convolutional operation from fully connected layers to keep dominant
information while reducing the redundant information and providing a computational feasibility.
Our objective is to locate all anatomical landmarks by inputting a few landmarks to RRN, which
provides reasoning inferred from the learned relationships of landmarks and locate all other
landmarks automatically.

In the pairwise learning/reasoning stage (stage 1), five-landmarks-based system is assumed
as an example network (other configurations are possible too, see experiments and results
section). Sparsely spaced landmarks [Fig. 4(e)] and their pairwise relationships are learned in
this stage (gθ). These pairwise relationship(s) are later combined in a separate DB setting in (fϕ).
It should be noted that this combination is employed through a joint loss function and an RU to
infer an average relation information. In other words, for each individual landmark, the com-
bined relationship vector is assigned a secondary learning function through a single RU.

The RU is the core component of the RRN architecture. Each RU is designed in an end-to-
end fashion; hence, they are differentiable. For n landmarks in the input domain, the proposed
RRN architecture learns n × ðn − 1Þ pairwise and n combined relations (global) with a total of
n2 RUs. Therefore, depending on the number of input domain landmarks, RRN can be either

Fig. 5 (a) RRN architecture for five-input landmarks RRNðLinputÞ: Linput ¼ fMe;CorL;CorR;
CdL;CdRg, L̂ ¼ fGn;Pg;B; Id;Ans;A;Pr;Pns;Nag and μ is the average operator. (b) Content
of the pairwise reasoning block, RU of the RRN. (c) RU composed of two DBs, convolution and
concatenation (C) units. (d) DB architecture composed of four layers and concatenation layers.
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shallow or dense. Let Linput and L̂ indicate vectors of input and output anatomical landmarks,
respectively. Then, two stages of the RRN of the input domain landmarks Linput can be defined as

EQ-TARGET;temp:intralink-;e001;116;708Gθi ¼
1

ðn − 1Þ
Xn

j¼1;j≠i
ðgθðoi; ojÞÞ; RRNðLinput; θ;ϕÞ ¼

1

n

Xn
i¼1

fϕiðGθiÞ; (1)

where Gθi is the mean pairwise relation vector of the landmark oi to every other landmark
ojðj≠iÞ ∈ Linput. The functions fϕ and gθ are the functions with the free parameters ϕ and θ,
and fϕ indicates a global relation (in other words, combined pairwise relations) of landmarks.

2.3 Pairwise Relation (gθ)

For a given a few input landmarks (Linput), our objective is to predict the 3D spatial locations of

the target domain landmarks (∈ L̂) by using the 3D spatial locations of the input domain land-
marks (∈ Linput). With respect to relative locations of the input domain landmarks, we reason
about the locations of the target domain landmarks. The RU function gθðoi; ojÞ represents the
relation of two input domain landmarks oi and oj where i ≠ j [Figs. 4(a)–4(d)]. The output of
gθðoi; ojÞ describes relative spatial context of two landmarks, defined for each pair of input
domain landmarks (pairwise relation at Fig. 5). According to each input domain landmark oi,
the structure of the manifold is captured through mean of all pairwise relations [represented as
Gθi at Eq. (1)].

2.4 Global Relation (f ϕ)

The mean pairwise relation Gθi is calculated with respect to each input domain landmark oi, and
it is given as input to the second stage where global (combined) relation fϕi is learned. fϕi is an
RU function and the output of fϕi is the predicted 3D coordinates of the target domain landmarks

(∈ L̂). In other words, each input domain landmark oi learns and predicts the target domain
landmarks by the RU function fϕi. The terminal prediction of the target domain landmarks
is the average of individual predictions of each input domain landmark, represented by
RRNðLinput; θ;ϕÞ at Eq. (1). There are totally n2 RUs in the architecture. The number of trainable
parameters used for each experimental configuration are directly proportional with n2 (Fig. 6).

Fig. 6 Five experimental landmark configurations for experimental explorations. Linput: input land-
marks and L̂: output landmarks, and #RUs indicate the number of relational units. Landmarks are
visualized using reference standard bones for illustrative purposes; in our implementation there is
no explicit segmentation exist.
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Since all pairwise relations are leveraged under Gθi and fϕ with averaging operation, we can
conclude that RRN is invariant to the order of input landmarks (i.e., permutation-invariant).

2.5 Loss Function

The natural choice for the loss function is the mean squared error (MSE) because it is a differ-
entiable distance metric measuring how well landmarks are localized/matched, and it allows
output of the proposed network to be real-valued functions of the input landmarks. For n input
landmarks and m target landmarks, MSE simply penalizes large distances between the land-
marks as follows:

EQ-TARGET;temp:intralink-;e002;116;614LossðWΘ; ðθ;ϕÞÞ ¼
1

n �m
Xn
i¼1

�Xm
k¼1

kðfϕðGθiÞÞk − okk2
�
; (2)

where ok is the target domain landmarks (ok ∈ L̂).

2.6 Variational Dropout

Dropout is an important regularizer employed to prevent overfitting at a cost of 2 to 3 times (on
average) increase in training time.32 For efficiency reasons, speeding up dropout is critical and
it can be achieved by a variational Bayesian inference on the model parameters.26 Given a train-
ing input dataset X ¼ fx1; x2; ::; xNg and the corresponding output dataset Y ¼ fy1; y2; ::; yNg,
the goal in RRN is to learn the parameters ω such that y ¼ FωðxÞ. In the Bayesian approach,
given the input and output datasets X; Y, we seek for the posterior distribution pðωjX; YÞ, by
which we can predict output y� for a new input point x� by solving the integral33

EQ-TARGET;temp:intralink-;e003;116;430pðy�jx�; X; YÞ ¼
Z

pðy�jX�;ωÞpðωjX; YÞdω: (3)

In practice, this computation involves intractable integrals.26 To obtain the posterior distri-
butions, a Gaussian prior distributionNð0; IÞ is placed over the network weights33 which leads to
a much faster convergence.26

2.7 Targeted Dropout

Alternatively, we also propose to use targeted dropout for better convergence.27 Given a neural
network parameterized by Θ, the goal is to find the optimal parameters WΘð:Þ such that the loss
LossðWΘÞ is minimized. For efficiency and generalization reasons, jWΘj ≤ k, only k weights of
highest magnitude in the network are employed. In this regard, deterministic approach is to drop
the lowest jWΘj − kweights. In targeted dropout, using a target rate γ and a drop out rate α, first a
target set is generated with the lowest weights with the target rate γ. Next, weights are dropped
out in a stochastic manner from the target set at a certain dropout rate α.

2.8 Landmark Features

Pairwise relations are learned through RU functions. Each RU accepts input features to be mod-
eled as a pairwise relation. It is desirable to have such features characterizing landmarks and
interactions with other landmarks. These input features can either be learned throughout a more
complicated network design, or through feature engineering. In this study, for simplicity, we
define a set of simple yet explainable geometric features. Since RUs model relations between
two landmarks (oA and oB), we use 3D coordinates of these landmarks (both in pixel and spheri-
cal space), their relative positions with respect to a well-defined landmark point (reference), and
approximate size of the mandible. The mandible size is estimated as the distance between the
maximum and the minimum coordinates of the input domain mandibular landmarks (Table 1).
Finally, a 19-dimensional feature vector is considered to be an input to local relationship function
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g. For a well-defined reference landmark, we used menton (Me) as the origin of the mandible
region.

3 Experiments and Results

3.1 Data Description

Anonymized CBCT scans of 250 patients (142 female and 108 male, mean age = 23.6 years,
standard deviation = 9.34 years) were included in our analysis through an IRB-approved
protocol. The data set includes both pediatric and adult patients with craniofacial congenital
birth defects, developmental growth anomalies, trauma to the CMF, and surgical interventions.
CB MercuRay CBCT system (Hitachi Medical Corporation, Tokyo, Japan) was used to scan
the data at 10 mA and 100 Kvp. The radiation dosage for each scan was around 300 mSv.
To handle the computational cost, each patient’s scan was resampled from 512 × 512 × 512

to 256 × 256 × 512. In-plane resolution of the scans was noted (in mm) either as 0.754 × 0.754 ×
0.377 or 0.584 × 0.584 × 0.292. In addition, following image-based variations exist in the data
set: aliasing artifacts due to braces, metal alloy surgical implants (screws and plates), dental
fillings, and missing bones or teeth.5 Briefly, 3% of the whole data set was including CBCT
scans with extreme deformation and artifacts, while 11% of the data set was including cases
with large-scale tissue or bone deformations, artifacts, or missing bones. 16% of the data set
was including minor tissue deformation and/or metal or other artifacts. The remaining 70%
of the data was either no visible artifacts or minor problems in visual assessment. These statistics
were obtained by participating two experts, blindly to each other, and qualitatively they were
asked to evaluate the scans visually.

The data was annotated independently by three expert interpreters, one from the NIH team,
and two from UCF team. Interobserver agreement values were computed as ∼3 pixels. Experts
used freely available 3D Slicer software for the annotations.5

3.2 Data Augmentation

Our data set includes fully annotated mandibular, maxillary, and nasal bones’ landmarks. Due to
insufficiency of 250 samples for a deep-learning algorithm to run, we applied data-augmentation
approach. In our study, the common usage of random scaling or rotations for data-augmentation
was not found to be useful for new landmark data generation because such transformations

Table 1 Input landmarks have the following feature(s) to be used only in stage I. 19D feature
vector includes only structural information.

Pairwise feature (oA, oB)

3D pixel-space position of the oA ðAx ; Ay ; AzÞ

Spherical coordinate of the vector from
landmark menton (o1) to oA

ðrme→A, θme→A, ϕme→AÞ

3D pixel-space position of the oB ðBx ; By ; Bz )

Spherical coordinate of the vector
from landmark menton to lB

(rme→B , θme→B , ϕme→B)

3D pixel-space position of the landmark menton ðMex ;Mey ;Mez )

Spherical coordinate of the vector from oA to oB (r A→B , θA→B , ϕA→B)

Diagonal length of the bounding box capturing
mandible roughly, computed as the distance
between the minimum and the maximum spatial
locations of the input domain mandibular
landmarks (L1) in the pixel space.

d1
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would not generate new relations different from the original ones. Instead, we used random
interpolation similar to active shape model’s landmarks.30 Briefly, we interpolated 2 (or 3) ran-
domly selected scans with randomly computed weight. We merged the relation information at
different scans to a new relation. We also added random noise to each landmark with a maximum
in the range of�5 pixels, defined empirically based on the resolution of the images as well as the
observed high deformity of the bones. We generated a dataset with ∼100 K landmarks, which is
empirically evaluated as a sufficiently large dataset.

3.3 Evaluation Methods

We used root-mean squared error (RMSE) in the anatomical space (in mm) to evaluate the good-
ness of the landmarking. Lower RMSE indicates successful landmarking process. For statistical
significance comparisons of different methods and their variants, we used a P-value of 0.05 as
a cut-off threshold to define significance and applied t-tests where applicable.

3.4 Input Landmark Configurations

In our experiments, there were three groups of landmarks (See Fig. 2) defined based on the
bones they reside: Mandibular L1 ¼ fo1; : : : ; o9g, Maxillary L2 ¼ fo10; : : : ; o13g, and Nasal
L3 ¼ fo14g, where subscripts in o denote the specific landmark in that bone:

• L1 ¼ fMe;Gn; Pg; B; Id;CorL;CorR;CdL;CdRg,
• L2 ¼ fAns; A; Pr; Pnsg,
• L3 ¼ fNag.
In each experiment, as detailed in Fig. 6, we designed a specific input set Linput where

Linput ⊆ L1 ∪ L2, jLinputj ¼ n and 1 < n& lt;¼ ðjL1j þ jL2jÞ. The target domain landmarks for

each experiment were L̂ ¼ ðL1 ∪ L2 ∪ L3Þ \ Linput and jL̂j ¼ m such that nþm ¼ 14. With
carefully designed input domain configurations Linput, and pairwise relationships of the land-
marks in the input set, we seek the answers to the following questions previously defined as
Q1 and Q2 in Sec. 2:

• What configuration of the input landmarks can capture the manifold of bones so that other
landmarks can be localized successfully?

• What is the minimum number and configuration of the input landmarks for successful
identification of other landmarks?

Overall, we designed five different input landmark configurations called three-landmarks
regular, three-landmarks cross, five-landmarks, six-landmarks, and nine-landmarks (Fig. 6).
Each configuration is explained in Sec. 3.6.

3.5 Training

The MLP RU was composed of three fully connected layers, two batch normalizations, and two
ReLUs (Fig. 5). The DB RU architecture contained 1 DB, which was composed of four layers
with a growth rate of 4. We used a batch size of 64 for all experiments. For the five-landmarks
configuration, there were 6,596,745 and 11,068,655 trainable parameters for the MLP and the
DB architectures, respectively. We trained the network for 100 epochs on 1 NVIDIA Titan-XP
GPU with 12 GB memory using the MLP architecture with the regular dropout compared to
20 epochs with the variational and targeted dropout implementations. For the DB architecture,
it converged in around 20 epochs independent of the dropout implementation employed.

3.6 Experiments and Results

We ran a set of experiments to evaluate the performance of the proposed system using a fourfold
cross-validation. We summarized the experimental configurations in Fig. 6, error rates in Table 2,
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and corresponding renderings in Fig. 7. The method achieving the minimum error for a corre-
sponding landmark is colored the same as the corresponding landmark at Table 2. As shown by
results, the minimum number of the input landmarks required for successful identification of
other landmarks is determined as 3.

Among two different RU architectures, DB architecture was evaluated to be more robust and
fast to converge as compared to the MLP architecture. To be self-complete, we provided the MLP
experimental configuration performances only for the five-landmark experiment (See Table 2).

In the first experiment (Fig. 6, Experiment 1), to have an understanding of the performance of
the RRN, we used the landmark grouping sparsely spaced and closely-spaced as proposed in
Torosdagli et al.5 We named our first configuration as “five-landmarks” where closely spaced
maxillary and nasal bones’ landmarks are predicted based on the relation of sparsely spaced
landmarks (Fig. 6). In the five-landmarks RRN architecture, there were totally 25 RUs. In the
second experiment (Fig. 6, Experiment 2), we explored the impact of a configuration with a
smaller number of input mandibular landmarks on the learning performance. Compared to the
five sparsely spaced input landmarks, we learned the relation of three landmarks, Me, CdL, and
CdR, and predicted the closely-spaced landmark locations (as in the five-landmarks experiment)
plus superior-anterior landmarks CorL and CorR and maxillary and nasal bones’ landmark loca-
tions. The network was composed of nine RUs. The training was relatively fast compared to the
five-landmarks configuration due to small number of RUs. We named this method as “three-
landmarks regular.”

After observing statistically similar accuracy compared to the five-landmarks method for the
closely-spaced landmarks (P > 0.005), and high error rates at the superior–anterior landmarks
CorL and CorR, we set up a new experiment, which we named “three-landmarks cross” (Fig. 6,
Experiment 3). In this configuration, the third experiment, we used one superior–posterior and

Fig. 7 Landmark annotations using the five-landmarks configuration: Ground truth in blue and
computed landmarks in pink. (a) Genioplasty/chin advancement (male 43 year old), (b) malocclu-
sion (mandibular hyperplasia, maxillary hypoplasia) surgery (male 19 year old), (c) malocclusion
(mandibular hyperplasia, maxillary hypoplasia) surgery (female 14 year old). Note that landmarks
are shown on the volume-rendered CBCT scans; there is no segmentation conducted.
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one superior–anterior landmarks on the right and left sides, respectively. This network was sim-
ilar to three-landmarks regular one in terms of number of RUs used.

In the fourth experiment (Fig. 6, Experiment 4), we evaluated the performance of the system
in learning the closely-spaced mandibular landmarks (Gn, Pg, B, Id) and the maxillary land-
marks (ANS, A, Pr, PNS) using the relation information of the sparsely spaced and the
nasal-bones landmarks which is named as “six-landmarks.” There are a total of 36 RUs in this
configuration.

In the last experiment (Fig. 6, Experiment 5), we aimed to learn the maxillary landmarks
(ANS, A, Pr, PNS) and nasal bones landmark (Na) using the relation of the mandibular networks;
hence, this network configuration is called “nine-landmarks.” The architecture was composed of
81 RUs. Owing to the high number of RUs in the architecture, the training of this network was
the slowest among all the experiments performed.

For three challenging CBCT scans, Fig. 7 presents the ground-truth and the predicted land-
marks with respect to the five-landmarks configuration DB architecture, annotated in blue and
pink, respectively. We evaluated five-landmarks configuration for both MLP and the DB archi-
tectures using variational-dropout as regularizer (Table 2). For fourfolds, we observed that DB
architecture was robust and fast-to-converge. Although, the performances were statistically
similar for the mandibular landmarks, this was not the case for the maxillary and the nasal bone
landmarks. The performance of the MLP architecture degrades notably compared to the decrease
in the DB architecture for the maxilla and nasal bone landmarks.

Three-landmarks and five-landmarks configurations (Table 2) performed statistically similar
for the mandibular landmarks. Interestingly, both three-landmarks configurations performed
slightly better for the neighboring bone landmarks. This reveals the importance of optimum
number of landmarks in the configuration.

In comparison of five-landmarks and six-landmarks configurations (Table 2), we observed
that five-landmarks configuration is good at capturing the relations on the same bone. In contrast,
six-landmarks configuration was good at capturing the relations on the neighboring bones.
Although, the error rates were <2 mm, potentially redundant information induced by the Na
landmark in the six-landmarks configuration caused the performance to decrease notably for
the mandibular landmarks compared to the five-landmarks configuration.

Nine-landmarks configuration performed statistically similar to five-landmarks configura-
tion, however, due to 81 RUs employed for the nine-landmarks, the training was slower.

Although direct comparison was not possible, we compared our results with Gupta et al.10

based on the landmark distances. We found that our results were significantly better for all land-
marks except the Na landmark. The framework proposed at Ref. 10 uses an initial seed point
using a 3D template registration at the inferior–anterior region where fractures are the most
common. Eventually, any anatomical deformity that alters the anterior mandible may cause
an error in the seed localization, which can lead to a suboptimal outcome.

We evaluated the performance of the proposed system when variational26 and targeted27 drop-
outs were employed. Although there was no statistically significant difference between dropouts
in terms of accuracy, convergence of the systems was relatively fast (around 20 epochs compared
to 100 when using regular dropout) for the MLP architecture. Hence, for the MLP architecture,
in terms of computational resources, variational and targeted dropout implementations were far
more efficient for our proposed system. This is particularly important because when there are a
large number of RUs, one may focus more on the efficiency rather than accuracy. When the DB
architecture was employed, we did not observe any performance improvement among different
dropout implementations.

In landmarking, extreme performance would be very important. For example, the outliers
would hamper the entire planning. Therefore, we have carefully checked the outliers for each
landmarking problem, and found that there are <10 outliers in a total of 250 patients’ scans for
each configuration, and the highest number of outliers was 7. In the best working experimental
setup (six-landmark configuration), for both menton and condylar left, the highest errors we
obtained with outliers were 1.5 mm. For coronoid left and right, errors of 2.75 and 0.3 mm
were obtained, respectively. For infradentale, we obtained 1.5 and 1.7 mm errors by two
outliers, all measured in volumetric spaces. Our results were consistent and robust to outliers,
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as hypothesized before. In the three-landmark configuration, the highest error we obtained with
an outlier was 5 mm to detect coronoid right.

It is also important to explore whether severity of the cases or metal artifacts can influence the
final results, considered under the robustness measure. We specifically evaluated the perfor-
mance of our method within the subsets of data containing significant artifacts and others
(30% versus 70%, see data subsection). Statistically, there was no difference in the performance
of our landmarking method when applied a t-test between these two groups, indicating a robust-
ness of our method.

4 Discussion and Conclusion

We proposed the RRN framework which learns spatial dependencies between CMF landmarks in
an end-to-end manner. Without the need for an explicit segmentation, we hypothesized that
there is an inherent geometrical relation among CMF landmarks which can be learned using
the relational reasoning architecture. Although, appearance-based deep-learning approaches are
very strong alternative to what we proposed herein, generalization is still an unsolved and a very
challenging problem, and reasoning is not directly applicable unlike geometric relations. For
instance, authors in Ref. 34 used a two-step neural networks with head neck CT data, achieving
an average of 2.64 mm localization error; however, their data set does not include any severe
pathology, and still performance is inferior to what we have proposed here. The presented sol-
ution was shown to be effective in 2D images with normal anatomy. Further, appearance-based
methods for landmark detection in CT scans,35,36 which can be considered related to our work,
define landmarks as an anatomical region (ROI) comparatively larger than our landmark
definition (25 × 25 versus 3 × 3), and again no deformation or pathology presence exist therein.
In contrast to these methods, our method considers a very small area as landmark, and we use
extremely challenging pathological cases, which also differentiates the current work from our
previous work where we used a segmentation-based approach in the geodesic space.

Our relational reasoning framework, which is a model-based approach, can generalize well to
the unseen data. Hence, once trained, RRN can be used at the same testing precision to detect the
missing landmarks of the unseen data taken at completely different conditions. This would afford
better outcomes for precision medicine and complex CMF deformities. In our experiments, we
first evaluated this claim using a dataset with a high amount of bone deformities in addition to
other CBCT challenges. We observed that (1) despite the large amount of deformities that may
exist in the CMF anatomy, there is a functional relation between the CMF landmarks, and
(2) RNN frameworks are strong enough to reveal this latent relation information. Next, we evalu-
ated the detection performance of five different configurations of the input landmarks to find out
the optimum configuration. We observed that not all landmarks are equally informative in the
detection performance. Some landmark configurations are good in capturing the local informa-
tion, while some have both good local and global prediction performance.

One may wonder how to choose which landmark configuration and number for a current task
should be chosen by a user. Rationally, for 3D modeling and visualizations, a higher number of
landmarks would benefit the final outcomes. However, our aim herein was to explore what the
minimum number of landmarks and sufficient configuration of landmarks were to have success-
ful landmarking. For example, we have found that cross landmark configuration keeps more
information than regular configuration. Also, we found that five and/or six landmarks were often
enough to capture the anatomical relationships compared with nine-landmark configurations.
Our study reveals certain insights about how to create networks specific to anatomies and learn
efficiently with minimal, but necessary data. In practical terms, we intend to predict even a higher
number of landmarks, however, this was our current limitation in our study due to the availability
of ground truth labels. Overall, per-landmark error for the six-landmarks configuration is
<2 mm, which is considered as a clinically acceptable level of success. It should also be noted
that landmarking error depends on the voxel size too.37 Given the voxel size of 0.5 to 0.7 mm in
our data set, the accuracy of our landmarking is around 1 or 2 voxels where 3 voxel sizes of error
are often considered as a highly accurate landmarking procedure.38 One should be aware that
clinically accepted level of landmarking in CBCT scans may vary depending on the specific
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application. For instance, in the context of dental implant planning, it is important to locate the
maxillary and mandibular sinuses and the mental foramen, as these structures can affect the
placement of the implant. High level of accuracy may be necessary to ensure the implant,
2 mm is considered as a safe, acceptable level in this manner.37,39 On the other hand, CBCT-
based orthodontic treatment planning, a lower level of accuracy (i.e., 4 mm) may be acceptable,
as the primary focus is on the overall shape, and size rather than precise location of specific
landmarks.

In our implementation, we showed that other deep-learning networks can be integrated well
into our platform as long as features are encoded via RUs. While one may argue whether
changing specific parameters could make these predictions better. However, such incremental
explorations are kept outside the main paper but are worth exploring in future studies from an
optimization point of view. Moreover, for now RRN only employs spatial information (proof-of-
concept stage), its extension could include using shape space learned landmark relationships as a
conditional shape prior. Similarly, the use of those learned relationship as a look up table (atlas)
is another venue that needs further exploration.

Our study has a number of limitations. For instance, we confined ourselves to manifold data
(position of the landmarks and their geometric relations) without use of appearance information
because one of our aims was to avoid explicit segmentation to be able to use simple geometric
reasoning networks. As an extension of this study, we will incorporate appearance features from
medical images to explore whether these features are superior to purely geometric features, or
combined (hybrid) features can have additive value in this research domain. One alternative way
to pursue the research that we initiated herein will be to explore deeper and more efficient
networks. Hence explore how to scale up in to a much wider platform where large number
of landmarks and various clinical problems are addressed. We believe that such advances will
improve the current technology for 3D visualization and even afford embedding augmented
reality in treatment and surgical planning.
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