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Abstract. The growth of multiparametric imaging protocols has paved the way for quantitative imaging pheno-
types that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics
and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined
the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and pre-
dictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phe-
nomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of
cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging
analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality.
First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary fea-
tures, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spa-
tial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning
models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas
are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome,
and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment
for breast cancer. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.011018]
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1 Introduction
Modern medical images are complex, often derived from differ-
ent and complementary acquisition protocols or modalities, and
can elucidate multifaceted phenotypic aspects of cancer.
Traditional measurements (e.g., tumor diameter and volume)
capture only a small fraction of such multifaceted and hetero-
geneous phenotypes, and therefore, limit evaluation to basic fea-
tures of a tumor and its progression during treatment. Extensive
literature over the past decade has shown that diverse and com-
plementary multiparametric imaging features, beyond the tradi-
tional visually observable measurements, such as volumetric,
textural, morphologic, kinetic, connectomics, spatial patterns,
and intensity histograms (i.e., radiomic features), may result in
comprehensive phenotypic imaging signatures that can offer
additional diagnostic, prognostic, and predictive value for many
types of cancer.1 This emerging field, which we will herein refer
to as quantitative imaging phenomics (QIP), consistently shows
that phenotypic imaging signatures of various cancers relate to
underlying molecular characteristics, treatment response, and
patient survival, with the potential to augment conventional
prognostic and predictive assays.2

Although such QIP signatures and their use are progressively
reported throughout scientific literature,1 they have yet to be
adopted in clinical studies and practice. The increasingly com-
plex nature of computational imaging algorithms and the chal-
lenge of accessing clinical datasets for training and validating
these algorithms limit the availability of QIP signatures for
both clinical researchers and practitioners. The current paper
describes an evolving effort in the development of the cancer
imaging phenomics toolkit (CaPTk), an imaging analytics
suite of open-source software algorithms, designed to derive
extensive panels of QIP features and integrate them into non-
invasive diagnostic and predictive models, as well as systems
supporting optimized personalized cancer treatment planning.
Appendix B presents a detailed overview of the features cur-
rently supported by CaPTk.

Quantitative cancer imaging phenomics, and hence the
CaPTk software, builds upon work often referred to as radio-
mics and radiogenomics, which use various textural and
shape features to build a comprehensive representation of the
tumor. Additional features used in CaPTk, such as spatial pat-
terns obtained after atlas registration, shapes of histograms in
various subregions, and peritumoral heterogeneity indices, are
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also shown to offer highly informative feature sets, especially
when properly integrated via machine learning tools.3,4 In
this paper, we present results from brain, breast, and lung cancer
studies that underline the value of CaPTk imaging signatures as
precision diagnostic and predictive tools.

2 Methods and Software

2.1 Overview

CaPTk can be viewed as a two-level software platform (Fig. 1).
The first level targets basic image processing and extraction of
various features capturing different aspects of local, regional,
and global imaging patterns, resulting in an extensive QIP
panel. These features range from standard multiparametric
image intensities and their histogram distributions, to commonly
used radiomic features, such as various types of textural, mor-
phologic, and functional descriptors,4 spatial patterns obtained
from deformable registration,5,6 biophysical models of tumor
growth and infiltration,7,8 and connectomic signatures, among
others. The second level focuses on the integration of these fea-
tures into multivariate machine learning models and systems,
with specific application-oriented goals. Examples include
(i) precision diagnostics and risk assessment for developing
cancer,9 (ii) predictive models of treatment response and patient
survival,4,10–12 and (iii) detection of phenotypic imaging surro-
gates of underlying cancer molecular characteristics.4,13 The
following sections further explain some of the analytical
capabilities of CaPTk. Furthermore, Appendix A provides

application-specific descriptions and examples of commands,
targeted toward both technical and clinical audiences. In addi-
tion, CaPTk’s webpage14 hosts several screenshots of CaPTk,
which provide details of user-interaction and currently sup-
ported applications/features.

2.2 Extraction of an Extensive QIP Panel

2.2.1 Image segmentation

Image segmentation is a fundamental process in automated
image analysis, enabling the precise delineation of a tumor,
its subregions, and the surrounding infiltrated anatomy. For
example, segmentation of a glioblastoma, the most malignant
brain tumor, can delineate the enhancing tumor (ET) and non-
enhancing tumor (NET) (possibly necrotic) parts of the tumor
core, its surrounding edematous (ED) tissue, and the distant nor-
mal-appearing tissue regions.15,16 Such delineations enable the
extraction of features specifically from each tumor subregion,
and surrounding anatomy, thus allowing for more accurate quan-
tification of the tumor’s entirety and spatiotemporal changes. It
is important to note that the term delineation refers to regions
based on their radiographic appearance and may differ from
the actual tumor delineations.

The CaPTk suite offers several segmentation modules, rang-
ing from general purpose, user-guided segmentation, to special-
ized segmentation methods tuned to the specific characteristics
of certain tumors and organs. A representative example of gen-
eral purpose segmentation is ITK-SNAP,17 a well-established

Fig. 1 Overview of CaPTk’s functions: at the first level, CaPTk provides image preprocessing and feature
extraction functions that can be used to generate an extensive QIP panel of features capturing various
aspects of imaging signals, ranging from segmentation of tumors and its partitions, to extraction of tex-
tural and perfusion dynamic features, to population-wide spatial patterns of cancer, and fiber tracts. At the
second level, these QIP features and maps are integrated into algorithmically complex diagnostic and
predictive models, aiming to achieve precision diagnosis and guidance of treatment, prediction of clinical
outcome, and estimation of molecular characteristics of tumors.
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interactive tool, which has been integrated into the main inter-
face of CaPTk. ITK-SNAP is based on random forest classifiers,
trained using a manual definition of tissues of interest, to pro-
duce an initial segmentation subsequently refined using level-
sets. GLISTRboost,15,16,18,19 available through the web-based
image processing portal20 of the Center for Biomedical
Image Computing and Analytics (CBICA), leverages CaPTk
as a user-friendly means of initialization. GLISTRboost per-
forms multimodal brain glioma segmentation and atlas registra-
tion, which describes a semiautomatic hybrid generative-
discriminative method. The generative part is based on an
expectation–maximization framework to segment brain scans
into tumor (i.e., edema, enhancing and nonenhancing tumor),
as well as “healthy” tissue labels (i.e., white and gray matter,
cerebrospinal fluid, vessels, and cerebellum), and incorporates
the modeling of tumor growth and infiltration via reaction–dif-
fusion–advection equations.7,8 The discriminative part is based
on a gradient boosting21,22 multiclass classification scheme, to
refine tumor labels based on information from multiple patients.
Last, a Bayesian strategy23 is employed to further refine and
finalize the tumor segmentation labels, based on patient-specific
intensity statistics from the multiple modalities available.
GLISTRboost provides estimates of the segmentation labels,
parameters of underlying tumor growth models, as well as
the tumor anatomical location in a standardized anatomical sys-
tem via deformable atlas registration.6 In addition to provide
segmentation labels, such application-specialized segmentation
approaches allow evaluation of cancer spatial patterns in stand-
ardized coordinate systems, which is receiving increasing atten-
tion as predictors of clinical outcome, as well as biomarkers of
molecular characteristics of the underlying tumor.24 Future work
will result in tighter integration between the CaPTk desktop cli-
ent and IPP web server.

2.2.2 Imaging features

Analytic functions in CaPTk are based on an extensive QIP
panel of features (Fig. 1), which are integrated into imaging sig-
natures, using analytics and machine learning to produce a vari-
ety of diagnostic, prognostic, and predictive biomarkers.
Although features can be common across many diagnostic
and predictive tasks, the way in which they are integrated
into a specific imaging signature depends entirely on the task
of interest, such as predicting response to treatment13 or estimat-
ing underlying mutations.10,12,25 Examples of QIP features
implemented in CaPTk include: (i) multiparametric imaging sig-
nals of different coregistered protocols/modalities, such as
native T1- and T2-weighted images, T1 with gadolinium
(T1-Gd), T2-fluid attenuated inversion recovery (T2-FLAIR),
diffusion tensor imaging (DTI), dynamic susceptibility contrast
(DSC), or dynamic contrast-enhanced (DCE) MRI; (ii) textural
features [e.g., co-occurrence, run-length, size-zone matrices,
local binary patterns (LBPs), fractal dimensions, wavelets], cap-
turing characteristics of the local microarchitecture of tissue.
Such features have been used extensively in mammographic
image analysis and breast cancer risk assessment,9 as well as
in predictive modeling of glioblastoma;3,4,26 (iii) histograms,
reflecting various imaging signal distributions within different
delineated tumor subregions. The shapes of these histograms
express anatomical and functional changes caused by the
tumor that result in signal changes and have demonstrated a con-
nection to clinical endpoints, such as survival, risk factors, and
underlying cancer molecular characteristics;4 (iv) temporal

perfusion dynamics captured via principal component analysis
(PCA), which have been related to recurrence and infiltration, as
well as molecular tumor characteristics;3,10,11,25,26 (v) DTI-
derived features, including fractional anisotropy (FA), radial dif-
fusivity (RAD), axial diffusivity (AX), apparent diffusion coef-
ficient (ADC), water-free diffusion, fiber tract connectivity and
other properties; (vi) DSC-MRI derived features: peak height
(PH), percent signal recovery (PSR), and relative cerebral
blood volume (rCBV); (vii) spatial patterns of cancer distribu-
tion:24 although previously relatively unappreciated, such spatial
patterns that capture the spatial distribution and pattern of a
tumor’s entirety (i.e., to which parts of the brain does the
tumor extend), obtained via deformable registration to a stand-
ardized atlas space, receive increasing attention due to their rela-
tionship to prognosis and genotype.27 Connectomic signatures,
later discussed in Secs. 3.3 and 5.3.2, will also be incorporated
in the immediate future.

An essential step in the aforementioned segmentation and
feature extraction processes is image normalization and harmo-
nization. In particular, image characteristics vary, often consid-
erably, across different scanners, acquisition protocols, clinical
centers, as well as patients. This renders the extraction of
reproducible imaging features and signatures challenging.
Appropriate histogram normalization is therefore particularly
important. Toward this end, CaPTk provides the WhiteStripe
approach28 (Appendix A, Table 7), which normalizes conven-
tional MRI by detecting a latent subdistribution of normal tissue
and linearly scaling the histogram of images. In addition, histo-
gram matching techniques available through the insight toolkit
(ITK)29 are also provided.

2.2.3 Image registration

Coregistration of different imaging sequences, i.e., alignment of
different anatomical regions, is very important in order to ana-
lyze in tandem voxel-by-voxel features, coming from the inten-
sity signals of aligned imaging sequences. For example,
building QIP features for analysis of brain tumors often requires
the coregistration of conventional MRI scans, such as T1-
weighted and T2-FLAIR but also various diffusion- and perfu-
sion-based images. In addition to rigid registration (or fusion) of
multichannel images, deformable registration is also important
in cancer imaging and is used in two contexts: (i) the evaluation
of temporal changes between longitudinal scans, as the tumor,
its surrounding anatomy, and patient positioning may have
changed between consecutive scans, and hence, appropriate
registration can augment therapy response evaluation and pre-
diction of survival and (ii) formation of population-based atlases
of the spatial distribution and pattern of cancer, in order to evalu-
ate the relationship between such distributions and molecular
characteristics or clinical outcomes. CaPTk has access to a vari-
ety of image similarity metrics offered through ITK. Moreover,
specialized deformable registration methods optimized for spe-
cific types of problems are available on CBICA’s IPP.20 For
example, the deformable registration described in Ref. 30,
which is based on DRAMMS,31,32 enables follow-up scans to
be superimposed onto baseline scans in order to evaluate
tumor volume changes over time as a measure of response to
neoadjuvant chemotherapy for breast cancer. DRAMMS is
a separate, standalone package, which is compatible with CaPTk
and has been tested along with the breast CaPTk modules as
a means for finding breast MRI changes.
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3 Feature Integration and Modeling
As described above (Fig. 1), CaPTk has a two-level organiza-
tion, with the first level of complexity, offering various image
processing and analysis tools that lead to the formation of com-
prehensive QIP feature sets. The second level functions aim at
integrating these features into decision support tools. A number
of models and indices are offered, based on our prior
studies.3,4,10,24,26,33–35 In Sec. 5, we present results obtained in
four specific contexts, which are described below. Through
CaPTk, a wide range of QIP features can be extracted directly
from any set of images, with user-defined parameters, and exter-
nal clinical and genomic variables can be easily used for train-
ing. These QIP features can form the basis for a CaPTk user to
develop their own decision support systems, by using the QIP
along with machine learning algorithms in different contexts, for
example, to predict clinical outcome or genomic variables of
interest. CaPTk’s software architecture provides interfaces
that make it relatively straightforward to access the machine
learning module of OpenCV.

3.1 Precision Diagnostics and Risk Assessment

In parallel with developing precision diagnostics33,35,36 driven by
genomics, risk assessment of cancer has seen similar advances
in the recent past. CaPTk incorporates routines that characterize
properties of the normal tissue, predisposed to a higher risk of
cancer. For example, the heterogeneity of the breast parenchy-
mal patterns has shown to augment established risk factors,
including breast density.37,38

3.2 Predictive Modeling

The ability to predict patient outcome, particularly after receiv-
ing a specific treatment, is important for treatment planning,
patient management, and enrollment of relatively homogeneous
patient subgroups into clinical trials to increase the detection of
treatment effects. CaPTk applies machine learning methods to
its QIP panel to predict various outcome measures. Examples
include prediction of patient survival after glioblastoma treat-
ment,4 patient response, and prediction of long-term survival

after breast cancer neoadjuvant chemotherapy,13 response to
stereotactic body radiation therapy for lung cancer,39 and peri-
tumoral infiltration and probability of cancer recurrence.3

3.3 Optimized Neurosurgical Planning

Knowing the tumor location and, more importantly, the peritu-
moral infiltrated functional brain tissue, in relation to important
structures and fiber tracts, is critical in neurosurgical planning.
CaPTk offers algorithms for neurosurgeons and radiation oncol-
ogists to plan extensive tumor resection and peritumoral radia-
tion while preserving neurological function.40 This CaPTk
functionality aims to allow clinicians to simultaneously evaluate
peritumoral glioblastoma infiltration in edematous brain tissue
and target functional brain tissue likely to present early recur-
rence while considering the location of fiber tracts that should be
preserved as much as possible. To this end, CaPTk will provide
tools for edema invariant tractography41,42 and automated tract
detection based on connectivity signatures,40,43 to extract fiber
tracts, even distorted or broken, in the presence of mass effect
and edema (Fig. 2). The edema invariant tractography41,42 is
based on the multicompartment modeling of diffusion data, that
fits a free-water compartment representative of the edema and a
compartment representing the underlying tissue, fitted with a
tensor or a higher-order diffusion model, based on the acquis-
ition. Having separated the edema compartment from the tissue,
which is used for tracking, enables tracking through the edema
regions. Existing tracking algorithms that are not based on mul-
ticompartment models are unable to track through edema. This
is currently being validated in the clinic using direct electrical
stimulation. Once the tracts are created, our connectivity-based
signatures of tracts enable clustering of tracts that have been dis-
torted by the tumor. These displaced/distorted tracts cannot be
readily captured by existing tract clustering algorithms that are
based on shape/geometric information.44–49 Thus, the edema
invariant tractography in combination with the connectivity-
based clustering produces tracts that are robust in the presence
of edema and mass effect. These are expected to go beyond the
capabilities of existing planning tools, once they have been vali-
dated in the clinic. Currently, connectomic-signature-based tract
extraction is available, with the other diffusion-based surgical

Fig. 2 Various aspects of the diffusion based surgical planning tools: (a) tracking through edema made
possible with multicompartment modeling of diffusion data; (b) atlas-based reconstruction of tracts, resil-
ient to mass effect induced tract distortions, and vulnerability map of the brain indicating the global effect
of the resection and treatment; and (c) the surgical plan with the tumor and surrounding eloquent tract.
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planning components being in the optimization phase. The sur-
gical planning tool is proposed as a separate visualization envi-
ronment within CaPTk that will combine the tumor, tracts
around it, the vulnerability and the recurrence maps. Related
processing and analysis tools will be provided as a diffusion
toolkit, expanding upon CaPTk.

3.4 Radiogenomics

Following the rapid growth of radiogenomics, where imaging
features are correlated with genomic information, an expanding
part of CaPTk focuses on deriving imaging signatures of clin-
ically relevant cancer molecular characteristics. Although con-
ventional anatomical and physiological imaging does not
specifically label molecular targets, their presence can be
derived indirectly through the application of machine learning
methods to the QIP features extracted from clinically acquired
imaging, as described above. Section 5 presents results from a
radiogenomic signature of epidermal growth factor receptor
(EGFR) mutations,10,12 which also captures overexpression of
wild-type EGFR,11 and an imaging signature of oncotype DX
in breast cancer.25

4 Software Architecture
CaPTk employs widely used, community- and industry-driven
libraries, including the ITK, visualization toolkit, and OpenCV,
as the foundation for basic functions, such as data input/output,
preprocessing tasks (registration, bias correction, etc.), render-
ing and machine learning (Fig. 3), which make up many of the
first-level image processing operations, as shown in Fig. 1. The
advantage of using these broadly established libraries is that

they are large-scale projects with deep resources, extensive test-
ing and validation, and highly optimized algorithms. Locally
developed libraries provide similar low-level functions that
are specific to CaPTk (Fig. 3). All foundation routines are acces-
sible as C++ objects, making complex algorithms available to
higher-level CaPTk components and to software developed
by external CaPTk users through well-defined, extensible inter-
faces. The documented APIs allow applications written by exter-
nal users of CaPTk to access algorithms at each level of the
toolkit through function calls and ITK image structures.

Internally, CaPTk uses both ITK and OpenCV data structures
as appropriate to the particular image processing operation,
allowing any user to extend the CaPTk code by calling any algo-
rithm implemented in either of these libraries. Since both ITK
and OpenCV are based on high quality C++ code, any other
package developed using these tools can be tightly consolidated
with CaPTk. This provides computational imaging researchers
with a fast track to integrate their complex algorithms into a full-
featured graphical environment, without the need to duplicate
routine tasks, such as file I/O, image reorientation, etc.
Another aspect of CaPTk’s architecture is the focus on modu-
larity of the code. This ensures that CaPTk can be used as a very
lightweight and efficient image viewer without the burden of the
computationally expensive functions affecting the interactive
experience.

All applications within the CaPTk graphical user interface
(GUI) are exposed via command line wrappings, giving the
option to researchers to also construct automated, scripted,
and customized pipelines based on the same algorithms, for sub-
ject- or population-based studies. CaPTk is under active devel-
opment, with frequent updates available to developers and

Fig. 3 An overview of the CaPTk software architecture. Command-line and GUI of CaPTk communicate
with individual applications for preprocessing, basic analysis, and decisions support outcomes via func-
tion calls (black arrows). Applications may be tightly integrated in CaPTk, accessed as C++ objects via a
documented API, or applications may be external software, such as Confetti, launched via system calls.
Integrated applications utilize low-level libraries, such as ITK or libraries developed specifically for CaPTk
for common tasks. Data are passed between libraries and returned to integrated applications in the form
of ITK and OpenCV data structures (green arrow). Results are presented graphically through the GUI
(light blue arrow) or saved to disk (red arrows). External applications return data directly to disk storage.
The documented APIs allow applications written by external users of CaPTk to access algorithms at each
level of the toolkit through function calls and ITK image passing.
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clinical collaborators. The current status of the package and
links to stable public releases can be found at Ref. 14.

5 Results Obtained Using CaPTk
In this section, we present several representative results obtained
by using CaPTk, as described in Sec. 3, which highlight the
value of QIP signatures for precision diagnostics, personalized
predictions, and decision support for treatment planning.

5.1 Precision Diagnostics and Risk Assessment in
Breast Cancer

Parenchymal pattern analysis, performed through CaPTk, was
evaluated in a case-control dataset (106 cancer cases and 318
age-matched controls) of digital mammograms38 (Appendix A,
Table 5). The complete pipeline was named Laboratory for
Individualized Breast Radiodensity Assessment (LIBRA).
Prior to feature extraction, CaPTk applied a series of image
standardization steps, where mammograms were log-trans-
formed, then inverted, and, finally, intensity-normalized by
a z-score transformation within the breast region.50 CaPTk
was then used to extract parenchymal pattern characteristics,
including for each subject (i) breast percent density (PD) corre-
sponding to the amount of radiographic dense tissue within the
breast51 and (ii) parenchymal complexity feature maps repre-
senting the spatial distribution of the textural measurements
as sampled by a regular lattice over the entire breast.38 Case-con-
trol discriminatory capacity was assessed in a randomized split-
sample setting (training set: n ¼ 300; test set: n ¼ 124) as fol-
lows. First, a logistic regression model was built using paren-
chymal pattern characteristics extracted from the training set
and the model was, then, evaluated on the test set via the
area under the receiver operating characteristics curve (AUC).
For this evaluation experiment, the extracted parenchymal tex-
ture feature maps were summarized using statistical measures
(mean and standard deviation) and stepwise feature selection
was applied to the training set prior to logistic regression mod-
eling toward limiting potential over fitting.38 Breast PD demon-
strated modest case-control discriminatory capacity at 95%

confidence interval (CI; AUC ¼ 0.56, 95% CI: 0.52 to 0.61),
which was within the range of results from previously reported
studies.9 Compared to PD, the classification performance of the
lattice-based complexity texture feature maps was substantially
higher (Fig. 4). Specifically, when feature maps were summa-
rized into simple statistical measures, the discriminative perfor-
mance was equal to AUC ¼ 0.79 (95% CI: 0.69 to 0.89),
DeLong’s test p-value ¼ 0.03.

5.2 Predictive Modeling of Clinical Outcome

5.2.1 Predicting patient survival in glioblastoma patients

Glioblastoma is a disease with grim prognosis, of median sur-
vival of around 14 months after applying the standard of care,
which comprises tumor resection and peritumoral radiation
therapy along with chemotherapy. However, there is a fairly
broad range of survival, from a few months to more than 2
years. Having baseline predictors of patient survival is important
for patient management. It is also important for selecting
patients with relatively homogeneous expected survival into
a clinical trial, thereby likely increasing the trial’s ability to
detect treatment effects, especially its ability to prolong survival.
Toward this end, a preoperative multiparametric MRI of de novo
glioblastoma patients was summarized in QIP signatures, cap-
turing various characteristics of ET, NET, and ED, to estimate
the likelihood of survival (Appendix A, Table 2).4 The initial
features included (i) normalized volume of ET, NET, ED,
and their combinations; (ii) distance of tumor (ET + NET)
and ED to ventricles; (iii) mean and standard deviation of inten-
sities of T1, T2, T1-Gd, T2-FLAIR, rCBV, PH, PSR, FA, RAD,
AX, and ADC in ET, NET, and ED; (iv) frequency of intensities
of T1, T2, T1-Gd, T2-FLAIR, rCBV, PH, PSR, FA, RAD, AX,
and ADC in each distribution bin of ET, NET, and ED; (v) loca-
tion of the tumor in the brain; and (vi) age. All features were
integrated via a support vector machine (SVM) configuration
to build two predictive classification models: a 6- and an
18-month SVM model to differentiate between patients surviv-
ing less/more than 6 months (short-survivors) and 18 months
(long-survivors), respectively. The group of subjects having

Fig. 4 Example of (a) parenchymal complexity feature extraction and (b) breast cancer case-control
classification in conjunction based on breast parenchymal density (PD) alone compared to the
CaPTk texture feature extraction panel.
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survival between 6 and 18 months was considered mid-survivor
group. Forward feature selection was applied on the training set
only to select important features. The SVM scores from each
model were combined to calculate a composite survival predic-
tion index (SPI), where higher SPI refers to relatively longer
survival. We developed our predictive models on a discovery
cohort (n ¼ 110) and tested these prospectively on a replication
cohort (n ¼ 57) of glioblastoma patients. The two-class bal-
anced accuracy of the 6-month and 18-month models was
75.06% (AUC ¼ 0.79) and 77.85% (AUC ¼ 0.77) in the rep-
lication cohort, respectively. Overall three-class classification
accuracy into long, medium, and short survival groups was
∼70.18% in the replication cohort. Kaplan–Meier survival
curves [p-value < 0.001, log-rank (Mantel–Cox)]53 and hazard
ratios were also computed for survival analysis at a 95%
CI (Fig. 5).

5.2.2 Predicting patient survival in breast neoadjuvant
chemotherapy patients

The DCE-MRI images were analyzed for a subset of 106
women with complete imaging data available, which were
recruited as part of the ACRIN 6657/I-SPY-1 trial.54 A baseline
model was created with age, race, hormone receptor status

(ER/PR/Her2), and functional tumor volume (FTV) after neo-
adjuvant chemotherapy. Utilizing the DRAMMS deformable
registration method30,20 adapted to breast MRI, features regard-
ing spatial/temporal changes between longitudinal scans (before
and during the first patient visit after the initiation of neoadju-
vant chemotherapy in this study), including voxel-wise volume
ratio (Jacobian), as well as parametric response maps (PRM) for
kinetic features, were estimated. Kinetic features included signal
enhancement ratio, peak enhancement (PE) and wash-in/wash-
out slope (WIS/WOS). To quantify heterogeneity for each fea-
ture, discrete wavelet transformation was used and then PCA
was applied to reduce the number of estimated wavelet coeffi-
cient into the top two principal components, expressing 60% to
80% of the total variance (Appendix A, Table 6). The Cox pro-
portional hazards model was utilized to perform a time-to-event
analysis and predict recurrence-free survival (33 events) by esti-
mating the c-statistic.55 The baseline model using the standard
clinical covariates and FTV was compared with the model,
where registration-derived and PRM features were added. The
c-statistic was 0.70 (p-value < 0.001) for the baseline model,
whereas the augmented model with the PRM features and the
Jacobian information improved the c-statistics by 0.73
(p-value < 0.005) and 0.74 (p-value < 0.001), respectively. A
model including both Jacobian and PRM features had the high-
est c-statistic of 0.77 (p-value < 0.001; Fig. 6).

5.2.3 Predicting treatment response and survival of
early-stage nonsmall cell lung cancer

To identify radiomic biomarkers for predicting treatment
response and survival of early-stage nonsmall cell lung cancer
(NSCLC) in patients, who received stereotactic body radiation
therapy (SBRT), we carried out a radiomic analysis using
CaPTk to distinguish patients with different treatment response
and investigated the association between subclusters of tumor
phenotypes and clinical outcomes. This study was performed
based on a longitudinal fludeoxyglucose-positron emission
tomography (FDG-PET)/computed tomography (CT) dataset of
80 patients, who were treated with SBRT for stage 1 NSCLC
with over 2-years median follow-up. All patients in this dataset
had a solid component of their NSCLC tumor, and some also
had an additional ground glass component. Although all these
patients were treated uniformly (12.5 Gy × 4 fractions, or
10 Gy × 5 fractions), they had different primary tumor out-
comes. From each patient’s standardized uptake values of

Fig. 5 Kaplan–Meier survival curves for the replication cohort. Actual
survival on x -axis is compared among each of the three survival
groups based on predictions generated by the SPI. med, medium
SPI HR, Hazard ratio.

Fig. 6 Survival curves as function of (a) FTV, after first visit during neoadjuvant chemotherapy and
(b) Jacobian heterogeneity when FTV is greater than the mean value (between images before and
first visits).
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FDG-PET scan collected before the treatment, we extracted 343
radiomic features, including intensity statistics, gray level co-
occurrence matrix, and gray-level run-length matrices, as well
as LBP within the tumor region. Then, the patients were grouped
into two clusters with distinctive radiomic features using an
unsupervised clustering analysis method39 (Appendix A, Table 4).
Kaplan–Meier survival analysis with respect to death and nodal
failure at group level was performed for each cluster of patients
(Fig. 7). Significant differences were observed for survival
(p-value ¼ 0.0004, Log-rank test) and nodal failure (p-value ¼
0.001).

5.3 Neurosurgical Planning

5.3.1 Predictive modeling of peritumoral infiltration and
recurrence

Current practice in treating glioblastoma includes resection
guided by imaging-based tumor margins (typically defined
via enhancement in T1-Gd images), followed by uniform radi-
ation of peritumoral brain tissue. It is well known, however, that
glioblastomas infiltrate their surrounding brain tissue, especially
in the peritumoral edematous tissue defined by high T2-FLAIR
signal (i.e., ED). Ability to predict the regions in this peritumoral
tissue that are heavily infiltrated and most likely to present early
recurrence can considerably change clinical practice, by guiding
aggressive supratotal resection, i.e., targeted resection of peritu-
moral tissue, as well as targeted elevated radiation dose in non-
resected peritumoral tissue that is more likely to present early
recurrence. Based on functions provided by CaPTk, it has
been recently shown that the combination of multiparametric
MRI and machine learning can lead to predictive models of
tumor infiltration that highlight peritumoral tissue that is ∼10
times more likely to recur3 (Appendix A, Table 1). In particular,
two regions were selected within the edema region to train the
model. The near region was defined as the area immediately
adjacent to the tumor, whereas the distal edge of edema was
designated as the far region. The signal intensity of T1, T1-
Gd, T2, T2-FLAIR, AX, FA, RAD, ADC, and rCBV, and
first five principal components derived from the DSC-MRI
image were combined via Gaussian kernel function of SVM.
The model was retrospectively cross-validated on a cohort of
31 patients [odds ratio ¼ 11.17 (99% CI: 10.71 to 11.64)] and
was subsequently evaluated on a prospective cohort of 34

patients [odds ratio ¼ 9.29 (99% CI: 8.95 to 9.65)]. The rest
of this section presents a case report from a clinical case that
we recently processed and presented at the weekly Brain
Tumor Conference of the Hospital of the University of
Pennsylvania, using these methods and hence highlighting
their potential for routine clinical use.

Case report: SN was 25 when she presented with headaches
and dizziness. An outside brain MRI revealed a nonenhancing,
expansile, right posteromedial occipital lesion, extending into
gray matter. Low-grade glial neoplasm was top on the differen-
tial diagnosis. Three months later, a subsequent MRI with brain
tumor protocol, including perfusion (DSC) and spectroscopy,
was consistent with that diagnosis. Another 3 months later,
a follow-up brain MRI demonstrated an increase in size of
the lesion, with new intralesional enhancement, triggering a
change in radiologic diagnosis to high-grade glial neoplasm.
A repeat MRI confirmed that diagnosis, demonstrating
increased rCBV within the enhancing component. The thought
was that there had been malignant transformation of the original
tumor, which was identified 6 months earlier. The lesion was
resected 10 days later, and the postoperative MRI showed
some residual abnormal T2 signal but no residual enhancement.
The pathology diagnosis was glioblastoma. A follow-up
MRI, 2.5 months after initial resection demonstrated new

Fig. 7 Survival analysis of two clusters of the early-stage NSCLC patients with respect to (a) death and
(b) nodal failure.

Fig. 8 (a) Sagittal postgadolinum T1-weighted images with recur-
rence probability maps on preop scan, calculated via CaPTk.
(b) Actual recurrence scan, about 3 months later.

Journal of Medical Imaging 011018-8 Jan–Mar 2018 • Vol. 5(1)

Davatzikos et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics. . .



enhancement, is consistent with tumor progression/recurrence.
Using multiparametric analysis with CaPTk, we determined
the areas of high likelihood for recurrence on the preoperative
scan and superimposed the corresponding probability maps
[Fig. 8(a)]. The actual recurrence [Fig. 8(b)] was centered pre-
cisely on the predicted high likelihood area.

5.3.2 Fiber tracking

Two of the major challenges faced by fiber tracking in the realm
of neurosurgical planning are that the reconstruction of tracts is
affected by mass effect, when the tracts are displaced and dis-
torted, and edema and infiltration, when the tracts are broken as
a result of the change of diffusion parameters due to the pathol-
ogy. These underline the need for methods that can track

through edema and reconstruct even partial and displaced tracts.
We are developing tractography algorithms that are invariant
to edema, based on multicompartment modeling of the diffusion
data.41,42 The improvement in tracking with this modeling, over-
traditional tracking, can be seen in Fig. 2(a). We have developed
automated atlas-based tract reconstruction called Confetti
(connectivity-based fiber extraction and identification;43

Appendix A, Table 8). The applicability, the reliability, and
the repeatability of the Confetti were validated in a dataset of
healthy individuals acquired repeatedly.43 Compared to the clus-
tering of fibers for each scan independently, our framework pro-
vided better test–retest reproducibility results, with decreased
(25%) mean intraindividual distance (i.e., disagreement of clus-
ters between different timepoints of the same individual), while
preserving interindividual differences. Additionally, the Confetti

Fig. 9 Examples of how QIP features are integrated into imaging signatures of molecular characteristics
of glioblastoma. (a–c) Distributions of the PHI by EGFRvIII expression status. Statistical significance was
evaluated via a two-tailed paired t -test comparing between the two distributions in the (a) discovery,
(b) replication, and (c) combined cohorts. (d) ROC curves of four-way classification of glioblastoma
into its molecular subtypes, using extensive radiogenomic signatures synthesized using machine
learning.
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was also tested in tumor patients40 on six major fiber bundles:
cingulum bundle; fornix, uncinate fasciculus (UF), arcuate fas-
ciculus, inferior fronto-occipital fasciculus, and inferior longi-
tudinal fasciculus (ILF). The agreement between clustering
and experts as quantified by Cohen’s kappa ranged between
0.6 and 0.76. Except two tracts, ILF and UF, the agreement
between clustering and experts was higher than agreement
between experts themselves, highlighting the reliability of the
paradigm. When the tumor demonstrated significant mass effect
or shift, the automated approach was useful to provide an ini-
tialization to guide the expert with identification of the specific
tract of interest.

We have developed a measure of injury called disruption
index of the structural connectome (DISC), based on how the
information transfer in the brain is affected by changes in differ-
ent regions.56 A representation of the vulnerability of the brain to
injury can be seen in Fig. 2(b). We have tested the DISC on
a dataset of traumatic brain injury (TBI) patients with moderate
to severe TBI examined at 3 months postinjury.56 DISC was sig-
nificantly correlated with post-traumatic amnesia (Pearson r ¼
0.52, p-value: 0.0007), verbal learning (Pearson r ¼ −0.42,
p-value: 0.0075), executive function (Pearson r ¼ −0.41,
p-value: 0.0083), and processing speed (Pearson r ¼ −0.58,
p-value: 0.0001), demonstrating that assessing structural con-
nectivity alterations may be useful in development of patient-
oriented diagnostic and prognostic tools.

These diffusion MRI-based tools are being developed as
a separate suite in CaPTk because of special visualization
needs for such data. A preliminary view of the proposed surgical
plan can be seen in Fig. 2(c) in which the automatically
extracted tracts are presented with regard to the tumor.
The tracts, vulnerability maps, and recurrence maps will be

incorporated in this plan in the future. Radiation plans can be
created by using the resection cavity instead of the tumor.

5.4 Radiogenomics

As described earlier, the emerging field of radiogenomics prom-
ises to develop an arsenal of imaging signatures reflecting
underlying molecular characteristics of various cancers.
CaPTk allows the construction of such imaging signatures.
We present results from two such examples: imaging signatures
of the EGFRvIII mutation and of molecular subtypes of
glioblastoma4,10 (Fig. 9), as well as an imaging signature of
OncotypeDX in breast cancer (Fig. 10).

5.4.1 Imaging signatures of the EGFRvIII mutation, as
well as transcriptomic subtype, in glioblastoma

CaPTk offers an imaging signature highly distinctive of the
EGFRvIII mutation in glioblastoma. This imaging signature lev-
erages the heterogeneity of DSC-MRI signals throughout the
peritumoral region, which is depicted by abnormal/bright T2-
FLAIR signal10 (Appendix A, Table 3). In particular, this sig-
nature is based on the observation that the gradient of perfusion
between tissue immediate to the active tumor and tissue distant
from the tumor but within this peritumoral edematous region
(bright FLAIR) is significantly higher in tumors that do not har-
bor the mutation (i.e., EGFRvIII- glioblastoma). This observa-
tion is reflecting the more local invasion and neovascularization
of the EGFRvIII- tumors, and vice versa, the potentially deeper
invasion of EGFRvIII+ tumors. Principal component features
are extracted from the DSC-MRI images using CaPTk and
the Bhattacharya distance is calculated to form the peritumoral

Fig. 10 Intrinsic imaging phenotypes of breast cancer tumors via unsupervised clustering of multipara-
metric MRI features. The columns represent tumors and the rows features, showing four distinct phe-
notypes, related to tumor gene expression and hormone (ER/PR) receptor status.
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heterogeneity index (PHI). The method was evaluated in preop-
erative perfusion scans of independent discovery (n ¼ 64) and
validation (n ¼ 78) cohorts. Analysis in cohorts demonstrated
high accuracy (89.92%), specificity (92.35%), and sensitivity
(83.77%), with significantly distinctive ability (p-value ¼
4.0033 × 10−10, AUC ¼ 0.8869). Figures 9(a)–9(c) show the
clear separation between PHI values of EGFRvIII(+) and
EGFRvIII(−) tumors.

Related work in glioblastoma was applied by obtaining
a more extensive QIP integrating T1, T1-Gd, T2, T2-FLAIR,
DTI extracted measurements, principal components of DSC-
MRI, along with parameters of the tumor growth model, spatial
location, and other features. The multiparametric obtained sig-
nature aimed to detect molecular subtypes of glioblastoma, as
described in Ref. 57. Figure 9(d) shows ROC curves obtained
in this four-way classification experiment (baseline “chance”
level is ∼25%). The AUC for classical, mesenchymal, neural, and
proneural subtypes, respectively, was 0.75, 0.89, 0.92, and 0.87.

5.4.2 Breast DCE-MRI phenotypes correlate to gene-
expression based breast tumor profiling

Preoperative breast DCE-MRI images from women with ER+
breast cancer were retrospectively analyzed.25,58 All women had
their primary tumor tested with Oncotype DX,59 an assay that
measures RNA expression of 21 genes from formalin-fixed par-
affin-embedded tissue and provides a score recurrence risk 10
years after treatment (low ≤ 17%, 18% < medium < 30%,
high ≥ 31%). Validated morphologic, kinetic, and spatial
heterogeneity features were extracted from each primary
tumor: tumor area and perimeter were used to measure tumor
size and ellipticity and convexity were computed to capture
shape and structure.25,58 Voxel-wise kinetic tumor features of
PE, time-to-peak, WIS/WOS were also estimated, from which
statistics were calculated to capture spatial kinetic tumor
heterogeneity.25 Multivariate linear regression was used to
test associations between radiomic features and the gene-expres-
sion based recurrence score. To identify intrinsic imaging phe-
notypes, unsupervised clustering was applied on the extracted
feature vectors.25 There was significant correlation (r ¼ 0.78,
p-value < 0.01) between MRI features and the recurrence
score.60 Four imaging phenotypes were detected (Fig. 10),
with two including only low and medium recurrence risk
tumors. Tumors with a gene expression profile at high risk of
recurrence showed a predominantly rapid contrast uptake, sug-
gesting high levels of perfusion and vessel permeability. When
phenotypes were used in a model to predict recurrence risk, the
AUC reached up to 0.82 (p-value < 0.01).

6 Discussion
We have presented CaPTk, a software suite developed to derive
extensive QIP signatures, synthesize them into diagnostic and
predictive markers, and facilitate the clinical translation of such
complex algorithms. The described software extends beyond
standard radiomic signatures that primarily investigate shape
and texture properties and incorporates multiparametric MRI
measures of diffusion and perfusion that reflect underlying
cell density, microarchitecture, and neovascularization. Impor-
tantly, CaPTk extracts spatial patterns of cancer distribution,
obtained via deformable registration methods, as well as bio-
physical parameters obtained via tumor growth modeling. Integra-
tion of these comprehensive imaging and spatial signatures via

machine learning methods was found to result into indices of
diagnostic, prognostic, and predictive value.

The ability to predict clinical outcome, for example, as evi-
denced by our results in Sec. 5.2.1, is important as it can directly
influence patient management and treatment decisions.
Although glioblastoma has a grim prognosis, some patients
live just for a few months, whereas others can survive for
more than 2 years, under combination of surgical resection, radi-
ation therapy, and chemotherapy. Consequently, knowing in
advance, the likelihood of an individual patient to respond pos-
itively to this combination treatment directly influences treat-
ment decisions. Perhaps even more importantly, evaluation of
potential therapies is tremendously confounded by high interpa-
tient variability of survival. Given that early-stage testing typi-
cally involves a dozen or two patients, for treatment effects to be
detectable under such heterogeneity, they must be very strong,
which is typically not the case. However, having a baseline pre-
dictor of response/survival can significantly improve our ability
to detect subtle treatment effects in two ways. First, relatively
more homogeneous patient subgroups can be selected into a
treatment trial. Second, post-treatment survival can be compared
with baseline predicted survival, thereby providing a self-nor-
malization mechanism that reduces heterogeneity and allows
for treatment effects to be detected more easily.

Although the main scope of CaPTk is to provide decision
support diagnostic and predictive indices, it was found to
also enhance our understanding of disease mechanisms that
might be related to various imaging signatures. Most notably,
the EGFRvIII QIP revealed that tumors harboring the mutation
might become more infiltrative and less prone to neovasculari-
zation, as evidenced by peritumoral perfusion MRI measures.
On the contrary, EGFRvIII(−) tumors seem to build local vas-
culature to support the growth of the tumor, and hence might be
more responsive to localized peritumoral treatment (resection
and/or radiation). Moreover, future work will further investigate
the spatial and temporal heterogeneity of this QIP signature of
EGFRvIII mutation, via investigation of the spatial gradient of
perfusion-derived metrics, as well as their change over time. The
surgical and treatment planning environment (e.g., Figs. 2 and 8)
will additionally provide a means for the surgeon to view (i) the
placement of the tracts around the tumor/resection cavity,
(ii) recurrence maps showing regions most likely to be affected
in the future, and (iii) vulnerability maps depicting the global
effect on the connectivity of the brain that could lead to future
cognitive deficits.

For breast cancer, the goal of neoadjuvant chemotherapy is to
down-stage locally advanced cancers prior to surgery to increase
breast conservation rates and, ideally, achieve pathologic com-
plete response (pCR), as patients with pCR have generally better
long-term outcomes.61,62 Imaging can be useful both for deter-
mining disease extent to inform surgery and for monitoring
tumor response in vivo for tailoring treatment to the individual
patient.63 As new anticancer therapies are increasingly intro-
duced, including targeted and combination therapies, there is
an opportunity for personalized treatment. In neoadjuvant
chemotherapy, while several patients may exhibit a clinical
response, the vast majority of patients do not achieve pCR solely
on the basis of standard first-line chemotherapy.61,62 In an ideal
personalized regimen, those are the patients we would like to be
able to identify as early as possible during first-line neoadjuvant
treatment, so that there is an opportunity to offer them alterna-
tive or supplemental therapies that could increase their chance of
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achieving pCR.63 Breast cancer patients may now benefit from
a number of novel therapies, such as aromatase inhibitors for
ER+ cancer, trastuzumab plus lepatinib/pertuzumab with stan-
dard anthracycline/taxane chemotherapy for Her2+ tumors,
PARP-inhibitors for triple-negative breast cancer, and/or
BRCA carriers, shown to have significant benefits.64 Results,
however, from I-SPY 165 indicate that early prediction of pCR
based on tumor volume and aggregate MRI features is far from
perfect, having moderate discriminatory accuracy at the individ-
ual level. Our results suggest that the tools developed with
CaPTk could allow to more accurately characterize the hetero-
geneous tissue changes induced by treatment. The rationale
is that this more comprehensive way of characterizing the com-
plex biological properties targeted by treatment,60,66 especially
changes related to functional angiogenic response, which occur
prior to changes in tumor size,63 will ultimately result in better
prediction of response than the current standard imaging mea-
sures. Therefore, QIP signatures hold the promise of shifting the
current paradigm in tailoring neoadjuvant treatment by introduc-
ing imaging biomarkers that are better earlier predictors of
response and survival. Ultimately, by integrating imaging with
histopathologic and molecular markers, we will be able to
develop integrative predictive models that can be more accurate
for specific tumor subtypes and individual patients.

Early prediction of treatment response and survival for lung
cancer patients is important in terms of optimal treatment plan-
ning and prognosis. Radiomics analysis using quantitative im-
aging features to predict clinical outcomes has been widely
investigated recently.67,68 Most prior analyses were designed to
predict clinical outcomes using univariate or multivariate analy-
ses in a supervised manner. However, due to data imbalance and
curse of dimensionality (small sample size and larger feature
dimensionality), it is nontrivial to obtain a reliable prediction,
and feature selection or dimension reduction techniques are typ-
ically used to improve the prediction performance. Unsuper-
vised clustering of radiomic features is a promising alternative
technique for risk stratification. As demonstrated by the results
shown in Fig. 7, early-stage NSCLC patients clustered into dif-
ferent groups based on their radiomic features had distinctive
treatment outcomes with respect to both survival and nodal failure
although they were treated uniformly with SBRT. Our results sug-
gest that the tools developed with CaPTk could be used to stratify
patients based on their PET scans collected before the treatment
so that personalized treatment could be implemented.

The flexible architecture of CaPTk enables its use in different
contexts. For example, individual components and pipelines can
be used as command-line modules, either on a local computer
or, ultimately, on a high performance computing infrastructure
and even the cloud. CaPTk’s graphical interface can provide
focused and minimally complex tools. For example, a combina-
tion of tractography with predictive maps of infiltration and
recurrence can be used for neurosurgical and radiation therapy
planning. LIBRA and related modules are currently used for
breast cancer risk estimation purposes. Finally, longer-term
goals of CaPTk development include its integration with
other packages offering complementary capabilities, such as
3-DSlicer. CaPTk describes a platform that facilitates transla-
tion, enabling operators to conduct quantitative analyses in a
straightforward manner without requiring a substantial compu-
tational background. Thus, CaPTk can be seamlessly integrated
into the typical quantification, analysis, and reporting workflow
of a radiologist, underscoring its clinical potential.

Appendix A: Applications’ Description and
Command-Line Interface
This section provides application-specific descriptions and
examples of commands, targeted toward audiences of both tech-
nical readers and imaging scientists. Tables 1–8 show the input,

Table 1 Input, output, sequence of steps, and command-line inter-
face for glioblastoma infiltration map.

Input:

Conventional imaging: T1, T2, T2-FLAIR, T1-Gd

Diffusion imaging: AX, RAD, FA, ADC

Perfusion imaging: DSC-MRI

Output:

Glioblastoma infiltration map (.nii.gz, .nii)

Sequence of steps:

1. Preprocessing:

a. Conversion to NIfTI and reorientation to left, posterior, superior
(LPS) coordination.

b. Denoising via smallest univalue segment assimilating nucleus
(SUSAN).52

c. Bias correction and affine registration of T1, T2, T2-FLAIR, DTI
and DSC-MRI images to T1-Gd.

d. Skull stripping.

e. Tumor segmentation (ET + NET).

2. Training using near and far ROIs of all the modalities:

a. Drawing an ROI (near) immediately adjacent to the tumor, within
the peritumoral edema/invasion.

b. Drawing an ROI (far) at the farthest from the ET but still within the
peritumoral edema/invasion.

c. Extracting values of conventional MRIs and DTI measures in the
near and far ROIs.

d. Extracting perfusion signal (DSC-MRI) in all the time points in the
near and far ROIs and scaling it down to five principal
components.

e. Z -score all features.

f. Leave one out cross validation via Gaussian SVM on a
retrospective cohort of 31 patients.

3. Prospective study:

a. Training an SVM model using 31 patients of retrospective study.

b. Applying Z -score on prospective data by using mean and
standard deviation of the retrospective dataset.

c. Applying the trained model to the prospective dataset.

d. Evaluating the created infiltration maps.
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Table 1 (Continued).

Command-line interface:

Estimation of infiltration on new patients:

RecurrenceEstimator –t 0 –i input_directory_path –o
output_directory_path –m model_directory_path

Infiltration maps of the test patients will be saved in the
output_directory_path.

Preparing a new infiltration estimation model:

RecurrenceEstimator –t 1 –i input_directory_path –o
output_directory_path

Model files will be saved in the output_directory_path.

Table 2 Input, output, sequence of steps, and command-line inter-
face for SPI.

Input:

Conventional imaging: T1, T2, T2-FLAIR, T1-Gd

Perfusion imaging: PH, PSR, rCBV

Diffusion imaging: AX, RAD, FA, ADC

Patient’s age

Output:

SPI

Sequence of steps:

1. Preprocessing:

a. Conversion to NIfTI and reorientation to LPS coordination.

b. Denoising via SUSAN.52

c. Bias correction, and affine registration of T1, T2, T2-FLAIR, DTI
and DSC images to T1-Gd.

d. Skull stripping.

e. Histogram matching of T1, T2, T2-FLAIR, T1-Gd with a standard
reference template.

f. GLISTR-based segmentation, both in patient’s and atlas space.

2. Feature extraction from various tumor compartments using all the
modalities:

a. Volumetric features: size of ET, NET, and ED, and their
combinations.

b. Statistical features: mean and standard deviation of intensities of
all the modalities in ET, NET, and ED.

Table 2 (Continued).

c. Histogram-based features: percentage of voxels in each
distribution bin of the histogram calculated for all the modalities in
ET, NET, and ED.

d. Location-based features: percentage of tumor located in different
regions of the brain, calculated by registering segmentation to a
standard atlas, and distance of tumor (ET + NET) and edema to
ventricles.

e. Demographics: age.

3. Data formulation and classification:

a. Z -score data normalization.

b. Generating two SVM classifiers using forward feature selection:
one for patients with more and less than 6 months survival, and
the second for patients having more and less than 18 months
survival.

c. Combining scores from both models to compute the composite
SPI.

d. Retrospective evaluation of models on a cohort of 110 patients.

e. Prospective evaluation of models on a cohort of 57 patients.

Command-line interface:

SPI calculation on new patients:

SurvivalPredictor –t 0 –i input_directory_path –o
output_directory_path –m model_directory_path

SPI indices of the test patients will be saved in. csv file in the
output_directory_path.

Preparing a new SPI calculation model:

SurvivalPredictor –t 1 –i input_directory_path –o
output_directory_path

Model files will be saved in the output_directory_path.

Table 3 Input, output, sequence of steps, and command-line inter-
face for surrogate imaging marker for EGFRvIII.

Input:

Perfusion imaging: DSC-MRI

Output:

PHI

Sequence of steps:

1. Preprocessing:

a. Conversion to NIfTI and reorientation to LPS coordination.

b. Bias correction.
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Table 3 (Continued).

2. PHI estimation using near and far ROIs:

a. Drawing an ROI (near) immediately adjacent to the tumor, within
the peritumoral edema/invasion.

b. Drawing an ROI (far) at the farthest from the ET but still within the
peritumoral edema/invasion.

c. Extracting dynamic perfusion signal (DSC-MRI) from both the
near and far ROIs.

d. Estimating the three principal components of the temporal
perfusion dynamics for each ROI.

e. Calculating the Bhattacharyya coefficient (PHI value) between
the selected principal components of each ROI.

3. Prospective study:

a. Estimation of PHI threshold on 64 patients that best distinguished
EGFRvIII+ and EGFRvIII− cases.

b. Applying estimated PHI threshold on 78 test patients to find their
EGFRvIII status.

Command-line interface:

EGFRvIIISurrogateIndex.exe -i input_Image_path.nii.gz -m
maskWithNearAndFarLabels_path.nii.gz

System displays the output (PHI).

Table 4 Input, output, sequence of steps, and command-line inter-
face for SBRT.

Input:

CT image of lung

PET image lung

Output:

Prediction of lung nodal failure

Sequence of steps:

1. Preprocessing:

a. Tumor segmentation.

2. Feature extraction from each tumor region using both the
modalities:

a. Texture features: gray level co-occurrence matrix (GLCM), gray-
level run-length matrix (GLRLM), and LBP.

b. Intensity features: minimum, maximum, and mean.

c. Shape features: perimeter, eccentricity, principle moments.

3. Data formulation and classification:

Table 4 (Continued).

a. Normalizing data using Z -score.

b. Generating a linear SVM model on patients responded/not
responded to the treatment.

c. Leave-one-out cross-validation on 80 subjects.

Note: This representation of the algorithm is slightly different from the
one presented in Sec. 5.2.3 as supervised learning method has been
used in CaPTk instead of the clustering method in the actual study.39

Command-line interface:

Lung analysis on test subject:

SBRT_Lung_Analyze.exe -c input_CT_image_path.nii.gz –p
input_PET_image_path.nii.gz -m mask_image_path.nii.gz -t
trained_model_path.xml -o output_file_path.txt

Provides prediction of lung nodal failure.

Table 5 Input, output, sequence of steps, and command-line inter-
face for LIBRA.

Input:

Full-field digital mammography (FFDM)* in digital imaging and
communications in medicine (DICOM) format.

Note: LIBRA also supports batch processing when the input is
a folder of multiple DICOM images. LIBRA works on both raw (i.e.,
“for processing”) and vendor postprocessed (i.e., “for presentation”)
FFDM images, and has thus far been validated for general electric
Healthcare and Hologic FFDM systems.

Output:

For each FFDM image processed by LIBRA, the software
generates:

• Quantitative estimates of breast area, dense area, and breast
PD% that are stored in a comma separated text file (.csv).

• A JPG image of the breast and density segmentation outlines
overlaid on a window-leveled version of the digital
mammogram.

• Binary masks of breast and density segmentations in
a MATLAB-formatted (.mat) data file.

Optionally, LIBRA may also generate:

• Intermediate graphics in addition to the final segmentation
outlines.

• A processing log file.

All results are stored in the output folder defined by the user.

Sequence of steps:

1. Preprocessing and breast segmentation:

a. Intensity-normalization of input image based on image type (raw
or processed) and, then, resizing for faster computation.
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Table 5 (Continued).

b. Applying edge-detection algorithms to delineate the boundary of
the breast.

c. Calculation of breast area.

2. Dense tissue segmentation:

a. Determining the number of dominant clusters of similar gray-level
intensity as the number of local peaks in the gray-level histogram
of the breast region.

b. Dividing the breast into regions of similar gray-level intensity
using fuzzy c-means to assign each image pixel to one of the
dominant clusters.

c. Estimating a wide range of texture and shape features for each
cluster.

d. Finally aggregating the clusters by a pretrained support-vector
machine classifier to the final dense tissue area.

e. Calculating the ratio of the segmented absolute dense area to the
total breast area to obtain breast PD%.

Command-line interface:

libra.exe <input_directory_path> <output_directory_path>
<saveIntermediate>

• saveIntermediate <bool> Boolean value to save the
intermediate output (1) or not (0)

Saves the output maps in output_diretory_path.

Table 6 Input, output, sequence of steps, and command-line inter-
face for PRM.

Input:

Conventional imaging: DCE-MRI

Segmentation: Segmented tumor

Output:

Prediction of recurrence-free survival

Sequence of steps:

1. Preprocessing:

a. Converting DICOM objects to a NIfTI image of given orientation.

b. Bias correction.

c. Histogrammatching and image registration between the baseline
and the follow-up images.

d. Tumor segmentation.

2. Training within ROIs using all the defined features:

a. Extracting values of kinetic descriptors for both baseline and
follow-up images.

Table 6 (Continued).

b. Drawing an ROI within the tumor.

c. Deforming ROI of follow-up image to the space of baseline image.

d. Creating PRM for each feature.

e. Applying univariate Cox proportional hazard ratio to select best
PRM features for 106 patients.

f. Training a multivariate model using Cox regression to predict
recurrence-free survival for 106 patients.

3. Prospective study:

a. Applying the trained model to the new subjects.

b. Evaluating the created PRM maps.

Command-line interface:

PRM on new patients:

ParametricResponseMap –t 0 –i input_directory_path –o
output_directory_path –m model_directory_path

Parametric response maps of the test patients will be saved in the
output_directory_path.

Table 7 Input, output, sequence of steps, and command-line inter-
face for WhiteStripe.

Input:

Conventional imaging: T1/T2

Output:

Normalized T1/T2 image

Sequence of steps:

1. Preprocessing:

a. Bias correction.

b. Either skull-stripping or rigid alignment to Montreal Neurological
Institute atlas space.

2. Image normalization:

a. Getting the intensity values of voxels from specified ROI of an
image.

b. Computing the histogram of above intensity values to find the
distribution of white matter pixels.

c. Using mean and standard deviation from above identified
distribution, normalize the images as the normalized image =
(image − mean)/standard deviation.

Command-line interface:

For T1 image (t=0):

WhiteStripe.exe -i input_file_path.nii.gz –o output_file_path.nii.gz -t 0

For T2 image (t=1):

WhiteStripe.exe -i input_file_path.nii.gz –o output_file_path.nii.gz -t 1
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output, sequence of steps, and command-line interfaces for glio-
blastoma infiltration maps, SPI, EGFRvIII index, SBRT,
LIBRA, PRM, WhiteStripe, and Confetti, respectively. More
detail on how to use different applications from GUI and com-
mand-line interface can be found on CaPTk’s website.14

CaPTk’s NITRC documentation page69 has extensive documen-
tation, including tutorial videos to serve as a foundation for users
beginning to work with CaPTk.

Appendix B: Features Supported by CaPTk
The feature panel in CaPTk enables clinicians and other
researchers to easily extract feature measurements, commonly
used in image analysis, and conduct large-scale analyses.
Although the feature panel in CaPTk is being actively expanded,
it currently comprises (i) intensity-based, (ii) textural, and
(iii) volumetric/morphologic features. The general idea is to
keep the features generic and adaptable for different types of
medical images by just changing the input parameters. We pro-
vide chosen parameters, validated for brain, breast, and lung
applications within CaPTk. Users can alter these preselected val-
ues or create their own set of parameters. The output of the fea-
ture extraction tab can be either a comma-separated (csv) file or
an extensible markup language (xml) file, each containing fea-
ture names and values and recording the chosen parameters.
Table 9 gives details about the currently available features.
Intensity-based and textural features are extracted per modality,
per annotated region, and per offset (offset represents the radius
around the center pixel; for radius 1, the offset will be �1 value.

Appendix C: Clinician’s Opinion
This is a very powerful tool, with applications that support
neuro-oncology, brain connectomics, and lung and breast radio-
mics. The applications are far reaching and could have signifi-
cant clinical impact, having the potential for changing treatment
guidelines. For example, the glioblastoma recurrence prediction
tool draws probability maps highlighting areas at high risk for
recurrence, which could be targeted with surgery or increased
radiation therapy, and, in turn, could increase patient survival.
The application on glioblastoma survival prediction may have
significant prognostic value, which is important for patients
and their families.

Table 8 Input, output, sequence of steps, and command-line inter-
face for Confetti.

Input:

A fiber set: Includes fibers to be clustered.

A set of track density images (TDIs): Each TDI image is a voxel-
map for number of fibers reaching to one of the 87 gray matter ROIs
defined by Freesurfer using the Desikan atlas.

Output:

Set of fiber bundles corresponding to known white matter tracts.

Sequence of steps:

1. Connectivity signature generation for fibers:

a. Representation of each fiber by the probabilities of connecting to
87 gray matter regions of Desikan atlas. TDI images are used for
this purpose.

2. Clustering of fibers:

a. Randomly assigning fibers to bundles.

b. Representing each bundle as a multinomial distribution.

c. Using expectation maximization to refine bundle assignments at
each iteration, while using the provided template as a prior, until a
convergence is achieved.

d. Assigning resulting bundles (clusters) to white matter tracts of
interest, as defined in the provided template.

3. Extraction of predefined white matter tracts:

a. Saving fiber bundles that are assigned to white matter tracts of
interest.

Command-line interface:

Clustering of the generated fibers into bundles:

Confetti cluster -s InputTractSignatures.csv -k 200 -o
OutputClusterIDs.csv

Identification of specific tracts (requires an annotated example):

Confetti extract -t TemplateFolder/ -f InputFibers.Bfloat -c
InputClusterIDs.csv -o OutputTracts.Bfloat

Table 9 Set of radiomic features supported by CaPTk.

Specific features Parameters Range Default Description

Morphologic70,71

• Elongation Dimensions 2-D:3-D 3-D • Elongation is the length of largest principle moment.

• Perimeter Axis x , y , z z • Perimeter is the convex hull that contours the region.

• Roundness • Roundness = As/Ac = (area of a shape)/(area of circle), where circle
has the same perimeter.
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Table 9 (Continued).

Specific features Parameters Range Default Description

• Eccentricity • Eccentricity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða � bÞ∕c2

p
, where c is the longest semiprincipal

axes of an ellipsoid fitted to an ROI, and a and b are the second and
third longest semiprincipal axes of the ellipsoid.

Histogram-based4

• Bin frequency Num_Bins NA 10 • Percentage of voxels in each distribution bin of the histogram.

First-order statistics

• Minimum intensity NA NA NA • The raw minimum intensity of the ROI in an MRI volume.

• Maximum intensity • The raw maximum intensity of the ROI in an MRI volume.

• Mean intensity • The raw mean intensity of the ROI in an MRI volume.

• Standard deviation • The standard deviation of the raw intensities of the ROI in an MRI
volume.

• Variance • Variance of the histogram of the raw intensities of the ROI in an MRI
volume.

• Skewness • Skewness of the histogram of the raw intensities of the ROI in an
MRI volume.

• Kurtosis • Kurtosis of the histogram of the raw intensities of the ROI in an MRI
volume.

GLRLM72

• SRE Num_Bins N.A. 10 • The “short run emphasis” within the ROI in an MRI volume.

• LRE Num_Directions 3:13 13 • The “long run emphasis” within the ROI in an MRI volume.

• GLN Radius N.A. 2 • The “gray-level nonuniformity” within the ROI in an MRI volume.

• RLN Dimensions 2-D:3-D 3-D • The “run-length nonuniformity” within the ROI in an MRI volume.

• LGRE Axis x , y , z z • The “low gray-level run emphasis” within the ROI in an MRI volume.

• HGRE Offset Average/Individual Average • The “high gray-level run emphasis”within the ROI in an MRI volume.

• SRLGE Distance_Range 1:5 1 • The “short run low gray-level emphasis” within the ROI in an MRI.

• SRHGE • The “short run high gray-level emphasis” within the ROI in an MRI.

• LRLGE • The “long run low gray-level emphasis” within the ROI in an MRI
volume.

• LRHGE • The “long run high gray-level emphasis” within the ROI in an MRI
volume.

GLCM73

• Energy Num_Bins N.A. 10 • The energy within the ROI in an MRI volume.

• Contrast Num_Directions 3:13 13 • The contrast within the ROI in an MRI volume.

• Entropy Radius N.A. 2 • The entropy within the ROI in an MRI volume.
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Table 9 (Continued).

Specific features Parameters Range Default Description

• Homogeneity Dimensions 2-D:3-D 3-D • The homogeneity within the ROI in an MRI volume.

• Correlation Offset Average/Individual Average • The correlation within the ROI in an MRI volume.

• Variance Axis x , y , z z • The variance within the ROI in an MRI volume.

• SumAverage • The SumAverage within the ROI in an MRI volume.

• Variance • The variance within the ROI in an MRI volume.

• Autocorrelation • The AutoCorrelation within the ROI in an MRI volume.

Gray level size-zone matrix (GLSZM)72,74

• SZE Num_Bins N.A. 10 • The “small zone emphasis” within the ROI in an MRI volume.

• LZE Num_Directions 3:13 13 • The “large zone emphasis” within the ROI in an MRI volume.

• GLN Radius N.A. 2 • The “gray-level nonuniformity” within the ROI in an MRI volume.

• ZSN Dimensions 2-D:3-D 3-D • The “zone-size nonuniformity” within the ROI in an MRI volume.

• ZP Axis x , y , z z • The “zone percentage” within the ROI in an MRI volume.

• LGZE Distance_Range 1:5 4 • The “low gray-level zone emphasis” within the ROI in an MRI
volume.

• HGZE • The “high gray-level zone emphasis” within the ROI in an MRI
volume.

• SZLGE • The “small zone low gray-level emphasis” within the ROI in an MRI
volume.

• SZHGE • The “small zone high gray-level emphasis” within the ROI in an MRI
volume.

• LZLGE • The “large zone low gray-level emphasis” within the ROI in an MRI
volume.

• LZHGE • The “large zone high gray-level emphasis” within the ROI in an MRI
volume.

• GLV • The “gray-level variance” within the ROI in an MRI volume.

• ZSV • The “zone-size variance” within the ROI in an MRI volume.

Volumetric features70,71

• Volume/area Dimensions 2-D:3-D 3-D • Size of ROI in terms of number of voxels.

Axis x , y , z z

LBP75

Radius N.A. N.A. The LBP codes are computed using N sampling points on a circle of
certain radius and using mapping table.Neighborhood 2:4:8 8

Neighborhood gray-tone difference matrix (NGTDM)76

• Coarseness Num_Bins N.A. 10 • The coarseness within the ROI in an MRI volume.
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The software tool is very well-structured, with different tabs
for preprocessing and applications, which allow the user to nav-
igate easily and efficiently. Interactive tools are available to
annotate anatomical regions or lesions, and images can be
saved and shared.

The documentation that comes along with CaPTk package is
detailed and well-organized, and step by step instructions are
available for all the applications. CaPTk also provides a link
to download sample data, so users can become familiar with
the different applications, as well as with the mechanics of
the software to run those applications.

What I would suggest though that the tool could be run
by technologists that do postprocessing for more routine imag-
ing studies (e.g., CT angiography), then the results would be
made accessible to clinicians for making patient management
decisions.

Appendix D: Authors’ Discussion about the
Clinician’s Opinion
We appreciate the valuable feedback provided by Dr. Michel
Bilello about CaPTk. Such positive feedback of our software
by the clinicians is very encouraging and will help improve
the quality of the software and to seamlessly integrate it in
the clinical workflow. In fact, most of the modules of CaPTk
were developed in very close collaboration with various clini-
cians at Penn (Neurosurgeons, Radiation Oncologists,
Oncologists, and Radiologists), therefore can be readily used
in clinical settings. This makes CaPTk a unique software that
has significant clinical impact.

We appreciate the concern raised by Michel Bilello that the
software is not meant to be used by the clinician rather the
results generated by the software (such as glioblastoma recur-
rence probability maps, survival prediction, and breast density
estimation) can be used. We strongly agree with Dr. Bilello that
there should be a team of technologists that do preprocessing
and acquire results, which would then be used by the clinician
in the decision-making process.
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