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Abstract

Purpose: Accurate segmentation of treatment planning computed tomography (CT) images is
important for radiation therapy (RT) planning. However, low soft tissue contrast in CT makes the
segmentation task challenging. We propose a two-step hierarchical convolutional neural
network (CNN) segmentation strategy to automatically segment multiple organs from CT.

Approach: The first step generates a coarse segmentation from which organ-specific regions
of interest (ROIs) are produced. The second step produces detailed segmentation of each organ.
The ROIs are generated using UNet, which automatically identifies the area of each organ and
improves computational efficiency by eliminating irrelevant background information. For the
fine segmentation step, we combined UNet with a generative adversarial network. The generator
is designed as a UNet that is trained to segment organ structures and the discriminator is a fully
convolutional network, which distinguishes whether the segmentation is real or generator-
predicted, thus improving the segmentation accuracy. We validated the proposed method on
male pelvic and head and neck (H&N) CTs used for RT planning of prostate and H&N cancer,
respectively. For the pelvic structure segmentation, the network was trained to segment the pros-
tate, bladder, and rectum. For H&N, the network was trained to segment the parotid glands (PG)
and submandibular glands (SMG).

Results: The trained segmentation networks were tested on 15 pelvic and 20 H&N independent
datasets. The H&N segmentation network was also tested on a public domain dataset (N ¼ 38)
and showed similar performance. The average dice similarity coefficients (mean� SD) of pelvic
structures are 0.91� 0.05 (prostate), 0.95� 0.06 (bladder), 0.90� 0.09 (rectum), and H&N
structures are 0.87� 0.04 (PG) and 0.86� 0.05 (SMG). The segmentation for each CT takes
<10 s on average.

Conclusions: Experimental results demonstrate that the proposed method can produce fast,
accurate, and reproducible segmentation of multiple organs of different sizes and shapes and
show its potential to be applicable to different disease sites.
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1 Introduction

Radiation therapy (RT) is widely used for treating cancer patients where high-energy radiation is
used to kill cancer cells. The efficacy of RT depends on accurate delivery of therapeutic radiation
dose to the target while sparing adjacent healthy tissues for which accurate segmentation of the
target tumor and organs at risk (OARs) is critical. Manual contouring by radiation oncologists is
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still considered as the gold standard in current clinical practice, but it is very time consuming and
the quality of the segmentation varies depending on the physician’s knowledge and experience.
Computed tomography (CT) is used as the reference image for radiotherapy planning as it offers
the electron density information needed for dose calculation. However, poor soft-tissue contrast
in CT images makes the contouring process challenging, thus yielding to large inter- and intra-
observer contouring variability.1–4

Automatic organ segmentation has been an active research area for the last few decades.
Among existing automatic segmentation methods, state-of-the-art methods include (but are not
limited to) atlas-based, model-based, and learning-based methods. In atlas-based methods, atlas
images are registered to the image to be segmented followed by atlas label propagation to the
target image to get the final segmentation. Since a single atlas cannot perfectly fit every patient,
use of multiple atlases has become a standard baseline for atlas-based segmentation.5–9 Although
multi-atlas-based segmentation has been widely adopted with state-of-the-art segmentation qual-
ity, it requires a significant amount of time as it involves multiple registrations between the atlas
and the target volumes. Model-based segmentation utilizes a deformable model and/or a priori
knowledge of the target such as shape, intensity, and texture to constrain the segmentation
process.10–15 It is often used in combination with another method, e.g., multi-atlas-based seg-
mentation, to further improve the segmentation quality. Such hybrid approaches have been
applied to the delineation of head and neck (H&N) structures on CT images, showing promising
results.10,16–18 These model-based methods require fine-tuning parameters for every structure
to be segmented and are sensitive to structure and image quality variations. Learning-based
methods train a classifier or regressor from a pool of training images. Then the segmentation
is generated by predicting the likelihood map.19,20 Conventional learning-based approaches
require hand-crafted feature extraction and the segmentation quality significantly depends upon
the extracted features.

In the last several years, deep learning-based automatic segmentation has demonstrated its
potential in accurate and consistent organ segmentation. In particular, convolutional neural
network (CNN) became state-of-the-art in solving challenging image classification and seg-
mentation problems due to its capability of extracting deep image features.21–23 CNN archi-
tecture consists of several hidden convolutional layers followed by an activation function and
pooling layers that enable automatic feature learning to accomplish classification and segmen-
tation tasks. CNN-based segmentation approaches have been widely applied to both normal
organ and tumor segmentation problems,23,24 significantly improving the segmentation per-
formance over other state-of-the-art methods. The introduction of a fully convolutional net-
work (FCN) especially enabled image segmentation with arbitrary image sizes through
efficient and robust learning and inference.25 One of the most successful FCN approaches
in medical image segmentation is UNet, an FCN with skip connection and capability of
extracting contextual features from contracting layers and structural information from expan-
sion layers.26 UNet and its variants have shown very promising results in automatic medical
image segmentation.27–33

CNN-based automatic segmentation approaches have been widely used for multiple organ
segmentations in CT images. Roth et al.34 proposed a multi-level CNN model for pancreas seg-
mentation. Wang et al.32 developed an FCN combined with dilated convolution and deep super-
vision for prostate segmentation. Men et al.35 used a deep dilated CNN to segment the clinical
target volume and pelvic OARs. Kazemifar et al.31 proposed a CNN-based segmentation of CT
male pelvic organs using two-dimensional (2-D) UNet. Balagopal et al.36 proposed a cascaded
multi-channel 2-D and three-dimensional (3-D) UNet with aggregated residual networks to seg-
ment male pelvic CT images. Wang et al.33 used UNet with boundary-sensitive information to
segment male pelvic structures. Dong et al.37 proposed a UNet combined with generative adver-
sarial network (GAN)38 to segment multiple organs in thorax CT. Recently, CNN has been used
for organ segmentation in magnetic resonance imaging (MRI),28,30,39–42 achieving promising
results utilizing excellent soft tissue contrast in MRI that improves identification of organ boun-
daries. However, considering that CT is used as the reference images for RT planning, automatic
segmentation of CT images is highly desired despite being more challenging than segmenting
magnetic resonance (MR) images.
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CNN-based models have also shown promising results in segmenting H&N structures.
Existing patch-based networks to segment H&N anatomical structures used 2-D/3-D local
patches in a sliding window to identify OARs, which are unable to capture global fea-
tures.43–46 These patch-based methods also require pre- and postprocessing steps with additional
parameters tuning. Chan et al.47 proposed a cascaded CNN for single- and multi-task learning
through transfer learning for H&N anatomy segmentation using a limited number of training
samples. Hänsch et al.48 explored the potential of 2-D, 2-D ensemble, and 3-D UNet-based mod-
els in parotid gland segmentation. Zhu et al.49 proposed a UNet-based model with residual blocks
for the segmentation of OARs in H&N where the data imbalance problem is addressed using a
combination of dice and focal loss function. Tong et al.50 presented a CNN model with GAN and
shape constraint to segment H&N structures in MR and CT images.

Although many CNN-based approaches require a preprocessing step that reshapes or crops
input images to a proper size and resolution for the segmentation network and/or try to segment
multiple organs simultaneously, several groups investigated hierarchical or multi-level CNN seg-
mentation approaches to automatically segment target organ(s) of interest. This strategy has been
used to segment the pancreas,34,51,52 esophagus,53 and also multiple organs in the abdomen,54

H&N,55 and male pelvic region36 in CT images, demonstrating improved efficiency and segmen-
tation performance by localizing the target region and letting the segmentation network focus on
the local region around the target organ to be segmented.

In this paper, we propose a hierarchical coarse-to-fine volumetric segmentation of CTwhere a
coarse segmentation is produced using a multi-class 3-D UNet to determine organ-specific
regions of interest (ROIs) and fine segmentation is performed utilizing GAN with a 3-D UNet
as generator and FCN as discriminator. GAN contributes by providing learned parameters of
accurate segmentation by distinguishing between real and generated segmentations and thus
globally improving segmentation accuracy. Unlike many existing hierarchical/multi-level
approaches that are based on 2-D/2.5-D images34,53 and/or patches with sliding or tiling strat-
egies,34,51,52,54 our network is fully 3-D-based and processes the input 3-D CT volume and
outputs associated multiple organ segmentations. Our method is similar to Balagopal et al.36

(2-D localization network + modified 3-D UNet segmentation network) and Wang et al.55

(3-D UNet bounding box network with sliding + 3-D UNet segmentation network) that first
create bounding boxes for organs to be segmented followed by cropped image segmentation
using (modified) UNet. Our approach creates organ-specific ROIs by 3-D multi-class segmen-
tation, and the fine segmentation is performed using a 3-D UNet constrained by GAN, thus
producing improved segmentation as reported in our experiments and results. Our initial
approach and preliminary results on male pelvic CT segmentation were reported in a conference
paper.56 We further extended our approach to two different anatomical sites; male pelvic and
H&N CT images, and trained and tested the proposed networks on a much larger cohort of data.
The proposed approach showed its robust performance on both sites with state-of-the-art per-
formances, demonstrating its generalizability to multiple sites and organs. H&N especially
involves many OARs to be contoured requiring significant effort for contouring, therefore, it
can benefit from the proposed method. We present complete methodology and extensive val-
idation results using larger (internal and external) datasets in this paper.

2 Datasets and Preprocessing

We trained the proposed hierarchical CNN and tested to segment multiple organs in CT images
of two different disease sites, male pelvic and H&N regions. Deidentified CT image data and
associated contours drawn by the attending radiation oncologists were obtained from the
patients’ RT plan records under the approval of the institutional review board.

2.1 Male Pelvic CT

We obtained 290 pelvic CT images from prostate cancer patients who were treated by either
external-beam RT (EBRT) or brachytherapy. Each patient had CT images of the pelvic region
and manual contouring of the prostate, bladder, and rectum drawn by the attending radiation
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oncologist. We used 275 datasets for training and the remaining 15 for testing. We augmented the
training datasets to 1100 by applying random shifting, rotation, and flipping. The CT images
have isotropic in-plane pixel sizes ranging from 1.17 to 1.36 mm and through-plane slice spacing
of 3 mm. The sizes of the CT images range from 512 × 512 × ½109 to 284�.

In these prostate cancer patients’ CT images, there are fiducial markers (for EBRT cases) or
brachytherapy seeds (for brachytherapy cases) implanted within the gland, creating very high-
intensity values. We preprocessed CT images to remove such fiducials and seeds by automati-
cally identifying them by thresholding and replacing their intensity values with a mean intensity
of the neighboring gland voxels.

For coarse segmentation network training, we downsampled the original CT image to 5 ×
5 × 5 mm3 voxel resolution with an image size of 118 × 118 × 72. The coarse segmentation
network produced a rough segmentation of the multiple organs of interest, i.e., prostate, bladder,
and rectum, from which we extracted the ROI for each organ. The original CTwas then cropped
for each ROI, yielding cropped CT images of 96 × 96 × 32, 112 × 112 × 64, and 96 × 96 ×
64 voxels for the prostate, bladder, and rectum, respectively, with a voxel size of 2.3 × 2.3 ×
3 mm3 for the successive fine segmentations. Notice that we did not use the original CT res-
olution due to varying in-plane resolutions and chose these ROIs and voxel sizes to sufficiently
cover each organ, considering the graphics processing unit (GPU) memory for processing 3-D
volume.

2.2 H&N CT

The performance of the proposed method was further evaluated for salivary glands segmentation
in H&N CT. We collected 220 CT images from H&N cancer patients treated by EBRT. We used
200 datasets for training and 20 datasets for testing. The parotid glands (PG) and submandibular
glands (SMG) were contoured by the attending radiation oncologists during the routine RT plan-
ning. The CT images had 512 × 512 × ½100 to 307� voxelswith an isotropic in-plane pixel size of
0.94 to 1.36 mm and through-plane slice spacing of 3 to 3.13 mm.

Similar to the pelvic cases, we downsampled the original H&N CT to 5 × 5 × 5 mm3 voxel

resolution with the volume dimension of 112 × 112 × 72 voxels for the coarse segmentation
network training. We augmented the training data by shifting, rotation, and flipping, yielding
800 training datasets. The coarse segmentation network produced a rough segmentation of the
salivary glands from which we extracted the ROIs of the left and right side of PG and SMG.
The original CT images were then cropped using the ROIs to produce a PG ROI image of
56 × 56 × 32 voxels and SMG ROI image of 48 × 48 × 32 voxels. Since salivary glands are
much smaller than the pelvic organs, we were able process the fine segmentation at the original
CT resolution. Also given the symmetric nature of both PG and SMG, we merged the flipped
left PG and SMG with the right PG and SMG and trained only two networks: one for PG
and the other for SMG for the fine segmentation. Since the coarse segmentation network seg-
ments left and right glands separately, laterality is known and can be restored after the fine
segmentation.

We have also tested the trained (on our local data as described above) network on the Public
Domain Database for Computational Anatomy (PDDCA) version 1.4.1.57 This dataset includes
48 H&N CT images among which 38 datasets have manual segmentations of both left and right
PG and SMG. These 38 CT images had 512 × 512 × ½76 to 263� voxels with a pixel size of 0.88
to 1.27 mm and through-plane slice spacing of 2 to 3 mm.

3 Methods

The proposed hierarchical CNN segmentation approach consists of two steps: coarse and fine
segmentations as shown in Fig. 1. The coarse segmentation generates organ-specific ROIs that
are used to crop the input CT for each organ. The fine segmentation then processes the cropped
ROI volume to produce high-quality segmentation of each organ. Finally, the segmented organ
masks are merged to form a multi-organ segmentation of the patient. The following sections
describe each step in detail.
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3.1 Coarse Segmentation

In the coarse segmentation step, multi-label segmentation is performed on the downsampled
CT by a multi-class 3-D UNet. Organ-specific ROIs are extracted from the computed labels,
each containing the corresponding organ of interest. The original CT volume contains a large
background that carries contextual information irrelevant to the organs to be segmented.
Including such background does not help each organ segmentation, but rather burdens in feature
space and increases computational complexity. The computed ROIs allow us to crop the original
CT to smaller volumes, compactly including the organs to be segmented, and therefore, to reduce
computational complexity while improving the segmentation performance. Note that the coarse
segmentation network is trained to segment all the organs of interest together instead of
segmenting them separately. CT images are downsampled to a lower resolution to further save
computational resources and time as only coarse-segmented labels are required in this step.

The modified 3-D UNet architecture used for coarse segmentation consists of contraction and
expansion paths each with four layers. Each layer of the contraction path is composed of two
3 × 3 × 3 convolutions (3 × 3 × 3 conv), followed by a leaky rectified linear unit (ReLU) acti-
vation function,58 and 2 × 2 × 2 max pooling. In each layer, batch normalization (BN) is added
to speed up the learning process by reducing sensitivity to parameter initialization59 and dropout
to prevent overfitting.60 The number of feature maps in the first layer is 16, which doubles at each
successive layer. The expansion path has a similar architecture to the contraction path except that
in each layer it has a 2 × 2 × 2 up-convolution (2 × 2 × 2 up-conv) that halves the number of
feature maps. The last 1 × 1 × 1 convolution (1 × 1 × 1 conv) layer maps the output features to
the desired number of labels. Skip connections are used to transfer features extracted from the
early contraction path to the expansion path.

Once this first network is trained, it produces a coarse segmentation map of the organs of
interest, which is then used to automatically extract ROIs for every organ. Based on the coarse
segmentation, the centroid of each organ is calculated and then the ROI of each organ is cropped
from the original image for which the centroid of each segmented organ is the center of the
cropped ROI. The size of ROIs was determined to be large enough to cover each organ and
enough surrounding background context.

3.2 Fine Segmentation

The fine segmentation network takes the organ-specific cropped CT images obtained from the
coarse segmentation as input and segments of each organ of interest. Organ-specific fine seg-
mentation CNNs are designed using 3-D UNet and GAN as shown in Fig. 2. The GAN network
consists of generator and discriminator networks where the two networks compete with each
other to produce an accurate segmentation. A modified 3-D UNet is used as a generator and
trained using the cropped CT images and manual segmentations. The 3-D UNet has similar
architecture as described for the coarse segmentation network as shown in Fig. 3. The generator
produces the predicted label of the organ of interest. On the other hand, a standard FCN

Fig. 1 Workflow of the proposed hierarchical segmentation method.
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composed of four strided convolutions each with dropout and BN followed by a fully connected
layer is used as the discriminator (Fig. 4).The discriminator is trained using manually contoured
labels to determine if the generator-predicted labels are real or fake.

For GAN, the generator network G and discriminator network D are trained simultaneously.
The objective of G is to learn the distribution px from the dataset x and then sample a variable z
from the uniform or Gaussian distribution pzðzÞ. The purpose of D is to classify whether an
image comes from the training dataset or from G. To define the cost function of the GAN, let
lfake and lreal denote labels for fake (generator-produced labels) and real data (labels from training
data), respectively. Then the cost function for D and G are defined using a least squares loss
function61 as follows:

Fig. 2 The UNet-GAN architecture for fine segmentation.

Fig. 3 Generator network.

Fig. 4 Discriminator network.
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EQ-TARGET;temp:intralink-;e001;116;735lossD ¼ 1

2
Ex∼pxðxÞ½ðDðxÞ − lrealÞ2� þ

1

2
Ez∼pzðzÞ½ðDðGðzÞÞ − lfakeÞ2�; (1)

EQ-TARGET;temp:intralink-;e002;116;691lossG ¼ 1

2
Ez∼pzðzÞ½ðDðGðzÞÞ − lrealÞ2�: (2)

To maximize the similarity between the generator-produced and the ground truth segmen-
tations, we also compute a weighted dice loss defined as

EQ-TARGET;temp:intralink-;e003;116;646lossdice ¼
X
i

wi

�
1 −

P
x biðxÞpðx; iÞP

x biðxÞ þ pðx; iÞ
�
; (3)

where for each class i, wi is the class weight, biðxÞ is the binary label at each pixel x, and pðx; iÞ
is the predicted binary label. In case of multi-class coarse segmentation, i in Eq. (3) represents
the class label for each organ to be segmented. For the fine segmentation, i ¼ wi ¼ 1 as only one
class needs to be predicted. The final objective function for the generator is defined as the sum of
the least squares generator loss and the weighted dice loss as follows:

EQ-TARGET;temp:intralink-;e004;116;539loss ¼ lossdice þ λ lossG; (4)

where λ ∈ [0,1].

3.3 Network Implementation

We implemented the proposed CNNs using Tensorflow62 and used the following settings for
both coarse and fine segmentation networks. The initial learning rate was set to 5 × 10−4.
We used an Adam optimizer, a stochastic gradient descent-based optimizer that adaptively esti-
mates the lower order moments and automatically adjusts step size during optimization.63

Dropout rate was 0.25 and the mini-batch size was 16. We trained and tested our network
on a workstation with an Intel Xeon processor with 32 GB RAM and NVIDIA GeForce
GTX TITAN X GPU with 12 GB memory.

4 Experiments and Results

4.1 Network Training and Computation Time

For pelvic images, training for the coarse and fine segmentation networks took 15 and 32 h,
respectively. In the testing phase, coarse segmentation took 3 s and fine segmentation for each
organ took 4 s. For the H&N images, training of the coarse and fine segmentation networks
took 15 and 28 h, respectively. The computation time for coarse segmentation was 3 s and fine
segmentation for each organ took 4 s.

4.2 Evaluation Criteria

We quantitatively assessed the automatic segmentation quality using six metrics in comparison
to the ground truth segmentation.64 To measure the degree of overlap between the automatic
and ground truth segmentations, we computed the dice similarity coefficient (DSC). To compare
the distances between the surfaces of the automatic and ground truth segmentations, we
computed mean surface distance (MSD) and 95% Hausdorff distance (HD95), i.e., the 95th
percentile of the distances between the surface points of the automatic and ground truth seg-
mentations. Instead of maximum HD, HD95 was computed to discard the impact of a small
subset of inaccurate segmentation while evaluating the overall segmentation quality. Finally,
to measure the accurately segmented portion among the automatic segmentation, we computed
positive predictive value (PPV) and sensitivity (SEN) defined as PPV ¼ jVgt ∩ Vsegj∕jVsegj and
SEN ¼ jVgt ∩ Vsegj∕jVgtj, where Vgt and Vseg are the ground truth and automatic segmentations,
respectively.
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4.3 Pelvic Segmentation

Example segmentations of two test cases are shown in Fig. 5 and the quantitative segmentation
accuracy of all 15 test cases in terms of DSC is shown in Fig. 6. Our training datasets included
full, half, and empty bladder so that the trained network was capable of segmenting them cor-
rectly as shown in Fig. 5. It should be noted that we used contours drawn by the attending
radiation oncologist for the patients’ RT planning to train and test the proposed network.
There was slight variation among physicians regarding where to stop contouring the rectum
superiorly (rectum-sigmoid boundary), which caused a slightly reduced autosegmentation per-
formance for the rectum. We did not attempt to modify the rectum contour from what was
defined by the attending radiation oncologist to reflect the real clinical scenario. Notice that
the network produced similar segmentation as the physician’s manual segmentation.

To demonstrate the benefit of incorporating GAN and performing organ-specific fine seg-
mentation in the proposed hierarchical approach, we compared the proposed hierarchical UNet-
GAN segmentation with two other CNN approaches; (1) multi-class UNet and (2) multi-class

Fig. 5 Example segmentations of the prostate, bladder, and rectum shown in axial, sagittal, and
coronal planes. Each row represents a different patient. Note that the bladder shapes are signifi-
cantly different between these two cases. Green, automatic segmentation and red, manual
segmentation.

Fig. 6 Box and whisker plots for DSC of the three segmented pelvic organs. The boxes show
25th and 75th percentiles and the centerline inside each box indicates the median value. “×”marks
indicate mean values over 15 cases.
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UNet-GAN where both networks were trained to simultaneously segment the prostate, bladder,
and rectum together. Both of the multi-class CNNs were trained using 275 CTwith augmentation
where the ROI of dimensions 112 × 112 × 64 was cropped from original CT with a voxel size
of 2.3 × 2.3 × 3 mm3. The cropped ROI includes the prostate, bladder, rectum, and enough
background contexts.

Quantitative and qualitative comparisons are reported in Table 1 and shown in Fig. 7, respec-
tively. In general, multi-class UNet achieved a reasonable segmentation performance as reported
in the prior studies.19,56,65 We observed that erroneously segmented regions in the multi-class
UNet were often improved when GAN was incorporated as shown in Fig. 7. We believe that
GAN constrained the network to produce segmentations of which shapes vary within a reason-
able range of variation and are close to human experts’ manual segmentations. The proposed
hierarchical UNet-GAN achieved superior performance to the multi-class UNet and UNet-GAN
approaches with an overall DSC (mean� SD) of 0.91� 0.05, 0.95� 0.06 and 0.90� 0.09 for
the prostate, bladder and rectum, respectively. Although the number of test cases was small, we
performed Wilcoxon signed rank test for the DSC scores to assess the statistical significance
of the performance difference between the proposed hierarchical UNet-GAN and multi-class
UNet/UNet-GAN (Table 1). It was observed that there were significant improvements in prostate
and bladder segmentations with p ¼ 0.0009∕0.031, p ¼ 0.0002∕0.028 (vs UNet/UNet-GAN),
respectively, whereas the difference was not statistically significant for the rectum segmentation
(p ¼ 0.155∕0.429). The proposed method also achieved lower MSD and HD95 than the other
two methods for all three structures. Note that MSD is less than 1.8 mm for all structures, which
can be considered excellent segmentation performance given the original CT image resolution

Table 1 Quantitative comparison of pelvic CT segmentation performance of different methods
(mean� SD).

Metrics Method Prostate Bladder Rectum

DSC Hierarchical UNet-GAN 0.91� 0.05 0.95� 0.06 0.90� 0.09

UNet-GAN 0.86� 0.07
(p ¼ 0.031)

0.92� 0.05
(p ¼ 0.028)

0.87� 0.13
(p ¼ 0.429)

UNet 0.84� 0.05
(p ¼ 0.0009)

0.88� 0.06
(p ¼ 0.0002)

0.83� 0.16
(p ¼ 0.155)

MSD (mm) Hierarchical UNet-GAN 1.56� 0.37 0.95� 0.15 1.78� 1.13

UNet-GAN 2.28� 0.78 2.11� 0.45 3.45� 0.95

UNet 2.89� 1.15 2.34� 0.91 3.91� 0.47

HD95 (mm) Hierarchical UNet-GAN 5.21� 1.17 4.37� 0.56 6.11� 1.47

UNet-GAN 6.55� 2.87 5.83� 1.53 7.11� 3.42

UNet 7.20� 1.90 7.20� 1.90 9.20� 1.90

PPV Hierarchical UNet-GAN 0.90� 0.06 0.94� 0.02 0.87� 0.09

UNet-GAN 0.84� 0.50 0.86� 0.63 0.83� 0.25

UNet 0.86� 0.04 0.88� 0.45 0.85� 0.31

SEN Hierarchical UNet-GAN 0.84� 0.07 0.97� 0.13 0.88� 0.16

UNet-GAN 0.90� 0.06 0.92� 0.08 0.89� 0.01

UNet 0.89� 0.82 0.93� 0.63 0.90� 0.96

Note: p-values were computed between UNet-GAN/UNet and hierarchical UNet-GAN through Wilcoxon
signed rank test. p < 0.05 is considered statistically significant.
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(1.30 × 1.30 × 3 mm3 on average). The main reason for the superior performance of the
proposed method to the other methods is twofold. First, the fine segmentation focuses only
on a specific organ confined within a compact ROI that contains enough contextual information
around the target organ while excluding unrelated (or very weakly related) background infor-
mation outside the ROI. Second, the incorporation of GAN enables adversarial training, which
further strengthens the segmentation network to produce accurate segmentation by penalizing
segmentation with irregular shapes that are inconsistent with the experts’ manual segmentation.

Table 2 shows quantitative comparison between the proposed method and existing state-of-
the-art methods. Although these methods used different datasets, this comparison allows us to
assess the performance of the proposed methods in (indirect) comparison to other methods. In
terms of DSC, our method outperformed both model-based and regression forest-based machine
learning methods.15,19,20 In comparison to three CNN-based approaches,31,33,36 our method
showed the best performance overall, outperforming all three for the prostate segmentation while
being comparable or slightly better for the bladder and rectum segmentations.

4.4 H&N Segmentation

We have segmented PG and SMG for 20 H&N CT test datasets. Two example cases are shown in
Figs. 8 and 9. The distribution of DSC over 20 cases is shown in Fig. 10(a). The performance of
the proposed method is compared with multi-class UNet and multi-class UNet-GAN segmen-
tations similar to the pelvic cases, and the quantitative comparison is reported in Table 3. It is

Table 2 Pelvic CT segmentation performance comparison with other state-of-the-art methods
(DSC, mean� SD).

Method Prostate Bladder Rectum

Martinez15 Model-based 0.87� 0.07 0.89� 0.08 0.82� 0.06

Gao19 Regression forest 0.87� 0.04 0.92� 0.05 0.88� 0.05

Shao20 0.88� 0.02 — 0.84� 0.05

Kazemifar31 CNN 0.88� 0.10 0.95� 0.04 0.92� 0.10

Wang33 0.89� 0.03 0.94� 0.03 0.89� 0.04

Balagopal36 0.90� 0.02 0.95� 0.02 0.84� 0.04

Proposed 0.91� 0.05 0.95� 0.06 0.90� 0.09

Fig. 7 Examples of segmentations for (green) prostate, (red) bladder, and (blue) rectum using
three different approaches. Each row shows an axial view of a different patient.
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Fig. 8 Examples of PG segmentations. Each row shows axial, sagittal, and coronal views of
a different patient. Green, automatic segmentation and red, manual segmentation.

Fig. 9 Examples of SMG segmentations. Each row shows axial, sagittal, and coronal views of
a different patient. Green, automatic segmentation and red, manual segmentation.

Fig. 10 Box and whisker plots for DSC of PG and SMG segmentations: (a) internal datasets with
20 cases and (b) PDDCA dataset with 38 cases. The boxes show 25th and 75th percentiles and
the centerline inside each box indicates the median value. “×” marks indicate mean values.
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observed that incorporating GAN to UNet improves the segmentation performance, and the pro-
posed hierarchical UNet-GAN achieves better segmentation performance compared to the other
two methods. These performance improvements are consistent with the trend in the pelvic cases
and demonstrate the benefit of incorporating GAN and utilizing a hierarchical approach. The
average DSCs for PG and SMG are 0.87 and 0.86, respectively. We also performed Wilcoxon
signed rank test for the DSC scores to assess the statistical significance of the performance differ-
ence between the proposed hierarchical UNet-GAN and multi-class UNet/UNet-GAN (Table 3).
It was observed that there were significant improvements in both glands with p ¼ 0.005∕0.012
and p ¼ 0.001∕0.038 (versus UNet/UNet-GAN) for the PG and SMG (left–right combined),
respectively.

To assess the generalizability of the proposed method, we applied our trained network to
38 H&N CTs in the PDDCA dataset that has both PG and SMG segmentations. Although trained
on a different dataset, the proposed hierarchical UNet-GAN was able to achieve similar segmen-
tation performance for both PG and SMG. The distribution of DSC over 38 cases is shown in
Fig. 10(b) and the quantitative performance is reported in Table 4.

We also compared the proposed hierarchical UNet-GAN with seven existing state-of-the-art
methods as shown in Table 5. These methods are based on multi-atlas,7 deformable model using
landmarks,10 hierarchical vertex regression to learn shape and appearance,66 patch-based CNN,44

convolutional dense-net with shape constraint and GAN,50 two-stage 3-D Unets (3-D UNet
bounding box network with sliding + 3-D UNet segmentation network),55 and 3-D UNet with
residual blocks.49 It should be noted that some of these methods50,66,67 used the PDDCA dataset
to evaluate segmentation performance. Evaluation using the PDDCA dataset shows a direct and
fair comparison among the competing methods. As reported in Table 5, the proposed method

Table 3 Quantitative comparison of H&N CT segmentation performance of different methods
(mean ± SD).

Metrics Method Left PG Right PG Left SMG Right SMG

DSC Hierarchical UNet-GAN 0.87� 0.04 0.86� 0.03 0.87� 0.04 0.85� 0.05

UNet-GAN 0.83� 0.06
(p ¼ 0.033)

0.83� 0.05
(p ¼ 0.170)

0.81� 0.15
(p ¼ 0.145)

0.80� 0.13
(p ¼ 0.130)

UNet 0.83� 0.08
(p ¼ 0.090)

0.82� 0.06
(p ¼ 0.032)

0.79� 0.10
(p ¼ 0.012)

0.78� 0.14
(p ¼ 0.036)

MSD (mm) Hierarchical UNet-GAN 1.55� 0.97 1.21� 0.35 1.81� 0.60 2.11� 0.31

UNet-GAN 3.15� 0.92 2.13� 0.44 4.15� 0.85 3.97� 1.12

UNet 3.80� 1.15 4.08� 0.32 4.18� 1.13 3.55� 2.50

HD95 (mm) Hierarchical UNet-GAN 3.49� 2.25 4.25� 1.11 4.22� 1.16 4.01� 0.20

UNet-GAN 4.53� 1.04 3.88� 2.33 5.53� 1.06 5.11� 1.58

UNet 4.89� 2.15 4.20� 2.21 5.56� 2.15 6.05� 2.03

PPV Hierarchical UNet-GAN 0.87� 0.10 0.86� 0.15 0.81� 0.28 0.78� 0.15

UNet-GAN 0.80� 0.42 0.83� 0.10 0.81� 0.45 0.80� 0.35

UNet 0.78� 0.55 0.79� 0.83 0.78� 0.37 0.76� 0.26

SEN Hierarchical UNet-GAN 0.85� 0.63 0.88� 0.52 0.80� 0.14 0.84� 0.42

UNet-GAN 0.82� 0.31 0.84� 0.78 0.81� 0.19 0.80� 0.12

UNet 0.78� 0.35 0.82� 0.23 0.79� 0.65 0.80� 0.25

Note: p-values were computed between UNet-GAN/UNet and hierarchical UNet-GAN through Wilcoxon
signed rank test. p < 0.05 is considered statistically significant.
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outperformed these state-of-the-art methods in terms of DSC. The only exception is the method
using 3-D UNet with a residual block,49 which achieved slightly better DSC (average of left and
right is 0.875) for PG compared to the proposed method (average of left and right is 0.865).
However, the proposed method achieved the best performance for SMG segmentation among
all the methods compared.

5 Discussion

In this paper, we proposed a hierarchical coarse-to-fine segmentation network to automatically
segment multiple organs from CT images for RT planning. In the coarse segmentation stage, a
less time-consuming multi-class coarse segmentation of multiple organs of interest is performed
using whole CT images. This multi-class segmentation is used to localize the ROI of each organ,
which is subsequently used in the fine segmentation stage. This organ localization network helps
to remove less important background and improve the efficiency of the fine segmentation by
constraining the segmentation within the specific region of the organ. The fine segmentation
network is designed with a modified 3-D UNet combined with GAN. GAN performs adversarial
training by distinguishing between ground truth and predicted segmentations. The combined
dice and GAN loss guides the training process to better handle inconsistent and irregular shapes,
thus producing more accurate segmentations. Segmentation comparisons with other variations
of UNet reported in Tables 1 and 3 show the contribution of GAN-based adversarial training
integrated with UNet.

In the multi-class segmentation, class imbalance is a common problem where small structures
are prone to being underrepresented compared to the bigger structures.68 In the proposed method,
we perform single-class segmentation of each organ instead of multi-class segmentation, which

Table 4 Quantitative results on PDDCA dataset (mean� SD).

Left PG Right PG Left SMG Right SMG

DSC 0.86� 0.05 0.87� 0.06 0.85� 0.07 0.84� 0.08

MSD (mm) 1.27� 0.78 1.12� 0.57 1.41� 0.76 1.35� 0.85

HD95 (mm) 2.84� 1.52 2.23� 1.70 2.97� 1.42 3.15� 1.65

PPV 0.88� 0.20 0.86� 0.10 0.83� 0.27 0.85� 0.35

SEN 0.84� 0.05 0.87� 0.06 0.84� 0.22 0.82� 0.10

Table 5 H&N CT segmentation performance comparison with other state-of-the-art methods
(DSC).

Method Left PG Right PG Left SMG Right SMG

Han7 Multi-atlas 0.82 0.82 0.69 0.69

Qazi10 Model-based 0.83 0.83 0.84 0.81

Wang66 Regression-based 0.82� 0.05 0.83� 0.06 — —

Ibragimov44 CNN 0.77� 0.06 0.78� 0.05 0.70� 0.13 0.73� 0.09

Tong50 0.85� 0.02 0.86� 0.02 0.81� 0.05 0.82� 0.05

Wang55 0.86� 0.03 0.85� 0.07 0.76� 0.15 0.73� 0.10

Zhu49 0.88� 0.02 0.87� 0.04 0.81� 0.04 0.81� 0.04

Proposed 0.87� 0.04 0.86� 0.03 0.87� 0.04 0.85� 0.05

Sultana et al.: Automatic multi-organ segmentation in computed tomography images. . .

Journal of Medical Imaging 055001-13 Sep∕Oct 2020 • Vol. 7(5)



potentially improves the quality of individual organs’ segmentation regardless of their size.
Tables 1 and 3 show that the single-class segmentation always outperforms one-step multi-class
segmentation. Another advantage of the single-class segmentation network is that the network
training can utilize all available data even if there are missing labels while the multi-class seg-
mentation network typically requires a complete set of labels for all structures unless additional
constraints to handle missing labels are incorporated.23 However, one limitation of the single-class
segmentation is that it requires more networks to be trained, one for each organ. In the proposed
method at the fine segmentation step, each organ has a much smaller ROI than the combined ROI
for multi-class segmentation, which enables much more efficient network training and faster
execution.

An extensive validation of the proposed method was performed using two disease sites:
pelvic and H&N regions. Such an extensive validation in multiple disease sites proves that the
proposed method is versatile and generalizable to segment organs of diverse shape and size.

Automatic segmentation of pelvic organs is a crucial step for the effective treatment of
prostate cancer using RT. Over the past years, several prostate segmentation methods have
been proposed using atlas-based, model-based and most recently, deep-learning-based
approaches.19,20,31,33,36,69 We have compared our proposed method with these state-of-the-art
methods and showed that the proposed method outperforms them with reliable, accurate, and
reproducible organ segmentation performance.

The proposed hierarchical UNet-GANmethod was also employed to segment salivary glands
in H&N CT images. PG and SMG are responsible for producing saliva. Excessive irradiation
of these organs may cause side effects such as xerostomia that may lead to late complications
including poor dental hygiene, oral infections, sleep disturbances, and difficulty in swallowing.70

Therefore, these glands are routinely contoured for an effective RT planning to minimize their
RT-induced toxicities. The segmentation results of PG and SMG using our proposed method
show promising outcome when compared with the performance of existing methods. This seg-
mentation performance is comparable to human experts’ considering the significant inter-
observer variability between experts’ manual segmentations of H&N structures.4,71

Performing a fair comparison with different segmentation methods is difficult as they are
often designed and optimized for a specific problem as well as tuned and tested on a specific
dataset. Reimplementing or utilizing available open-source tools may allow us to directly com-
pare their performances on the same data, but this may lead to unfair comparison as given
parameters may not be optimal for other data. A slight change of parameters may also cause
significant performance change. Instead, we used the publicly available PDDCA dataset that
was used in MICCAI 2015 H&N autosegmentation grand challenge.57 Such a validation using
independent public datasets provides a frame of reference to compare results from different
competing segmentation methods. Quantitative results using the PDDCA dataset as reported
in Table 4 shows consistent performance as with the internal dataset, demonstrating the general-
izability of our network to other datasets. Furthermore, indirect comparison to other state-of-
the-art segmentation methods shows the excellent performance of the proposed method over
existing methods.

We used 275 prostate and 200 H&N data sets to train our networks. These data sets were
augmented by rotation, translation, and lateral flipping to yield 1100 prostate and 800 H&N
training data sets. These numbers are comparable to or exceed the number of training sets used
in other CNN-based segmentation approaches in the literature31,33,36,44,49,50,55 and allowed us to
train our networks to produce the reported promising performance. We observed that the seg-
mentation performance degraded when we reduced the number of training data sets. Given the
limited set of available data, we had to maximize the training data, leaving a small number of
testing data sets. Although the numbers of test cases (15 prostate and 58 [20 internal and 38
external] H&N cases) are also comparable to other studies, extended testing on a much larger
cohort of test cases may be needed to perform a rigorous statistical analysis.

In this paper, we have presented segmentation results of a limited number of organs in each
disease site. In addition to the prostate, bladder, and rectum, our method can be extended to
include more structures such as the bowel, femoral head, seminal vesicle, and sigmoid that are
commonly contoured for prostate RT planning. For H&N, including other structures such as the
brain, brainstem, eyes, optic nerve, optical chiasm, mandible, pituitary gland, thyroid, and larynx
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are our next steps toward more efficient H&N RT planning. We are confident that the current
network can be readily used to segment these organs without much modification.

Finally, we have used CT images to train and test the proposed method in this study. The
same network can be used with other image modalities such as MRI, and may lead to similar
or higher accuracy depending on the organ visibility in those image modalities.

6 Conclusion

This paper presented an end-to-end, CNN-based automatic multi-organ segmentation in CT
images using a hierarchical UNet-GAN with automatic ROI localization of the organs to be
segmented. The automatic ROI extraction improved computational efficiency and the segmen-
tation accuracy by allowing the fine segmentation network to focus only on the region of each
organ. The fine segmentation of each organ is performed using UNet-GAN where the generator
and discriminator compete with each other to improve segmentation accuracy. To avoid a class
imbalance problem of multi-class segmentation, we performed single-class training, which
improved segmentation accuracy over the multi-class segmentation. We performed extensive
experimental validation using clinical data and showed that the proposed method outperformed
other state-of-the-art methods. The proposed method can potentially improve the efficiency of
RT planning of cancer treatment by reducing the burden of tedious manual contouring.
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